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1 Introduction

Non-abelian gauge and gravity theories describe very different physics. The former gov-

ern much of high energy physics, including applications to particle colliders. The latter

underpin most of astrophysics and cosmology. In both types of theory, the ever advanc-

ing experimental frontier demands theoretical precision, including the development of new

computational techniques. Recently, an intriguing new relationship between scattering am-

plitudes in gauge and gravity theories has been discovered by Bern, Carrasco and Johansson

(BCJ) [1–3]. There are two elements in the BCJ story. The first is the colour-kinematics

duality, which is the statement that it is possible to organise the numerators of perturba-

tive Feynman-like diagrams so that the kinematic numerator of a given diagram obeys the

same algebraic relations as the colour factor of that diagram (for an arbitrary choice of

gauge group). These relations include Jacobi relations, which lead to three-term identities

connecting planar and non-planar diagrams in gauge theory. Furthermore, the presence

of Jacobi relations for kinematic objects hints at the existence of an algebraic structure

underlying the gauge theory [4].

The second major element of the BCJ story is the double copy [1–3]. This states that

gauge theory amplitudes can be straightforwardly modified to yield gravity amplitudes,

essentially by replacing the colour factor of the gauge amplitude with a second copy of the

kinematic numerator. At tree level, both the colour-kinematics duality and the double copy
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are proven to be valid [3–11], and the latter is known to be equivalent to the celebrated

KLT relations [12], derived from string theory. However, the BCJ story is remarkable in

that it also appears to apply at loop level, and in different types of theory [2, 13–53].

The existence of the double copy hints at a profound relationship between gauge and

gravity theories, that should transcend perturbative amplitudes. To this end, refs. [54–57]

have generalised the notion of the double copy to exact classical solutions. That is, a large

family of gravitational solutions was found that could be meaningfully associated with a

gauge theory solution, such that the relationship between them was consistent with the BCJ

double copy. These solutions all had the special property that they linearised the Einstein

and Yang-Mills equations, so that the graviton and gauge field terminate at first order in

the coupling constant, with no higher-order corrections. A special choice of coordinates

(Kerr-Schild coordinates) must be chosen in the gravity theory, reminiscent of the fact that

the amplitude double copy is not manifest in all gauge choices. An alternative approach

exists, in a wide variety of linearised supersymmetric theories, of writing the graviton as

a direct convolution of gauge fields [58–63]. This in principle works for general gauge

choices, but it is not yet clear how to generalise this prescription to include nonlinear

effects. One may also consider whether the double copy can be generalised to intrinsically

non-perturbative solutions, and first steps have been taken in ref. [64].

As is hopefully clear from the above discussion, it is not yet known how to formulate

the double copy for arbitrary field solutions, and in particular for those which are nonlinear.

However, such a procedure would have highly useful applications. Firstly, the calculation

of metric perturbations in classical general relativity is crucial for a plethora of astrophys-

ical applications, but is often cumbersome. A nonlinear double copy would allow one to

calculate gauge fields relatively simply, before porting the results to gravity. Secondly,

ref. [55] provided hints that the double copy may work in a non-Minkowski spacetime.

This opens up the possibility to obtain new insights (and possible calculational techniques)

in cosmology.

The aim of this paper is to demonstrate explicitly how the BCJ double copy can be

used to generate nonlinear gravitational solutions order-by-order in perturbation theory,1

from simpler gauge theory counterparts. This is similar in spirit to refs. [65–67], which

extracted both classical and quantum gravitational corrections from amplitudes obtained

from gauge theory ingredients; and to refs. [68, 69], which used tree-level amplitudes to

construct perturbatively the Schwarszchild spacetime. Very recently, ref. [70] has studied

the double copy procedure for classical radiation emitted by multiple point charges. Here

we take a more direct approach, namely to calculate the graviton field generated by a

given source, rather than extracting this from a scattering amplitude. Another recent

work, ref. [71], proposes applications to cosmological gravitational waves, pointing out a

double copy of radiation memory.

As will be explained in detail in what follows, our scheme involves solving the Yang-

Mills equations for a given source order-by-order in the coupling constant. We then copy

1This is the post-Minkowskian expansion, as opposed to the post-Newtonian expansion where the non-

relativistic limit is also taken.
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this solution by duplicating kinematic numerators, before identifying a certain product of

gauge fields with a two-index field Hµν , motivated by ref. [3]. This field contains degrees

of freedom associated with a conventional graviton hµν , together with a scalar field φ and

two-form field Bµν . For convenience, we will refer to Hµν as the fat graviton, and the

physical field hµν as the skinny graviton. As we will see, the skinny fields hµν , Bµν and

φ can be obtained from knowledge of Hµν , though this extraction requires knowledge of a

certain gauge transformation and field redefinition in general.

The structure of our paper is as follows. In section 2, we briefly review the BCJ

double copy. In section 3, we work at leading order in perturbation theory, and outline

our procedure for obtaining gravity solutions from Yang-Mills fields. In section 4, we work

to first and second subleading order in perturbation theory, thus explicitly demonstrating

how nonlinear solutions can be generated in our approach. Finally, we discuss our results

and conclude in section 5.

2 Review of the BCJ double copy

Our aim in this section is to recall salient details about the BCJ double copy [1–3], that

will be needed in what follows. Since we will be dealing with solutions to the classical

theories, we are only concerned with the tree-level story, which is well established, whereas

at loop level the BCJ proposal is a conjecture. First, we recall that an m-point tree-level

amplitude in non-abelian gauge theory may be written in the general form

Am = gm−2
∑

i∈Γ

ni ci
∏

αi
p2αi

, (2.1)

where g is the coupling constant, and the sum is over the set of cubic graphs Γ. The denomi-

nator arises from propagators associated with each internal line, and ci is a colour factor ob-

tained by dressing each vertex with structure constants. Finally, ni is a kinematic numera-

tor, composed of momenta and polarisation vectors. Note that the sum over graphs involves

cubic topologies only, despite the fact that non-abelian gauge theories include quartic inter-

action terms for the gluon. These can always be broken up into cubic-type graph contribu-

tions, so that eq. (2.1) is indeed fully general. The form is not unique, however, owing to the

fact that the numerators {ni} are modified by gauge transformations and / or field redefini-

tions, neither of which affect the amplitude. A compact way to summarise this is that one is

free to modify each individual numerator according to the generalised gauge transformation

ni → ni +∆i,
∑

i

∆ici
∏

αi
p2αi

= 0, (2.2)

where the latter condition expresses the invariance of the amplitude.

The set of cubic graphs in eq. (2.1) may be divided into overlapping sets of three,

where the colour factors ci are related by Jacobi identities, associated to the Lie algebra of

the colour group. Remarkably, it is possible to choose the numerators ni so that they obey

similar Jacobi identities, which take the form of coupled functional equations. This property

is known as colour-kinematics duality, and hints at an intriguing correspondence between
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colour and kinematic degrees of freedom that is still not fully understood, although progress

has been made in the self-dual sector of the theory [4]. More generally, the field-theory limit

of superstring theory has been very fruitful for understanding colour-kinematics duality [10,

51, 72] and there has been recent progress on more formal aspects of the duality [73–75].

Given a gauge theory amplitude in BCJ-dual form, the double copy prescription states

that

Mm = i
(κ

2

)m−2∑

i∈Γ

ni ñi
∏

αi
p2αi

(2.3)

is an m-point gravity amplitude, where

gµν = ηµν + κhµν (2.4)

can be chosen to define the graviton field, and κ =
√
32πG is the gravitational coupling

constant.2 This result is obtained from eq. (2.1) by replacing the gauge theory coupling con-

stant with its gravitational counterpart, and colour factors with a second set of kinematic

numerators ñi. Therefore, the procedure modifies the numerators of amplitudes term by

term, but leaves the denominators in eqs. (2.1), (2.3) intact. A similar phenomenon occurs

in the double copy for exact classical solutions of refs. [54–56], in which scalar propagators

play a crucial role.

The gravity theory associated with the scattering amplitudes (2.3) depends on the two

gauge theories from which the numerators {ni}, {ñi} are taken. In this paper, both will

be taken from pure Yang-Mills theory, which is mapped by the double copy to “N = 0

supergravity”. This theory is defined as Einstein gravity coupled to a scalar field φ (known

as the dilaton) and a two-form Bµν (known as the Kalb-Ramond field, which can be replaced

by an axion in four spacetime dimensions). The action for these fields is

S =

∫

dDx
√−g

[

2

κ2
R− 1

2(D − 2)
∂µφ∂µφ− 1

6
e−2κφ/D−2HλµνHλµν

]

, (2.5)

where Hλµν is the field strength of Bµν . In the following, we will study perturbative

solutions of this theory around Minkowski space. The starting point is to consider linearised

fields, for which the equations of motion are

∂2hµν − ∂µ∂
ρhρν − ∂ν∂

ρhρµ + ∂µ∂νh+ ηµν
[

∂ρ∂σhρσ − ∂2h
]

= 0,

∂2Bµν − ∂µ∂
ρBρν + ∂ν∂

ρBρµ = 0,

∂2φ = 0. (2.6)

Instead of the straightforward graviton field hµν defined by (2.4), we will often work

with the “gothic” metric perturbation hµν such that

√−g gµν = ηµν − κ hµν , (2.7)

as it is common in perturbation theory [76]. In terms of this gothic graviton field, the de

Donder gauge condition is simply ∂µh
µν = 0 to all orders. At the linear order, the two

2We work in the mostly plus metric convention.
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metric perturbations are simply related:

hµν = hµν −
1

2
ηµνh, (2.8)

and the linear gauge transformation generated by xµ → xµ − κ ξµ is

hµν → h′µν = hµν + ∂µξν + ∂νξµ − ηµν∂ · ξ. (2.9)

This transformation is more convenient in what follows than the standard gauge transfor-

mation for hµν (where the last term is missing). Finally, the linearised equation of motion is

∂2hµν − ∂µ∂
ρhρν − ∂ν∂

ρhρµ + ηµν∂
ρ∂σhρσ = 0. (2.10)

In de Donder gauge, we have simply ∂2hµν = 0.

3 Linear gravitons from Yang-Mills fields

Our goal is to rewrite gravitational perturbation theory in terms of the fat graviton Hµν ,

rather than more standard perturbative fields such as {hµν , Bµν , φ}. The idea is that

the fat graviton is the field whose interactions are directly dictated by the double copy

from gauge theory. In this section, we will discuss in some detail the mapping between

the skinny fields and the fat graviton at the linearised level. Indeed, we will see that

there is an invertible map, so that the fat graviton may be constructed from skinny fields

Hµν = Hµν(hαβ , Bαβ , φ), but also the skinny fields can be determined from the fat field,

hµν = hµν(Hαβ), Bµν = Bµν(Hαβ), φ = φ(Hαβ). We will determine the relations between

the fields beginning with the simplest case: linearised waves.

3.1 Linear waves

As a prelude to obtaining non-linear gravitational solutions from Yang-Mills theory, we first

discuss linear solutions of both theories. The simplest possible solutions are linear waves.

These are well-known to double copy between gauge and gravity theories (see e.g. [77]). This

property is crucial for the double copy description of scattering amplitudes, whose incoming

and outgoing states are plane waves. Here, we use linear waves to motivate a prescribed

relationship between fat and skinny fields, which will be generalised in later sections.

Let us start by considering a gravitational plane wave in the de Donder gauge. The free

equation of motion for the graviton is simply ∂2hµν = 0. Plane wave solutions take the form

hµν = aµνe
ip·x, pµaµν = 0, p2 = 0, (3.1)

where aµν is a constant tensor, and the last condition follows from the equation of motion.

Symmetry of the graviton implies aµν = aνµ, and one may also fix a residual gauge freedom

by setting a ≡ aµµ = 0, so that hµν becomes a traceless, symmetric matrix. It is useful to

further characterise the matrix aµν by introducing a set of (D − 2) polarisation vectors ǫiµ
satisfying the orthogonality conditions

p · ǫi = 0, q · ǫi = 0, (3.2)
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where qµ (q2 = 0, p · q 6= 0) is an auxiliary null vector used to project out physical degrees

of freedom for an on-shell massless vector boson. These polarisation vectors are a complete

set, so they satisfy a completeness relation

ǫiµǫ
i
ν = ηµν −

pµqν + pνqµ
p · q . (3.3)

Then the equation of motion for hµν , together with the symmetry and gauge conditions on

aµν , imply that one may write

aµν = f
/t
ijǫ

i
µǫ

j
ν , (3.4)

where f
/t
ij is a traceless symmetric matrix. Thus, the linearised gravitational waves have

polarisation states which can be constructed from outer products of vector waves, times

traceless symmetric matrices.

Similarly, one may consider linear plane wave solutions for a two-form and φ field.

Imposing Lorenz gauge ∂µBµν = 0 for the antisymmetric tensor, its free equation of motion

becomes simply ∂2Bµν = 0. Thus plane wave solutions are

Bµν = f̃ijǫ
i
µǫ

j
νe

ip·x, (3.5)

where f̃ij is a constant antisymmetric matrix. Meanwhile the free equation of motion for

the scalar field is ∂2φ = 0, with plane wave solution

φ = fφe
ip·x. (3.6)

The double copy associates these skinny waves with a single fat graviton fieldHµν satisfying

the field equation ∂2Hµν = 0,

Hµν = fijǫ
i
µǫ

j
νe

ip·x, (3.7)

where now fij is a general D − 2 matrix and we have chosen a gauge condition ∂µHµν =

0 = ∂µHνµ. One may write this decomposition as

Hµν =

(

f
/t
ij + f̃ij + δij

fφ
D − 2

)

ǫiµǫ
j
νe

ip·x, (3.8)

= hµν +Bµν +

(

ηµν −
pµqν + pνqµ

p · q

)

φ

D − 2
, (3.9)

which explicitly constructs the fat graviton from skinny fields. Working in position space

for constant q, this becomes

Hµν(x) = hµν(x) +Bµν(x) + P q
µνφ, (3.10)

where we have defined the projection operator

P q
µν =

1

D − 2

(

ηµν −
qµ∂ν + qν∂µ

q · ∂

)

, (3.11)

which will be important throughout this article.3

3Notice that P̂ q
µν = (D−2)P q

µν is the properly normalised projection operator, such that P̂ q λ
µ P̂

q ν

λ = P̂
q ν
µ ,

and P̂
q µ
µ = D − 2.
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Our goal in this work is not to construct fat gravitons from skinny fields, but on the

contrary to determine skinny fields using a perturbative expansion based on the double

copy and the fat graviton. Therefore it is important that we can determine the skinny

fields given knowledge of the fat graviton. To that end, recall that we have been able to

choose a gauge so that the trace, h, of the metric perturbation vanishes. Therefore the

trace of the fat graviton determines the dilaton:

φ = Hµ
µ ≡ H. (3.12)

We may now use symmetry to determine the skinny graviton and antisymmetric tensor

from the fat graviton:

Bµν =
1

2
(Hµν −Hνµ) , (3.13)

hµν =
1

2
(Hµν +Hνµ)− P q

µνH. (3.14)

The basic strategy of this construction is simple: we have decomposed the matrix field Hµν

into its antisymmetric, traceless symmetric, and trace parts.

It is worth dwelling on the decomposition of the fat graviton into skinny fields a little

further. Having constructed hµν from the fat graviton, we are free to consider a gauge

transformation of the skinny graviton:

h′µν = hµν + ∂µξν + ∂νξµ − ηµν∂ · ξ (3.15)

=
1

2
(Hµν +Hνµ)−

1

D − 2

(

ηµν −
qµ∂ν + qν∂µ

q · ∂

)

H + ∂µξν + ∂νξµ − ηµν∂ · ξ. (3.16)

If we choose

ξµ = − 1

D − 2

(

qµ
q · ∂

)

H, (3.17)

then we find that the expression for the h′µν simplifes to

h′µν =
1

2
(Hµν +Hνµ) . (3.18)

Thus, up to a gauge transformation, the skinny graviton is the symmetric part of the

fat graviton. It may be worth emphasising that φ and Bµν also transform under this

gauge transformation, which is, of course, a particular diffeomorphism. However, the

transformation of φ and Bµν is suppressed by a power of κ, and so we may take them to

be gauge invariant for diffeomorphisms at this order.

We will see below that the perturbative expansion for fat gravitons is much simpler

than the perturbative expansion for the individual skinny fields. But before we embark on

that story, it is important to expand our understanding of the relationship between the fat

graviton and the skinny fields beyond the sole case of plane waves.

– 7 –
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3.2 General linearised vacuum solutions

For plane waves, the fat graviton is given in terms of skinny fields in eq. (3.10), and at first

glance this equation is not surprising: one may always choose to decompose an arbitrary

rank two tensor into its symmetric traceless, antisymmetric and trace parts. However,

eq. (3.10) contains non-trivial physical content, namely that the various terms on the r.h.s.

are the genuine propagating degrees of freedom associated with each of the skinny fields.

The auxiliary vector qµ plays a crucial role here: it is associated in the gauge theory

with the definition of physical polarisation vectors, and thus can be used to project out

physical degrees of freedom in the gravity theory. One may then ask whether eq. (3.10)

generalises for arbitrary solutions of the linearised equations of motion. There is potentially

a problem in that the relationship becomes ambiguous: the trace of the skinny graviton

may be nonzero (as is indeed the case in general gauges), and one must then resolve how

the trace degree of freedom in Hµν enters the trace of the skinny graviton, and the scalar

field φ. Furthermore, it is not immediately clear that eq. (3.10) (derived for plane waves)

will work when non-zero sources are present in the field equations. In order to use the

double copy in physically relevant applications, we must consider this possibility.

Here we will restrict ourselves to skinny gravitons that are in de Donder gauge. How-

ever, we will relax the traceless condition on the skinny graviton which was natural in the

previous section. To account for the trace, we postulate that eq. (3.10) should be replaced

by

Hµν(x) = hµν(x) +Bµν(x) + P q
µν(φ− h). (3.19)

To be useful, this definition of the fat graviton must be invertible. First, note that the

trace of Hµν determines φ as before, while the antisymmetric part of Hµν determines Bµν .

Finally, the traceless symmetric part of the fat graviton is

1

2
(Hµν +Hνµ)− P q

µνH = hµν(x)− P q
µνh = h′µν(x), (3.20)

where h′µν(x) is a gauge transformation of hµν(x). In practice, we find it useful to work with

hµν(x) rather than h′µν(x), because at higher orders the gauge transformation to h′µν(x)

leads to more cumbersome formulae. It is also worth noticing that both hµν and h′µν are

in de Donder gauge, since

∂µP q
µνh =

1

D − 2

(

∂ν −
qν∂

2 + q · ∂ ∂ν
q · ∂

)

h = − 1

D − 2

qν
q · ∂ ∂

2h = 0. (3.21)

Our relationship between skinny and fat fields still holds only for linearised fields;

we will explicitly find corrections to eq. (3.19) at higher orders in perturbation theory

in section 4. Before doing so, however, it is instructive to illustrate the above general

discussion with some specific solutions of the linear field equations, showing how the fat

and skinny fields are mutually related.

3.3 The linear fat graviton for Schwarzschild

One aim of our programme is to be able to describe scattering processes involving black

holes. To this end, let us see how to extend the above results in the presence of point-like

– 8 –
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masses. It is easy to construct a fat graviton for the linearised Schwarzschild metric: we

begin by noticing that, in the case of Schwarzschild (D = 4), we have

hµν(r) =
κ

2

M

4πr
uµuν +O(κ2), Bµν(x) = 0, φ(x) = 0, with uµ = (1, 0, 0, 0). (3.22)

The fat graviton depends on an arbitrary constant null vector qµ. In this section, for

illustration, we will make an explicit choice of qµ = (−1, 0, 0, 1) and evaluate the action of

the projector (3.11) in position space in full. A computation gives

Hµν =
κ

2

M

4πr
uµuµ + P q

µν

(

κ

2

M

4πr

)

(3.23)

=
κ

2

M

4πr

(

uµuν +
1

2
(ηµν − qµlν − qν lµ)

)

, (3.24)

where lµ = (0, x, y, r + z)/(r + z), such that q · l = 1. It is easy to check that ∂µHµν = 0,

∂2Hµν = 0.

Going in the other direction, it is easy to compute the skinny fields given this fat

graviton. Since Hµν is traceless, the dilaton vanishes. Similarly Hµν is symmetric, and

therefore Bµν = 0. The skinny graviton can therefore be taken to be equal to the fat

graviton. While this result seems to be at odds with (3.22), recall that they differ only

by a gauge transformation (which leaves φ and Bµν unaffected at this order) and that the

skinny graviton we recover is traceless, as we would expect from eq. (3.20).

It may not seem that we have gained much by passing to eq. (3.24) from eq. (3.22).

However, it is our contention that it is simpler to compute perturbative corrections to

metrics using the formalism of the fat graviton than with the traditional approach. We

will illustrate this in a specific example later in this paper.

3.4 Solutions with linearised dilatons

The linearised Schwarzschild metric corresponds to a somewhat complicated fat graviton.

Since the fat graviton’s equation of motion is simply ∂2Hµν = 0, it is natural to consider

the solution

Hµν =
κ

2

M

4πr
uµuν , with uµ = (1, 0, 0, 0), (3.25)

which corresponds to inserting a singularity at the origin. We will see that this solution

has the physical interpretation of a point mass which is also a source for the scalar dilaton.

Indeed, the dilaton contained in the fat graviton is given by its trace:

φ = −κ

2

M

4πr
. (3.26)

Since the fat graviton is symmetric, Bµν = 0. Meanwhile the skinny graviton is

hµν =
κ

2

M

4πr

(

uµuν +
1

2
(ηµν − qµlν − qν lµ)

)

. (3.27)

Again, a linearised diffeomorphism can give the skinny graviton the same form as the fat

graviton.
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It is natural to ask what is the non-perturbative static spherically-symmetric solution

for which we are finding the linearised fields. Exact solutions of the Einstein equations

minimally coupled to a scalar field of this form were discussed by Janis, Newman and

Winicour (JNW) [78] and have been extensively studied in the literature [78–84]. The

complete solution is, in fact, a naked singularity, consistent with the no-hair theorem. The

general JNW metric and dilaton can be expressed as

ds2 = −
(

1− ρ0
ρ

)γ

dt2 +

(

1− ρ0
ρ

)

−γ

dρ2 +

(

1− ρ0
ρ

)1−γ

ρ2dΩ2, (3.28)

φ =
κ

2

Y

4πρ0
log

(

1− ρ0
ρ

)

. (3.29)

where the two parameters ρ0 and γ can be given in terms of the mass M and the scalar

coupling Y as

ρ0 = 2G
√

M2 + Y 2 =
(κ

2

)2
√
M2 + Y 2

4π
, γ =

M√
M2 + Y 2

. (3.30)

For Y = 0 and M > 0, we recover the Schwarzschild black hole, with the event horizon

at ρ = ρ0. For |Y | > 0 and M > 0, the solution also decays for large ρ, but there is a

naked singularity at ρ = ρ0, which now corresponds to zero radius (since the metric factor

in front of dΩ2 vanishes). We can write the JNW solution in de Donder gauge by applying

the coordinate transformation ρ = r + ρ0/2, where r is the Cartesian radius in the de

Donder coordinates. Expanding in κ, the result is

hµν =
κ

2

M

4πr
uµuν +

(κ

2

)3 1

8(4πr)2
(

(7M2 − Y 2)uµuν + (M2 + Y 2)r̂µr̂ν
)

+O(κ5), (3.31)

φ = −κ

2

Y

4πr
+O(κ5), (3.32)

with r̂µ = (0,x/r). Despite its somewhat esoteric nature, this naked singularity is a

particularly natural object from the point of view of the perturbative double copy. At

large distances from the singularity, both the metric perturbation and the scalar field fall

off as 1/r, and for Y = M this leading part reproduces the skinny fields obtained above, up

to a linearised diffeomorphism in hµν . In section 4, we will discuss the first two non-linear

corrections to the JNW metric using fat gravitons, and, in the case of the first correction,

we will match the expansion above. We conclude that the JNW solution with Y = M is

the exact solution associated to the linearised fat graviton (3.25).

We can also ask what fat graviton would be associated to the general JNW family

of solutions, with M and Y generic. Since we are dealing with linearised fields, we can

superpose contributions, and so we arrive at

Hµν =
κ

2

1

4πr

(

M uµuν + (M − Y )
1

2
(ηµν − qµlν − qν lµ)

)

. (3.33)

The gauge theory “single copy” associated to this field is simply the Coulomb solution,

which presents an apparent puzzle: ref. [54] argued that the double copy of the Coulomb
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solution is a pure Schwarzschild black hole, with no dilaton field. Above, however, the

double copy produces a JNW solution. The latter was also found in ref. [70], which thus

concluded that the Schwarzschild solution is not obtained by the double copy, but can

only be true in certain limits (such as the limit of an infinite number of dimensions). The

resolution of this apparent contradiction is that one can choose whether or not the dilaton

is sourced upon taking the double copy. It is well-known in amplitude calculations, for

example, that gluon amplitudes can double copy to arbitrary combinations of amplitudes

for gravitons, dilatons and/or B-fields. A simple example are amplitudes for linearly po-

larised gauge bosons: the double copied “amplitude” involves mixed waves of gravitons

and dilatons. Thus, the result in the gravity theory depends on the linear combinations

of the pairs of gluon polarisations involved in the double copy. Here, we may say that the

Schwarzschild solution is a double copy of the Coulomb potential, as given by the Kerr-

Schild double copy [54], just as one may say that appropriate combinations of amplitudes of

gluons lead to amplitudes of pure gravitons. The analogue of more general gravity ampli-

tudes with both gravitons and dilatons, obtained via the double copy, is the JNW solution.

Therefore the double copy of the Coulomb solution is somewhat ambiguous: in fact, it is

any member of the JNW family of singularities, including the Schwarzschild metric. Note

that the Kerr-Schild double copy is applicable only in the Schwarzschild special case since

the other members of the JNW family of spacetimes do not admit Kerr-Schild coordinates.

For the vacuum Kerr-Schild solutions studied in [54], in particular for the Schwarzschild

black hole, it was possible to give an exact map between the gauge theory solution and the

exact graviton field, making use of Kerr-Schild coordinates (as opposed to the de Donder

gauge used here). For the general JNW solution, the double copy correspondence was

inferred above from the symmetries of the problem and from the perturbative results. A

more general double copy map would also be able to deal with the exact JNW solution.

This remains an important goal, but one which is not addressed in this paper.

4 Perturbative corrections

Now that we have understood how to construct fat gravitons in several cases, let us finally

put them to use. In this section, we will construct nonlinear perturbative corrections to

spacetime metrics and/or dilatons using the double copy. Thus, we will map the problem

of finding perturbative corrections to a simple calculation in gauge theory.

4.1 Perturbative metrics from gauge theory

Since the basis of our calculations is the perturbative expansion of gauge theory, we begin

with the vacuum Yang-Mills equation

∂µF a
µν + gfabcAbµF c

µν = 0, (4.1)

where g is the coupling constant, while the field strength tensor is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (4.2)
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We are interested in a perturbative solution of these equations, so that the gauge field Aa
µ

can be written as a power series in the coupling:

Aa
µ = A(0)a

µ + gA(1)a
µ + g2A(2)a

µ + · · · . (4.3)

In this expansion, the perturbative coefficients A
(i)a
µ are assumed to have no dependence

on the coupling g. We use a similar notation for the perturbation series for the skinny and

fat gravitons:

hµν = h(0)µν +
κ

2
h(1)µν +

(κ

2

)2
h(2)µν + · · · , (4.4)

Hµν = H(0)µν +
κ

2
H(1)µν +

(κ

2

)2
H(2)µν + · · · . (4.5)

We can construct solutions in perturbation theory in a straightforward manner. To

zeroth order in the coupling, the Yang-Mills equation in Lorenz gauge ∂µAa
µ = 0 is simply

∂2A(0)a
µ = 0. (4.6)

For our present purposes, two basic solutions of this equation will be of interest: wave

solutions, and Coulomb-like solutions with isolated singularities.

Given a solution A
(0)a
µ of the linearised Yang-Mills equation, it is easy to write down

an expression for the first order correction A
(1)a
µ by expanding the Yang-Mills equation to

first order in g:

∂2A(1)a
ν = −2fabcA(0)bµ∂µA

(0)c
ν + fabcA(0)bµ∂νA

(0)c
µ . (4.7)

The double copy is most easily understood in Fourier (momentum) space. To simplify our

notation, we define

∫

d−DpF (p) ≡
∫

dDp

(2π)D
F (p), δ−D(p) ≡ (2π)Dδ(D)(p). (4.8)

Using this notation, we may write the solution for the first perturbative correction in

Fourier space in the familiar form

A(1)aµ(−p1) =
i

2p21
fabc

∫

d−Dp2d
−Dp3δ

−D(p1 + p2 + p3) (4.9)

×
[

(p1 − p2)
γηµβ + (p2 − p3)

µηβγ + (p3 − p1)
βηγµ

]

A
(0)b
β (p2)A

(0)c
γ (p3).

Notice that the factor in square brackets in this equation obeys the same algebraic sym-

metries as the colour factor, fabc, appearing in the equation. This is a requirement of

colour-kinematics duality. Before using the double copy, it is necessary to ensure that this

duality holds.

The power of the double copy is that it is now completely trivial to compute the

perturbative correction H
(1)
µν to a linearised fat graviton H

(0)
µν . All we need to do, follow-

ing [1–3], is to square the numerator in eq. (4.9), ignore the colour structure, and assemble

– 12 –
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fat gravitons by the rule that A
(0)a
µ (p)A

(0)b
ν (p) → H

(0)
µν (p). This straightforward procedure

leads to

H(1)µµ′

(−p1) =
1

4p21

∫

d−Dp2d
−Dp3δ

−D(p1 + p2 + p3)

×
[

(p1 − p2)
γηµβ + (p2 − p3)

µηβγ + (p3 − p1)
βηγµ

]

(4.10)

×
[

(p1 − p2)
γ′

ηµ
′β′

+ (p2 − p3)
µ′

ηβ
′γ′

+ (p3 − p1)
β′

ηγ
′µ′

]

H
(0)
ββ′(p2)H

(0)
γγ′(p3).

Notice that the basic structure of the perturbative calculation is that of gauge theory. The

double copy upgrades the gauge-theoretic perturbation into a calculation appropriate for

gravity, coupled to a dilaton and an antisymmetric tensor.

As a simple example of this formalism at work, let us compute the first order correction

to the simple fat graviton eq. (3.25) corresponding to a metric and scalar field. To begin,

we need to write H
(0)
µν (p) in momentum space; it is simply

H(0)µν(p) =
κ

2
Muµuν

δ−1(p0)

p2
. (4.11)

Inserting this into our expression for H(1), eq. (4.10), we quickly find

H(1)µµ′

(−p1) =
(κ

2

)2 M2

4p21

∫

d−3p2d
−3p3δ

−4(p1 + p2 + p3)
(p2 − p3)

µ(p2 − p3)
µ′

p22 p
2
3

. (4.12)

where p02 = 0 = p03, and consequently p01 = 0. For future use, we note that

p1µH
(1)µµ′

(−p1) = 0. Since all of the components of H(1) in the time direction vanish,

we need only calculate the spatial components H(1)ij . To do so, it is convenient to Fourier

transform back to position space and compute firstly the Laplacian of ∇2H(1)ij(x); we find

∇2H(1)ij= −
(κ

2

)2 M2

4

∫

d−3p2d
−3p3

e−ip2·xe−ip3·x

p2
2p

2
3

(p2 − p3)
i(p2 − p3)

j

=
(κ

2

)2 M2

4

∫

d3yδ(3)(x− y)(∇i
x
−∇i

y
)(∇j

x
−∇j

y
)

1

4π|x|
1

4π|y|

= −
(κ

2

)2 M2

4(4π)2

(

2δij

r4
− 4xixj

r6

)

. (4.13)

It is now straightforward to integrate this expression using spherical symmetry and the

known boundary conditions to find

H(1)
µν (x) = −

(κ

2

)2 M2

4(4πr)2
r̂µr̂ν , (4.14)

where r̂µ = (0,x/r).

It is interesting to pause for a moment to contrast this calculation with its analogue in

Yang-Mills theory. The simplest gauge counterpart of the JNW linearised fat graviton is

A(0)a
µ (x) = gcauµ

1

4πr
⇒ A(0)a

µ (p) = gcauµ
δ−1(p0)

p2
. (4.15)
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To what extent is the first non-linear correction to the Yang-Mills equation similar to

the equivalent in our double-copy theory? The answer to this question is clear: they are

distinctly different. Indeed, the colour structure of A
(1)a
µ is fabccbcc = 0, so A

(1)a
µ = 0.

However, the kinematic numerator of A
(1)a
µ identified by colour-kinematics duality is non-

zero, so there is no reason for H
(1)
µν to vanish. How the double copy propagates physical

information from one theory to the other is unclear, but as a mathematical statement there

is no issue with using the double copy to simplify gravitational calculations.

Given our expression, eq. (4.14), for the fat graviton, it is now straightforward to

extract the trace and the symmetric fields:

φ̃(1) ≡ H(1) = −
(κ

2

)2 M2

4(4πr)2
, (4.16)

h̃(1)µν ≡ 1

2

(

H(1)
µν +H(1)

νµ

)

= −
(κ

2

)2 M2

4(4πr)2
r̂µr̂ν . (4.17)

However, we cannot directly deduce that this φ̃(1) is the usual dilaton and that h̃
(1)
µν is the

first order correction to the metric in some well-known gauge. The double copy is only

guaranteed to compute quantities which are field redefinitions or gauge transformations of

the graviton and dilaton. This suggests structuring calculations to compute only quantities

which are invariant under field redefinitions and gauge transformations [65–67, 70, 85, 86].

However, if desired, it is nevertheless possible to determine explicitly the relevant field

redefinitions and gauge transformations. This is the topic of the next section.

4.2 Relating fat and skinny fields: gauge transformations and field redefini-

tions

In section 3, we argued that the relationship between the fat and skinny fields in linear

theory is

H(0)
µν (x) = h(0)µν (x) +B(0)

µν (x) + P q
µν(φ

(0)(x)− h(0)(x)). (4.18)

Beyond linear theory, we can expect perturbative corrections to this formula, so that

Hµν(x) = hµν(x) +Bµν(x) + P q
µν(φ(x)− h(x)) +O(κ). (4.19)

We define a quantity Tµν , which we call the transformation function to make this equation

exact:

H(1)
µν (x) = h(1)µν (x) +B(1)

µν (x) + P q
µν(φ

(1)(x)− h(1)(x)) + T (1)
µν . (4.20)

We can require that T (1)
µν is only constructed from linearised fields, so that T (1)

µν =

T (1)
µν (h

(0)
αβ , B

(0)
αβ , φ

(0)). More generally, at the nth order of perturbation theory

H(n)
µν (x) = h(n)µν (x) +B(n)

µν (x) + P q
µν(φ

(n)(x)− h(n)(x)) + T (n)
µν (h

(m)
αβ , B

(m)
αβ , φ(m)), (4.21)

where m < n. We can therefore determine T (n)
µν iteratively in perturbation theory.

Before we compute T (1)
µν explicitly, let us pause for a moment to discuss its physical

significance. Our understanding of T (n)
µν rests on two facts. Firstly, the double copy is
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known to work to all orders in perturbation theory for tree amplitudes. Secondly, the

classical background field which we have been discussing is a generating function for tree

scattering amplitudes. Therefore it must be the case that scattering amplitudes computed

from the classical fat graviton background fields equal their known expressions. So consider

computing H
(n)
µν via the double copy, and computing h

(n)
µν , B

(n)
µν and φ(n) using a standard

perturbative solution of their coupled equations of motion. Then the differenceH
(n)
µν −h

(n)
µν −

B
(n)
µν (x) − P q

µν(φ(n)(x) − h(n)(x)) ≡ T (n)
µν must vanish upon use of the LSZ procedure. We

conclude that Tµν parameterises redundancies of the physical fields which are irrelevant for

computing scattering amplitudes: gauge transformations and field redefinitions. Indeed,

the very definition of Tµν requires choices of gauge: for example, the choice of de Donder

gauge for the skinny graviton.

Since Tµν parameterises choices which can be made during a calculation, such as the

choice of gauge, we do not expect a particularly simple form for it. Nevertheless, to compare

explicit skinny gravitons computed via the double copy with standard metrics, it may be

useful to have an explicit form of T (1)
µν . It is always possible to compute T (n)

µν directly

through its definition, at the expense of perturbatively solving the coupled Einstein, scalar

and antisymmetric tensor equations of motion. For example, consider the fat graviton

H
(1)
µν (x), eq. (4.14), we computed in the previous section. Since there is no antisymmetric

tensor in this system, we may compute T (1)
µν under the simplifying assumption that Bµν =

0 so that Hµν is symmetric. We find that when ∂µh
(0)µν = ∂µH

(0)µν = 0, then the

transformation function is

T (1)µν(−p1) =

∫

d−Dp2d
−Dp3δ

−D(p1 + p2 + p3)
1

4p21

{

H
(0)
2αβH

(0)αβ
3 pµ1p

ν
1 + 8pα2H

(0)
3αβH

(0)β(µ
2 p

ν)
1

+8p2 · p3H(0)µα
2 H

(0)ν
3 α − 2ηµνp2 · p3H(0)

2αβH
(0)αβ
3 + 4ηµνpα2H

(0)
3αβH

(0)βγ
2 p3γ

+Pµν
q

[

2(D − 6)p2 · p3H(0)
2αβH

(0)αβ
3 − 4(D − 2)pα2H

(0)
3αβH

(0)βγ
2 p3γ

]

}

, (4.22)

where we have used a convenient short-hand notation

Hµν
i ≡ Hµν(pi), p(µqν) ≡ 1

2
(pµqν + pνqµ) . (4.23)

This expression is valid for any symmetric H
(0)
µν , and the extension to general H

(0)
µν is

straightforward.

While the information in the transformation function contains little content of physical

interest, it may be of some interest from the point of view of the mathematics of colour-

kinematics duality. Indeed, in the special case of the self-dual theory, it is known how to

choose an explicit parameterisation of the metric perturbation so that the double copy is

manifest [4]. Choosing these variables therefore sets Tµν = 0 to all orders, for self-dual

spacetimes. Once the relevant variables have been chosen, then the kinematic algebra in

the self-dual case was manifest at the level of the equation of motion of self-dual gravity:

the algebra is one of area-preserving diffeomorphisms. Perhaps it is the case that an

understanding of the transformation function in the general case will open the way towards

a simple understanding of the full kinematic algebra.
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4.3 The perturbative corrections to the JNW fields

We are now in a position to convert our fat graviton H
(1)
µν (x), eq. (4.14) into skinny fields.

The simple form of the H
(0)
µν (x) leads to a simplification in the transformation function,

since p · u = 0 for a stationary source. Thus T (1)µν is simply

T (1)µν(−p1) = −
(κ

2

)2
M2

∫

d−4p2d
−4p3δ

−4(p1 + p2 + p3)
1

4p21

δ−1(p02)

p22

δ−1(p03)

p23

×
{

8p2 · p3uµuν − pµ1p
ν
1 + 2ηµνp2 · p3 + Pµν

q [4p2 · p3]
}

,

(4.24)

in D = 4. Performing the Fourier transform, we find

T (1)
µν (x) = −

(κ

2

)2
[

3uµuν + 2r̂µr̂ν + 2P q
µν

] M2

4(4πr)2
. (4.25)

Let us now extract the skinny fields in de Donder gauge from our fat graviton, eq. (4.14).

The relation between the fat and skinny fields is now given by

h(1)µν (x) + P q
µν

[

φ(1)(x)− h(1)(x)
]

= H(1)
µν (x)− T (1)

µν (x) (4.26)

= −
(κ

2

)2
r̂µr̂ν

M2

4(4πr)2
+
(κ

2

)2
[

3uµuν + 2r̂µr̂ν + 2P q
µν

] M2

4(4πr)2
.

Thus, the dilaton vanishes as anticipated in section 3.4, since

φ(1)(x) = H(1)(x)− T (1)(x) = 0. (4.27)

Consequently, the negative of the trace of the metric is the only term acted upon by Pµν
q ,

so we find

h(1)(x) = −
(κ

2

)2 M2

2(4πr)2
, (4.28)

The metric is easily seen to be

h(1)µν (x) =
(κ

2

)2
(3uµuν + r̂µr̂ν)

M2

4(4πr)2
, (4.29)

consistent with the anticipated trace, and in agreement with the known result for the JNW

metric, eq. (3.31), when M = Y .

4.4 Higher orders

In section 4.1, we saw how fat graviton fields can be obtained straightforwardly from

perturbative solutions of the Yang-Mills equations. These can then be translated to skinny

fields, if necessary, after obtaining the relevant transformation functions T µν . Now let us

briefly describe how this procedure generalises to higher orders.

As we explained in section 2, the validity of the double copy relies on writing Yang-Mills

diagrams such that colour-kinematics duality is satisfied. But, in general, a perturbative

solution of the conventional Yang-Mills equations will not satisfy this property. So before

using the double copy, one must reorganise the perturbative solution of the theory so that,
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firstly, only three-point interaction vertices between fields occur, and secondly, the numera-

tors of these three-point diagrams satisfy the same algebraic identities (Jacobi relations and

antisymmetry properties) as the colour factors. The Jacobi identities can be enforced by

using an explicit Yang-Mills Lagrangian designed for this purpose [3, 87]. It is known how

to construct this Lagrangian to arbitrary order in perturbation theory. This Lagrangian is

non-local and contains Feynman vertices with an infinite number of fields. If desired, it is

possible to obtain a local Lagrangian containing only three point vertices at the expense

of introducing auxiliary fields. For now, we will restrict ourselves to four-point order. At

this order Bern, Dennen, Huang and Kiermaier (BDHK) introduced [3] an auxiliary field

Ba
µνρ so as to write a cubic version of the Yang-Mills Lagrangian,

LBDHK =
1

2
Aaµ∂2Aa

µ +Baµνρ∂2Ba
µνρ − gfabc

(

∂µA
a
ν − ∂ρBa

ρµν

)

AbµAcν . (4.30)

Since the role of the field Ba
µνρ is essentially to be a Lagrange multiplier, it is understood

that no sources for Ba
µνρ should be introduced.

To illustrate the procedure in a non-trivial example, let us compute the second order

correction to the JNW fat graviton, H
(2)
µν (x). In fact, a number of simplifications make this

calculation remarkably straightforward. Firstly, the momentum space equation of motion

for the auxiliary field appearing in the BDHK Lagrangrian, eq. (4.30), is

p21B
(1)a
µνρ (−p1) =

i

4
fabc

∫

d−4p2d
−4p3δ

−4(p1+p2+p3)p1µ [ηνβηργ − ηνγηρβ ]A
(0)bβ(p2)A

(0)cγ(p3).

(4.31)

Notice that the term in square brackets is antisymmetric under interchange of β and

γ; imposing this symmetry is a requirement of colour-kinematics duality because the

associated colour structure is antisymmetric under interchange of b and c. A consequence

of this simple fact is that, in the double copy, the auxiliary field vanishes in the JNW case

(to this order of perturbation theory). In fact, two auxiliary fields appear in the double

copy: one can take two copies of the field B, or one copy of B times one copy of the

gauge boson A. In either case, the expression for an auxiliary field in the double copy in

momentum space will contain a factor

p1µ [ηνβηργ − ηνγηρβ ]H
(0)ββ′

(p2)H
(0)γγ′

(p3) (4.32)

= p1µ [ηνβηργ − ηνγηρβ ]
δ1(p02)

p22

δ1(p03)

p23
uβuβ

′

uγuγ
′

= 0,

because of the antisymmetry of the vertex in square brackets, and the factorisability of

the tensor structure of the zeroth order JNW expression.

Consequently, the Yang-Mills four-point vertex plays no role in the the double copy

for JNW at second order. Thus the Yang-Mills equation to be solved is simply

p21A
(2)aµ(−p1) = ifabc

∫

d−4p2d
−p3δ

−4(p1 + p2 + p3)

×
[

(p1 − p2)
γηµβ + (p2 − p3)

µηβγ + (p3 − p1)
βηγµ

]

A
(0)b
β (p2)A

(1)c
γ (p3), (4.33)
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using the symmetry of the expression under interchange of p2 and p3. Thus, H(2) is the

solution of

p21H
(2)µµ′

(−p1)=
1

2

∫

d−4p2d
−4p3δ

−4(p1 + p2 + p3)

×
[

(p1 − p2)
γηµβ + (p2 − p3)

µηβγ + (p3 − p1)
βηγµ

]

(4.34)

×
[

(p1−p2)
γ′

ηµ
′β′

+(p2−p3)
µ′

ηβ
′γ′

+(p3−p1)
β′

ηγ
′µ′

]

H
(0)
ββ′(p2)H

(1)
γγ′(p3).

This expression simplifies dramatically when we recall that H
(0)
ββ′(p2) and H

(1)
γγ′(p3) both

have vanishing components of momentum in the time direction, so that p02 = 0 = p03 = p01.

Meanwhile H
(0)
ββ′(p2) ∝ uβuβ′ . Thus,

p21H
(2)
µµ′(−p1) = 2

∫

d−4p2d
−4p3δ

−4(p1 + p2 + p3)H
(0)
µµ′(p2) p

α
2H

(1)
αβ (p3)p

β
2 . (4.35)

We find it convenient to Fourier transform back to position space, where we must solve the

simple differential equation

∂2H
(2)
µµ′(x) = 2H

(1)
αα′∂

α∂α′

H
(0)
µµ′ . (4.36)

Inserting explicit expressions for H(0), eq. (3.25) and H(1), eq. (4.14), and bearing in mind

that the situation is static, the differential equation simplifies to

∇2H
(2)
µµ′(x) = −

(κ

2

)3 M3

(4πr)3
uµuµ′

r2
, (4.37)

with solution

H
(2)
µµ′(x) = −

(κ

2

)3 M3

6(4πr)3
uµuµ′ . (4.38)

We could now, if we wished, extract the metric perturbation and scalar field corresponding

to this expression. Indeed, it is always possible to convert fat gravitons into ordinary metric

perturbations in a specified gauge.

It is possible to continue to continue this calculation to higher orders. In that case,

more work is required in order to satisfy the requirement of colour-kinematics duality.

It is possible to supplement the BDHK Lagrangian by higher-order effective operators

involving the gluon field, constructed order-by-order in perturbation theory, which act to

enforce colour-kinematics duality. Furthermore, one may introduce further auxiliary fields

so that only cubic interaction terms appear in the Lagrangian. This procedure is explained

in detail in refs. [3, 87], and can be carried out to arbitrary perturbative order. The fat

graviton equation of motion is constructed as a term-by-term double copy of the fields in the

colour-kinematics satisfying Yang-Mills Lagrangian. In this way, it is possible to calculate

perturbative fat gravitons to any order using Yang-Mills theory and the double copy.

5 Discussion

In this paper, we have addressed how classical solutions of gravitational theories can be

obtained by double-copying Yang-Mills solutions. These results go beyond the classical
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double copies of refs. [54–63] in that the solutions are non-linear. However, the price

one pays is that they are no longer exact, but must be constructed order-by-order in

perturbation theory. We have concentrated on solutions obtained from two copies of pure

(non-supersymmetric) Yang-Mills theory, for which the corresponding gravity theory is

N = 0 supergravity. The double copy then relates the Yang-Mills fields to a single fieldHµν ,

that we call the fat graviton, and which in principle can be decomposed into its constituent

skinny fields, which we take to be the graviton hµν (defined according to eq. (2.7)), the

dilaton φ, and the two-form Bµν .

Our procedure for calculating gravity solutions is as follows:

1. For a given distribution of charges, one may perturbatively solve the Yang-Mills

equations for the gauge field Aµa, given in terms of integrals of interaction vertices

and propagators.

2. The solution for the fat graviton is given by double copying the gauge theory solu-

tion expression according to the rules of refs. [1–3] once colour-kinematics duality is

satisfied. That is, one strips off all colour information, and duplicates the interaction

vertices, leaving propagators intact.

3. The fat graviton can in principle be translated into skinny fields using the transforma-

tion law of eq. (4.21), which iteratively defines the transformation function T µν . This

function can be obtained from matching the fat graviton solution to a perturbative

solution of the conventional N = 0 supergravity equations. Once found, however, it

can be used for arbitrary source distributions.

The presence of the transformation function T µν is at first glance surprising. One may

always decompose the fat graviton in terms of its symmetric traceless, anti-symmetric

and trace degrees of freedom. Then one could simply define that these correspond to the

physical graviton, two-form and dilaton. However, one has the freedom to perform further

field redefinitions and gauge transformations of the skinny fields, in order to put these into

a more conventional gauge choice (e.g. de Donder). The role of T µν is then to perform this

redefinition. It follows that it carries no physical degrees of freedom itself, and indeed is

irrelevant for any physical observable.

We have given explicit examples of fat gravitons, and their relation to de Donder gauge

skinny fields, up to the first subleading order in perturbation theory. We took a stationary

point charge as our source, finding that one can construct either the Schwarzschild metric

(as in the Kerr-Schild double copy of ref. [54]), or the JNW solution [78] for a black hole

with non-zero scalar field φ. Which solution one obtains on the gravity side amounts to

the choice of whether or not to source the dilaton upon performing the double copy. This

mirrors the well-known situation for amplitudes, namely that the choice of polarisation

states in gauge theory amplitudes determines whether or not a dilaton or two-form is

obtained in the corresponding gravity amplitudes at tree level. This clarifies the apparent

puzzle presented in ref. [70], regarding whether it is possible for the same gauge theory

solution to produce different gravity solutions.
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Underlying the simplicity of the double copy is the mystery of the kinematic algebra.

While it is known that one can always find kinematic numerators for gauge theory dia-

grams so that colour-kinematics duality is satisfied, it is not known whether an off-shell

algebraic structure exists in the general case which can compute these numerators. If this

algebra exists, it may further simplify the calculations we have described in this paper.

The kinematic algebra should allow for a more algebraic computation of the numerators

of appropriate gauge-theoretic diagrams, perhaps without the need for auxiliary fields.

Similarly, it seems possible that a detailed understanding of the kinematic algebra will go

hand-in-hand with deeper insight into the transformation function Tµν which parameterises

the choice of gauge and field redefinition picked out by the double copy.

Our ultimate aim is to use the procedure outlined in this paper in astrophysical ap-

plications, namely to calculate gravitational observables for relevant physical sources (a

motivation shared by ref. [70]). To this end, our fat graviton calculations must be ex-

tended to include different sources, and also higher orders in perturbation theory. In order

to translate the fat graviton to more conventional skinny fields, one would then need to cal-

culate the relevant transformation functions T (n)
µν . An alternative possibility exists, namely

to calculate physical observables, which must be manifestly invariant under gauge transfor-

mations and field redefinitions, directly from fat graviton fields, without referring to skinny

fields at all. Work on these issues is ongoing.
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