

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

SALT – a Dedicated Readout ASIC for Upstream Tracker in the Upgraded LHCb Experiment

Tomasz Fiutowski

on behalf of the LHCb UT collaboration

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

2016 IEEE NSS/MIC Strasbourg, France 29 October – 5 November 2016

- Introduction
- SALT design
- Tests results of SALT prototypes

Introduction Upgrade of LHCb Inner Tracker at LHC

- Upstream Tracker (UT) replaces the Tracker Turicensis (TT)
- 500 000 silicon strip detector channels
- Readout frequency increases to 40 MHz – *currently Level-0 trigger is limited to 1MHz*
- New readout electronics is needed!

Introduction Readout of UT silicon strip detectors

ASICs (1) SENSORS (2) HYBRIDS KAPTON TAPE (4) SUPPORT

GBT

• 4 sensor types

AGH

- *p*⁺-in-*n*, 10 cm length
- *n*⁺-in-*p*, 10/5 cm length
- ~ 1000 hybrids with 4 or 8 ASICs

- ~4000 128-channel readout ASICs – SALT
- Data rate depends on position different number of active e-links in SALT

Introduction SALT specification

- CMOS 130 nm technology
- 128 channels, Front-end & ADC in each channel
- Sensor: capacitance 5–20 pF, AC coupled
- Both input signal polarities (*p*⁺-in-*n* and *n*⁺-in-*p*)
- Input charge ~30 ke-
- Noise: ENC ~1000 e- @10 pF + 50 e-/pF
- Pulse shape: $T_{peak} \sim 25$ ns, very short tail: $\sim 5\%$ after $T_{peak} + 25$ ns
- Crosstalk < 5%
- ADC: 6-bit resolution (5-bit/polarity), 40 MS/s
- DSP functions: pedestal and common mode subtraction, zerosuppression
- Serialization & Data transmission: 320 Mbps e-links to GBTx, SLVS I/O
- Slow control: I2C
- Power < 6 mW/channel
- Radiation hardness ~30 MRad

Introduction

SALT design

• Tests results of SALT prototypes

- Front-end & ADC in each channel
- Advanced Digital Signal Processing (DSP)
- many other features/blocks: PLL, DLL, TFC, I2C, SLVS I/O, ...

- Charge sensitive amplifier (Krummenacher for DC output)
- 3-stage shaper (complex poles and zeros) gives the requested pulse with short tail
- Common mode (vcm) is kept at half power supply to work with both pulse polarities
- Power consumption: ~1.2 mW

SALT design 6-bit ADC

Main features:

- SAR architecture, 6-bit resolution •
- 40 MSps nominal sampling rate
- Merge Capacitor Switching (MCS)
- Capacitive DAC with 3b/2b split

- Dynamic comparator
 - Dynamic asynchronous logic
- Bootstrapped input switches
- Power consumption ~350 uW

T. Fiutowski, 2016 IEEE NSS/MIC

SALT design PLL, DLL

PLL

DLL

PLL features:

- High frequency (160 MHz) clock for serializer
- Input frequency 40 MHz
- Power consumption ~0.5 mW @ 160 MHz
- Multiplexing 2 output phases selected from 16 uniform phases (DDR deserialization)

DLL features:

- ADC sampling phase setting
- Input frequency 40 MHz
- Power consumption $\sim 0.7 \text{ mW}$
- Multiplexing 1 output phase selected from 64 uniform phases

ADC output is synchronized via async FIFO

- Input data: 6 bits (5 bits plus sign)
- Noisy or dead channels can be masked
- All channel values can be inverted (1 config bit)
- Pedestal subtraction subtraction in each channel with different value
- MCMS Mean Common Mode Subtraction
- ZS Zero suppression

4095um x 10900um

- Introduction
- SALT design

Tests results of SALT prototypes

Tests of SALT prototypes Key functional blocks

- Operation of all key blocks (Front-end, ADC, PLL, DLL, Bandgap) was positively verified
- SALT8 version 1 was functional, whole readout chain was tested, some issues in analogue and digital parts were found and corrected in SALT8 version 2
- SALT8 version 2 almost all requested functions implemented, functional tests finished
- SALT (SALT128) delivered, partially tested

- Mean common mode (MCM) is an average over channels without signal.
- NZS event packet includes MCM & the number of channels used in the calculation.
- SALT8 was configured specially to achieve large MCM range for test purpose.
- MCM from offline calculation are consistent with SALT8 calculation.

Tests of SALT prototypes SALT8 trim DACs and test pulse

- The fact that we see the expected signals at the SALT8 output, when applying input signal, means that the whole multi-channel (8) chain (front-end, single-to-differential, ADC, digital processing) works well
- Front-end pulse can't be observed directly
 - collecting NZS data packets
 - each point is an average from several hundred measurements
 - delay controlled via SALT8 configuration

Tests of SALT prototypes Pulse shape using laser source

- Laser beam of ~7 ns width.
- The laser beam is centred on strip connected to channel 4, ~20 um from the border between strips.
- For long strips crosstalk is around 5% as in specs.
- In each of 8 runs, laser beam is centered on the strips one by one.
- Collection of pulse shapes from all channels that are hit by laser beam in each run.

The development of the SALT ASIC for the LHCb Upstream Tracker is almost finished.

- Two 8-channel SALT prototypes, with nearly complete functionality, were fabricated and tested
- The 128-channel prototype was submitted in June:
 - chips were delivered at the end of August
 - the first test results are promising...
- Radiation tests for 8-channel prototypes have been done, for 128-channel prototype coming soon ...

Thank You

T. Fiutowski, 2016 IEEE NSS/MIC