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Abstract

The ATLAS collaboration recently reported on the first observation of associated-production of a
Z0 boson with a J/ψ. We recently claimed that the corresponding yield of the prompt J/ψ was
dominated by double parton scatterings in the ATLAS acceptance with a somewhat small value
of σeff . We also found out that single parton scatterings were only dominant at large transverse
momenta. We present here the first phenomenological analysis of another part of the ATLAS data
sample, namely of a Z0 boson plus a non-prompt J/ψ. Our study is performed at next-to-leading
order in αs and includes parton-shower effects via the MadGraph5 aMC@NLO framework. We find
out that the data, unlike the case of prompt J/ψ + Z0, do not hint at significant DPS contributions.
Owing to the current experimental and theoretical uncertainties, there is still a room for these but
with a lower limit of σeff close to 5 mb. We stress the importance of QCD corrections to account
for the ATLAS data.

1. Introduction

Thanks to the large luminosities of the LHC, the study of differential distributions of associ-
ated production of vector bosons with open- and hidden-heavy flavour became accessible. These
are particularly interesting because they can give access to information on double parton scatter-
ings (DPS). These, as opposed to the conventional single parton scatterings (SPS), consist in two
simultaneous partonic scatterings during a single proton-proton collision.

The relevance of DPS is known to increase for increasing energies at hadron-hadron colliders
which explains why they have only started to be systematically studied with the advent of the
Tevatron and the LHC. This is also why they remain poorly understood. Yet, the measurement
of fundamental SM parameters like the bottom-quark Yukawa coupling via H0 and vector-boson
associated production requires the reanalysis of these processes by taking into account DPS. New
physics searches via same-sign W boson-pair production also requires a good control on the DPS.

Recent DPS studies based on quarkonium-pair production [1, 2, 3, 4, 5] indicate a smaller σeff

–a parameter characterising the importance of the DPS (σDPS ∝ 1/σeff)– than the jet-related final
states. We should however note that all these extractions were carried out under a simplified –but
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commonly used– assumption whereby both scatterings occur independently without affecting each
others’ kinematics. As such, their individual cross sections appear in a factorised way, in what we
call the ”pocket formula”. As of today, there do not exist proofs of such a factorised formula.
Recent and less recent theoretical DPS studies have identified factorisation-breaking effects (see
e.g. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]) and
have thus shown that such a factorised ”pocket formula” can only be an approximation and we
stress that it should only be considered as such. That being said, given the other theoretical and
experimental uncertainties involved in such extractions, such a simplification is perfectly sound.

Quarkonia being produced via the gluon-gluon initial states, their pair production could help
us probe the transverse correlations of the gluon-gluon in a proton (see e.g. [20]). In fact, many
quarkonium associated production processes have been recently measured. Let us cite J/ψ pair
production by LHCb [30], D0 [1], CMS [31] and ATLAS [32] , J/ψ + Υ production by D0 [3],
Υ(1S ) pair production by CMS [33], J/ψ+Z0/W± production by ATLAS [34, 35], J/ψ/Υ+charm
by LHCb [36, 37], with their theory counterparts for J/ψ + J/ψ [38, 39, 40, 2, 41, 42, 43, 44, 45],
J/ψ + Υ [41, 4], Υ + Υ [41] and Z0+ prompt J/ψ [46].

The observed different trend between the extracted values of σeff for jets and quarkonia may
be the first hint of a nontrivial flavour dependence of these correlations. Along these lines, the
associated production of a vector boson with heavy flavours, which we treat here, could be an
unique playground to probe corresponding quark-gluon correlations.

In this paper, we are in particular interested in the associated production of a Z0 boson with a
b quark, via the observation of a non-prompt J/ψ, as measured by the ATLAS collaboration [34].
This production channel is thus supposed to probe the underlying process pp→ Z0 + bb̄ + X1. At
the LHC, such partonic reactions are usually proposed to be studied via Z0 plus b-jet. We however
stress that both final states are complementary since looking at the b via non-prompt J/ψ allows
one to access lower PT than with b-jets. For this process, we will show that going to lower PT

gives the best prospects to dig out the DPS contributions, since they happen not to be large in
general.

In addition, Z0+bb̄ production is an important observable as it can be an irreducible background
to Z0 +H0 production followed by H → bb̄, Z0 +H0 being one of the four main H0 production pro-
cesses at the LHC. It could also be one of the crucial processes to directly probe the bottom-Higgs
Yukawa coupling. The next-to-leading order (NLO) QCD corrections to pp → Z0 + bb̄ + X have
extensively been studied in the literature [47, 48, 49, 50]2. Yet, all the existing phenomenologi-
cal studies focused on b-jets, hence the absence of data-theory comparisons in [34]. The present
study, relying on existing and validated automated tools, like MadGraph5 aMC@NLO [52] and
Pythia 8.1 [53], therefore fills a gap in the literature with the first phenomenological analysis of
Z + b in the b→ J/ψX decay channel.

1For the SPS, it proceeds via gg→ Z0 + bb̄ + X in the 4 flavour scheme and gb→ Z0 + b in the 5 flavour scheme.
2The NLO electroweak corrections to the similar process pp→ Z0 + tt̄ + X were also recently made available [51].
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The structure of the article is as follows. Next section contains a short description of the
computation set-up including the definition of the fiducial cuts as well as our results. We will
compare our theoretical results with the ATLAS data and extract the information of σeff . Besides,
a theoretical prediction will be given for the ongoing CMS measurement. Finally, we draw our
conclusions in section 3.

2. Framework and results

2.1. Framework

Let us now describe how we have computed the (differential) yields to be compared to the
measurement of the ATLAS collaboration recently reported in [34]. In order to generate the
(N)LO event sample for pp → Z0 + bb̄ + X in the 3-initial-quark-flavour scheme, we have used
MadGraph5 aMC@NLO [52]. For the record, this single framework includes MadLoop [54] and
MadFKS [55] to handle the virtual and real pieces respectively; the former module uses the OPP
method [56, 57] whereas the latter uses the FKS subtraction method [58]. It also automatically
uses the MC@NLO approach [59] to match NLO matrix elements to parton showers. The spin-
entangled Z0 → e+e− decays were then performed by the MadSpin module [60] and we have used
Pythia 8.1 [53] to account for the parton showers, the hadronisation and the other decays. All this
allowed us to compute the yield in the ATLAS and CMS fiducial regions (see Table 1).

Z boson selection

PT (trigger lepton)> 25 GeV, PT (sub-leading lepton)> 15 GeV, |η(lepton from Z)| < 2.5

J/ψ selection
ATLAS fiducial [34] ATLAS inclusive [34] CMS fiducial [61]

8.5 < PJ/ψ
T < 100 GeV 8.5 < PJ/ψ

T < 100 GeV 8.5 < PJ/ψ
T < 100 GeV

|yJ/ψ| < 2.1 |yJ/ψ| < 2.1 |yJ/ψ| < 2.1
PT (leading muon)> 4.0 GeV |η(muon)| < 2.5
|η(leading muon)| < 2.5

either
(

PT (sub-leading muon)> 2.5 GeV
)

1.3 ≤ |η(sub-leading muon)| < 2.5
or

(
PT (sub-leading muon)> 3.5 GeV

)
|η(sub-leading muon)| < 1.3

Table 1: Phase-space definition for the fiducial/inclusive production cross section for J/ψ + Z as
measured in the ATLAS detector and foreseen for the CMS detector.

As what regards the choice of the renormalisation scale µR and factorisation scale µF , we have
chosen as a central value µ0 = HT

2 , where HT is the transverse mass sum of the final states. For the
PDFs, we have used CTEQ6L1 (CTEQ6M) [62] for the LO (NLO) computation. The integrated
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fragmentation fraction of b-hadrons to J/ψ was taken to be 1.15% from Ref. [63], which is also
close to other estimations in the literature (see e.g. Refs. [64, 65]). The other relevant Standard
Model parameters are reported in Table 2.

Parameter Value Parameter Value

mZ 91.188 nl f 3

mc 1.5 Gµ 1.1987498350461625 10−5

mb 4.75 α−1
em 137

mt 173.0 CKM Vi j δi j

Table 2: Values of the Standard-Model parameters with the dimension-full quantity in units of
GeV.

2.2. Our results for the SPS contributions
In the ATLAS fiducial and inclusive regions (defined in Table 1), we have obtained the follow-

ing (N)LO SPS cross sections for non-prompt J/ψ + Z production at the LHC for
√

s = 8 TeV:

σLO SPS,ATLAS fidu.(npJ/ψ + Z) = 1215+383.5
−272.4 fb; σNLO SPS,ATLAS fidu.(npJ/ψ + Z) = 1760+240.9

−220.8 fb,

σLO SPS,ATLAS incl.(npJ/ψ + Z) = 1999+619.7
−442.5 fb; σNLO SPS,ATLAS incl.(npJ/ψ + Z) = 2922+392.9

−361.1 fb,

(1)

where the theoretical uncertainty includes the renormalisation scale µR and factorisation scale µF

uncertainty µ0
2 ≤ µR, µF ≤ 2µ0, varied independently.

In absence of such predictions in the literature, no comparison was made by ATLAS in Ref. [34].
We proceed now to the comparison to their results presented in the form of yield ratio in order to
reduce some systematical uncertainties attached to the detection of the Z boson, namely :

npR(J/ψ + Z) = Br(J/ψ→ µ+µ−) ×
σ(J/ψ + Z)

σ(Z)
(2)

We therefore also need to use the Z production cross section with the ATLAS cuts and have
decided to simply take σATLAS(Z) × Br(Z → e+e−) = 533.4 fb used by ATLAS for the comparison
with the prompt J/ψ + Z theory predictions. The latter was estimated at the next-to-next-to lead-
ing order by FEWZ [66]. We have also checked this estimation with MadGraph5 aMC@NLO by
including the parton shower effects via the MC@NLO [59] approach and have obtained a similar
value within the theory uncertainty.

Our results and those of ATLAS are shown in Fig.1 and in Table 3. The NLO corrections in
αs increase the Z+ non-prompt J/ψ SPS yield by a factor of 1.46. Overall the SPS yield ends up
to be close to the ATLAS measurement and hence leaves a small room for the DPS yield. We also
note that the relative scale uncertainty is also reduced from 30% at LO to 13% at NLO.
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Figure 1: Total cross section ratio npR(J/ψ + Z) for the non-prompt J/ψ + Z production at 8 TeV
LHC.

Experiment [10−7] LO SPS
[10−7]

NLO SPS
[10−7]

DPS (σeff = 5÷ 15 mb)
[10−7]

ATLAS fiducial 65.8 ± 9.2 ± 4.2 44.6+14.1
−10.0 64.6+8.8

−8.1 -

ATLAS inclusive 102 ± 15 ± 5 ± 3 73.3+22.7
−16.2 107+14.4

−13.2 8.25 ÷ 24.75

CMS fiducial - 73.0+22.7
−16.2 106+15.3

−12.4 -

Table 3: Comparison of the cross section ratio npR(J/ψ + Z) between the theoretical calculations
and the experimental data [34] at 8 TeV LHC.

2.3. Discussion about the DPS contributions

Let us now turn to the discussion of the DPS contributions. ATLAS [34] has made an estima-
tion of the DPS yield using the data for single Z and non-prompt J/ψ production and using the
simple ”pocket formula”3.

σDPS(J/ψ + Z) =
σ(J/ψ)σ(Z)

σeff

. (3)

By assuming σeff = 15 mb, they quoted npR(J/ψ + Z) = 8.25 × 10−7 from DPS. If one uses a
value of 5 mb, more in line with the conclusions of our study of prompt J/ψ+ Z [46], npR(J/ψ+ Z)

3Let us recall at this stage our caveat mentioned in the introduction that there do not exist proofs of such a formula
and that factorisation-breaking effects have been discussed in a number of recent studies (see e.g. [6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]).
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is thus naturally three times as large. As evident from Table (3), such a value is only marginally
compatible with the ATLAS measurements owing to the experimental and (SPS) theoretical un-
certainties.

In fact, this also means that we can extract a lower limit on σeff , corresponding to a maximum
allowed DPS yields, now that we have at disposal a SPS computation. Contrary to other cases
which we previously analysed [2, 46], we cannot extract an upper limit since the SPS yield alone
is compatible with the data. We evaluate the {68%; 95%} confidence level upper limit on the SPS
yield simply as follows:

σDPS,max = (σATLAS data + {1; 2} × δσATLAS data) − (σSPS − {1; 2} × δσSPS), (4)

where σ generically denotes the central value of the J/ψ + Z cross section and δσ is the standard
deviation of this cross section. The lower value of σeff at 68% (95%) confidence level is then
5.0 mb (2.3 mb), which is compatible with the σeff extraction from the other quarkonium-related
measurements [1, 31, 2, 3, 4, 46] and it is close to the range σeff = 4.7+2.4

−1.5 mb we obtained for
prompt J/ψ + Z production [46].

2.4. Comparison with differential distributions

Let us now turn to the comparison of the differential distributions between the theoretical
results and the ATLAS data, which in fact allows us to draw similar conclusions. Still by lack
of SPS predictions, ATLAS could only compare its measurement of the transverse-momentum
PT spectrum of non-prompt J/ψ to their estimation of the DPS yield. As expected from the near
dominance of SPS for this process (see above), they found out a very large discrepancy (gap
between the data and the blue histogram).

Adding the SPS contribution which we have computed largely fills the gap between theory and
experiment as can be noted in Fig. 2a. Only remains a small discrepancy in the last PJ/ψ

T bin which
should however be confirmed by forthcoming measurements as well as more accurate theoretical
calculations, with e.g. an improved description of the b quark fragmentation, an account of even
higher order QCD corrections, and a matching between different initial-quark flavour number
schemes. Similar to the prompt J/ψ + Z production, the DPS contributions exhibit a softer PJ/ψ

T

spectrum than the SPS ones.
Unlike the PJ/ψ

T spectrum, ATLAS did not provide the efficiency-corrected azimuthal angle cor-
relation between J/ψ and Z, ∆φZ−J/ψ. Although such a distribution may significantly be smeared
by non-perturbative intrinsic initial parton kT [2, 38] in the low PT region, we do not think that
such a smearing effect will be large here because of the ATLAS PJ/ψ

T cut which is as large as 8 GeV.
Therefore, the investigation of this correlation may indeed reveal the importance of DPS directly.
However, in order to make a fair comparison, one has to unfold the efficiency since it is largely
dependent on PJ/ψ

T and hence impacts the collected number of events reported in this distribution.
Along the same lines as Ref. [46] and thus by assuming the background events, B, and the signal
events, S , to scale like B/S = 17/PJ/ψ

T , we can evaluate the number of non-prompt J/ψ+ Z events
6
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(a) PJ/ψ
T differential cross section
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(b) ∆φZ−J/ψ differential distribution

Figure 2: Differential cross section/distributions for non-prompt J/ψ+ Z production: pT distribu-
tion of J/ψ (a) and azimuthal angle distribution (b).

PJ/ψ
T [GeV] S
(8.5, 10) 4.2
(10, 14) 32.7
(14, 18) 15.6
(18, 30) 47.1

(30, 100) 12.7
(8.5, 100) 112.3

Table 4: The estimation of the number of the signal events S (before the efficiency corrections)
for non-prompt J/ψ + Z in each PJ/ψ

T bin with the assumption B/S = 17/PJ/ψ
T .

in each PJ/ψ
T , see Table (4). Overall, we evaluate the total number of non-prompt signal events to

be 112 vs the ATLAS found 95 ± 12 ± 8, which are roughly consistent. Of course, a more precise
comparison will be possible if ATLAS releases a cross section differential in ∆φZ−J/ψ. Once the
number of signal events is known in each bin, one can fill the ∆φZ−J/ψ distribution according to
these numbers using the ratio DPS/SPS in each bin as well as the expected azimuthal DPS and
SPS distributions. The former is assumed to be flat (uncorrelated production) see the blue line of
Fig. 2b. The latter is obtained from our NLO computation just as the SPS PJ/ψ

T spectrum was, see
the red histogram of Fig. 2b. The resulting comparison ends up to be satisfactory and confirms
that the non-prompt J/ψ + Z yield in the ATLAS acceptance is dominated by SPS contributions
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contrary to the prompt J/ψ + Z yield [46].
As aforementioned, the ratio DPS/SPS increases in the ATLAS acceptance for decreasing PJ/ψ

T .
For the lowest PJ/ψ

T bin, it even reaches 20 % with σeff = 15 mb (thus 3 times larger for 5 mb).
With higher statistics, it will be possible to measure the yield differential in the rapidity difference,
∆y, between the Z and the J/ψ. For increasing, ∆y, the DPS yield, i.e. from two independent
scatterings, is favoured with respect to the SPS yield and could eventually be dominant like for
quarkonium-pair production [38, 2].

3. Conclusions

By providing the first phenomenological analysis of (SPS contributions to) Z + b production
in the b → J/ψX decay channel, we have filled a gap in the literature and could make the first
comparison between theory and the corresponding measurement by the ATLAS collaboration [34].
Unlike the case of prompt J/ψ + Z production [46], we have found out that the SPS contributions
to non-prompt J/ψ + Z production happen to be dominant and very close to experimental data.
This therefore sets up an upper (lower) limit of the DPS yield (σeff).

Our conclusion is based on a computation including NLO QCD corrections and parton-shower
effects using MadGraph5 aMC@NLO and Pythia 8.1. Our comparison between the theory and the
experiment also shows the importance of the QCD corrections, which not only results in a smaller
scale uncertainty but also improves the agreement with data. An improved determination of σeff

requires a better control on both the theoretical and the experimental uncertainties. This of course
holds only if one sticks to the simple ”pocket formula” where factorisation between both parton
scatterings is implied as done for all the existing σeff experimental extractions.

Based on the ATLAS measurement [34] at
√

s = 8 TeV, we thus set the lower limit of σeff to
be 5.0 mb at 68% confidence level and 2.3 mb at 95% confidence level. A comparison with other
extractions from both quarkonium associated production [46, 2, 1, 32, 3] and jet production [67,
68, 69, 70, 71] is displayed in Fig. 3. The values of σeff from quarkonium production are in general
lower than those from jet production, although no strong conclusion can be drawn at the moment
due to the remaining large uncertainties, some of them inherent to our incomplete knowledge
of the quarkonium-production mechanisms [72, 73, 74]. If such an observation is confirmed in
the future, it may reveal a nontrivial transverse correlations between sets of two partons from a
proton or a violation of DPS factorisation, even at high energies. In general, processes as the one
discussed here are very important because both scatterings probe different initial states –despite
the expected small impact of DPS on the current data set. We emphasise that such a test is very
important and, as illustrated here, is feasible at the LHC with higher statistics which would allow
one to reach parts of the phase space where DPS contributions are expected to be larger.
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