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Abstract

The results of a search for new physics in final states with photons and missing trans-
verse energy are reported. The study is based on a sample of proton-proton collisions
collected at a center-of-mass energy of 13 TeV with the CMS detector in 2015, corre-
sponding to an integrated luminosity of 2.3 fb−1. Final states with two photons and
significant missing transverse energy are used to search for supersymmetric particles
in models of supersymmetry (SUSY) with general gauge-mediated (GGM) supersym-
metry breaking. No excess is observed with respect to the standard model expecta-
tion, and the results are used to set limits on gluino pair production and squark pair
production in the GGM SUSY framework. Gluino masses below 1.65 TeV and squark
masses below 1.37 TeV are excluded at a 95% confidence level.
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1 Introduction
Final states in proton-proton collisions containing photons with high transverse momentum pT
and significant missing transverse energy Emiss

T emerge naturally from a variety of new-physics
scenarios, particularly in models of supersymmetry (SUSY) broken via gauge mediation that
require a stable, weakly interacting lightest supersymmetric particle (LSP) [1–6]. The Emiss

T in
an event, defined as the magnitude of the vector sum of the transverse momenta of all visible
particles, is a consequence of undetected particles such as neutrinos or LSPs. Models with
general gauge mediation (GGM) [7–14] can have a wide range of features, but typically entail a
nearly massless gravitino LSP, G̃, and a next-to-lightest supersymmetric particle (NLSP) often
taken to be a neutralino χ̃0

1. Photons in the final state arise when the neutralino decays to a
gravitino and a photon, χ̃0

1 → G̃γ.

In this Letter we present a search for GGM SUSY in final states involving two photons and
significant Emiss

T . The data sample, corresponding to an integrated luminosity of 2.3 fb−1 of
proton-proton collisions at

√
s = 13 TeV, was collected with the CMS detector at the CERN

LHC in 2015. The increased center-of-mass energy substantially improves the sensitivity of the
analysis compared to searches performed at the LHC in Run 1 at

√
s = 8 TeV [15, 16]. A similar

analysis was performed by the ATLAS Collaboration at
√

s = 13 TeV [17]. For the interpretation
of the results we use the T5gg and T6gg simplified models [18]. The T5gg (T6gg) simplified
model assumes gluino g̃ (squark q̃) pair production, with subsequent decays as shown in Fig. 1.
The branching fraction of the NLSP neutralino to decay to a gravitino and a photon, χ̃0

1 → G̃γ,
resulting in characteristic events with two photons and large Emiss

T , is assumed to be unity. In
more general GGM SUSY models, a bino-like neutralino could also decay to a gravitino and a
Z boson, χ̃0

1 → G̃Z.
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Figure 1: Diagrams showing the production of signal events in the collision of two protons
with four momenta P1 and P2. In gluino g̃ pair production in the T5gg simplified model (left),
the gluino decays to an antiquark q, quark q, and neutralino χ̃0

1. In squark q̃ pair production in
the T6gg simplified model (right), the squark decays to a quark and a neutralino. In both cases,
the neutralino subsequently decays to a photon γ and a gravitino G̃. In the second diagram,
we do not distinguish between squarks and antisquarks.

Events with two photons and Emiss
T can also arise from several standard model (SM) processes,

including direct diphoton production with initial-state radiation and multijet events (possibly
with associated photon production). These processes lack intrinsic Emiss

T but can emulate the
signal if the hadronic activity in the event is mismeasured. In the latter case, photons may
be reconstructed in the event as a result of the misidentification of electromagnetically rich
jets. A smaller background comes from events with intrinsic Emiss

T , principally Wγ and W+jet
production, where an electron is misidentified as a photon in W→ eν decays.
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2 Detector, data, and simulated samples
The data were collected with the CMS detector in 2015. The central feature of the CMS ap-
paratus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of
3.8 T. Within the solenoid volume are a silicon pixel and strip tracker covering the pseudora-
pidity region |η| < 2.5, as well as a lead tungstate crystal electromagnetic calorimeter (ECAL),
and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections and covering the range |η| < 3.0. Forward calorimeters extend the coverage
up to |η| < 5.0. Muons are measured in gas-ionization detectors embedded in the iron flux-
return yoke outside the solenoid and cover the range |η| < 2.4. A more detailed description
of the CMS detector, together with a definition of the coordinate system used and the relevant
kinematic variables, can be found in Ref. [19].

The data used in this analysis were selected with a diphoton trigger requiring a leading photon
with pT > 30 GeV and a subleading photon with pT > 18 GeV. In order to keep the trigger
rate low and to exclude Z → ee events, a combined invariant mass Mγγ > 95 GeV was also
required. In addition, the photons were required to pass isolation and cluster shape require-
ments. A sample of Z → ee events for additional studies was collected with a trigger nearly
identical to the diphoton trigger, but with an invariant mass requirement Mee > 70 GeV and
with the additional requirement that both electromagnetic (EM) objects be matched to a pixel
detector seed (at least two measurements in the pixel detector consistent with a track from a
charged particle).

Monte Carlo simulations of the signal and background processes are used to validate the per-
formance of the analysis and determine signal efficiencies, as well as to determine the contri-
butions of some of the smaller backgrounds, as described in Section 4. The leading-order event
generator MADGRAPH 5.1.3.30 [20] is used to simulate the signal samples, which were gener-
ated with either two gluinos or two squarks and up to two additional partons in the matrix
element calculation. The parton showering, hadronization, multiple-parton interactions, and
the underlying event were described by the PYTHIA 8 [21] event generator. The parton distri-
bution functions are obtained from NNPDF3.0 [22]. For the background processes, the detector
response is simulated using GEANT4 [23], while the CMS fast simulation [24] is used for the
signal events.

The signal events were generated using the T5gg and T6gg simplified models and are character-
ized by the masses of the particles in the decay chain. For the gluino (squark) mass we simulate
a range of values from 1.0 to 1.8 TeV (1.2 to 2.0 TeV) in steps of 50 GeV. These mass ranges were
selected to overlap and expand upon the mass ranges excluded by previous searches [15–17].
For each gluino (squark) mass, the χ̃0

1 mass ranges from 100 GeV to 1.9 TeV in 100 GeV incre-
ments, with the requirement that Mχ̃0

1
< Mg̃ (Mχ̃0

1
< Mq̃). We assume branching fractions of

unity for the decays g̃→ qqχ̃0
1, q̃→ qχ̃0

1 and χ̃0
1 → G̃γ. For the T6gg model, the gluino mass is

set to 10 TeV, and t-channel production is not considered.

The production cross sections for these processes are calculated as functions of Mg̃ and Mq̃
at next-to-leading-order (NLO) accuracy including the resummation of soft gluon emission
at next-to-leading-logarithmic (NLL) accuracy [25, 26], and the uncertainties are calculated as
described in Ref. [27].
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3 Event selection
Photon, electron, muon, charged hadron, and neutral hadron candidates are reconstructed with
the particle-flow (PF) algorithm [28, 29], which reconstructs particles produced in a collision
based on information from all detector subsystems. Photons are reconstructed from energy
deposits in the ECAL. We require the shape of ECAL clusters to be consistent with that of an
electromagnetic object, and we require that the energy present in the corresponding region of
the HCAL not exceed 5% of the ECAL energy, as electromagnetic showers are expected to be
contained almost entirely within the ECAL. In order to ensure that the photons pass the trigger
with high efficiency, all photons are required to satisfy ET > 40 GeV. Because the SUSY signal
models used in this analysis produce photons primarily in the central region of the detector
and because the magnitude of the background increases considerably at high |η|, we consider
only photons within the barrel fiducial region of the detector (|η| < 1.44).

To suppress photon candidates originating from quark and gluon jets, photons are required to
be isolated from other reconstructed particles. Separate requirements are made on the scalar
pT sums of charged hadrons, neutral hadrons, and electromagnetic objects in a cone of radius
∆R ≡

√
(∆η)2 + (∆φ)2 = 0.3 (where φ is the azimuthal angle measured in radians) around the

photon candidate. Each momentum sum is corrected for the effect of additional proton-proton
collisions in the event (pileup), and in each case the momentum of the photon candidate itself is
excluded. We further require that the photon candidate have no pixel track seed, to distinguish
the candidate from an electron.

Due to the similarity of the ECAL response to electrons and photons, Z → ee events are used
to measure the photon identification efficiency. The selection of electron candidates is identical
to that of photons, with the exception that the candidate is required to be matched to a pixel
seed consistent with a track, to ensure that the selection is orthogonal to that of photons. The
photon efficiency is measured via the tag-and-probe method [30] in both data and simulation.
The ratio of the efficiency in data and simulation was measured as a function of the pT and η
of the electron and the ∆R separation between the electron and the nearest jet. It is determined
that this ratio does not depend significantly on any measured kinematic variables, and the
overall ratio is computed to be εdata

e /εsim
e = 0.983± 0.012.

Muon candidates, which are included among the objects counted in the photon isolation re-
quirement, are reconstructed by performing a global fit that requires consistent hit patterns in
the tracker and the muon system [31]. We require muons to have pT > 30 GeV and to satisfy
track quality and isolation requirements. Photons and electrons that overlap within ∆R < 0.3
of any muons are rejected, but otherwise no requirement is made on the number of muons in
the event. In addition, photons must be separated by ∆R > 0.3 from electrons.

Jets are reconstructed from PF candidates using the anti-kT clustering algorithm [32] with a
distance parameter of 0.4. The jet energy and momentum are corrected both for the nonlinear
response of the detector and for the effect of pileup via the procedure described in Ref. [33].
Jets are required to have corrected pT > 30 GeV and to be reconstructed within |η| < 2.4. In
addition, jets are required to be separated from other objects in the event by ∆R > 0.4.

For the purpose of defining the various control regions used in the analysis, we apply an ad-
ditional set of selection criteria. Misidentified photons are defined as those photon candidates
passing the photon selection but failing either the shape requirement for the ECAL clusters or
the charged-hadron isolation requirement, but not both. In order to ensure that misidentified
photons do not differ too much from our photon selection, upper limits are applied to both the
charged-hadron isolation and cluster shape requirements.
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Events are then sorted into one of four mutually exclusive categories depending on the se-
lection of their highest-pT electromagnetic objects: γγ, ee, two misidentified (“fake”) photons
(ff), and eγ. Due to the trigger requirements described in Section 2, the invariant mass of the
two electromagnetic objects is required to be greater than 105 GeV. The size of the data sam-
ple limits any improvements in the sensitivity of the analysis from categorizing events by jet
multiplicity. Therefore, no requirements are made on the number of jets in the event.

The signal region is defined by the events in the γγ category with Emiss
T ≥ 100 GeV and is split

into four bins: 100 ≤ Emiss
T < 110 GeV, 110 ≤ Emiss

T < 120 GeV, 120 ≤ Emiss
T < 140 GeV, and

Emiss
T ≥ 140 GeV. The bins are chosen in such a way that there is a sufficient amount of data

in each bin in the ee and ff control samples used for background estimation. The bin with
Emiss

T < 100 GeV is used as a control region.

4 Estimation of backgrounds
The dominant background for this analysis comes from multijet production from quantum
chromodynamics (QCD) processes without intrinsic Emiss

T , where the high-Emiss
T signature is

mimicked by the mismeasurement of the hadronic activity in the event. A subdominant con-
tribution comes from electroweak (EWK) processes that include intrinsic Emiss

T from neutrino
production.

The contribution from the QCD background is modeled in a fully data-driven way from the
ee and ff control samples. Both of these control samples are dominated by processes without
intrinsic Emiss

T and can therefore be used to model the Emiss
T in the QCD background. These

control samples differ in hadronic activity from the candidate γγ sample due to different event
topologies. In particular, the ee control sample has a large contribution from Z → ee events,
where the electromagnetic objects come from one parent particle. In contrast, the ff control
samples are primarily multijet events where the two electromagnetic objects are produced in-
dependently. To account for this difference, the di-EM pT variable, defined as the magnitude
of the vector sum of the transverse momenta of the two electromagnetic objects, is used to
model the hadronic recoil in the event. Events in the ee and ff control samples are reweighted
by the di-EM pT distribution of the γγ events to correct for any differences in hadronic recoil.
The Emiss

T distributions of these di-EM pT reweighted control samples are then normalized to
that of the γγ sample in the region Emiss

T < 50 GeV and used to predict the contribution of
QCD processes to the high-Emiss

T signal region. A comparison of the reweighted Emiss
T distri-

butions to the distribution of γγ events is shown in Fig. 2 in the sideband of the search region
(Emiss

T < 100 GeV). There is an agreement within statistical uncertainties between the γγ and
each of the reweighted distributions.

Similarly, we consider differences in the Emiss
T distribution due to the number of jets in the

event. A direct comparison of the candidate sample and the two control samples shows little
dependence on the jet multiplicity Njets at low Emiss

T , so we take the difference as a systematic
uncertainty in the prediction, as described in Section 5.

In addition, there is a small contribution in the QCD control samples from comparatively rare
processes with intrinsic Emiss

T , including tt events and Z → νν + jets events. Due to their
small cross sections, these processes are estimated with simulation, and their contributions are
subtracted from the ee and ff control samples for the final prediction.

The primary estimate of the QCD contribution comes from the reweighted ee distribution.
The reweighted ff control sample serves as a cross-check, and the difference between them is
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Figure 2: The Emiss
T distributions of the candidate γγ, reweighted ee, and reweighted ff samples

in the Emiss
T < 100 GeV sideband.

taken as a symmetric systematic uncertainty on the prediction. Due to the limited number of
ff events with Emiss

T > 100 GeV, a looser misidentification definition is used. In the looser def-
inition, misidentified photons are not required to pass any photon isolation or neutral-hadron
isolation cuts, and the upper limits on charged-hadron isolation and the shape requirement for
the ECAL clusters are loosened further. The looser ff sample is used to obtain the shape of the
ff distribution in the Emiss

T > 100 GeV signal region, while the normalization comes from the
tighter, more photon-like misidentification definition.

As an additional cross-check on this background estimation method, the ratio of the candidate
γγ distribution to the unweighted ff distribution as a function of Emiss

T is fit with different
functional forms. The predicted number of QCD background events in each Emiss

T bin is then
given by the function multiplied by the number of ff events seen in that bin. The primary
prediction from the ee sample is consistent with the prediction from this cross-check within the
fit uncertainties, and we conclude that the predictions from these two methods are compatible.

The electroweak background comes from Wγ events where the W decays to an electron and
a neutrino, and the electron is misidentified as a photon. We estimate this misidentification
rate by comparing the Z-boson mass peak in the ee invariant mass spectrum to the peak in
the eγ spectrum. The data are modeled using an extended likelihood fit to the mass spectrum
for the signal plus background hypothesis. The misidentification rate fe→γ is then computed
from the signal events as fe→γ = Neγ/(2Nee + Neγ) = (2.13 ± 0.21)%. This rate is used to
compute a scaling factor fe→γ/(1− fe→γ), which is then applied to the sample of eγ events
with Emiss

T > 100 GeV to obtain an estimate of the electroweak background in the signal region.
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5 Sources of systematic uncertainty
We evaluate systematic uncertainties from each of the background predictions, the signal effi-
ciency, and the integrated luminosity. For each source of uncertainty, we give the uncertainty
value and describe the method used for its estimation.

The largest systematic uncertainties come from the QCD background estimation method. We
consider three sources of systematic uncertainty from the QCD background estimate: the di-
EM pT reweighting, the jet multiplicity dependence, and the Emiss

T shape difference between
the ee and ff control samples. The magnitudes of these uncertainties for each of the Emiss

T bins
in the signal region are shown in Table 1.

Table 1: Systematic uncertainties from the QCD background estimation.

Emiss
T bin (GeV) Di-EM pT Jet multiplicity Shape difference Statistical uncertainty

reweighting reweighting between ee and ff of ee sample
100 ≤ Emiss

T < 110 15% 34% 18% 31%
110 ≤ Emiss

T < 120 17% 15% 12% 33%
120 ≤ Emiss

T < 140 33% 29% 14% 42%
Emiss

T ≥ 140 39% 20% 150% 71%

The uncertainty from di-EM pT reweighting is estimated from the distributions of the di-EM
pT ratio in simulated pseudo-experiments, allowing the ratio to vary bin by bin according to a
Gaussian distribution with a standard deviation computed from the statistical uncertainty of
unweighted events in the bin. The Emiss

T distribution of the ee control sample is then reweighted
by each of these distributions, and the standard deviation is determined for the prediction. The
magnitude of this uncertainty ranges from 15% to 39%.

The effect of the difference in the Emiss
T distribution as a function of the jet multiplicity is de-

termined directly by taking the difference between the ee estimate with di-EM pT and Njets
reweighting and with di-EM pT reweighting alone. The resulting systematic uncertainty ranges
from 15% to 34% in the four signal Emiss

T bins. The shape uncertainty of the ee control sample
is determined by fitting the high-Emiss

T tails of the ee and ff samples to the empirical three-
parameter function dN/dEmiss

T = (Emiss
T )p0ep1(Emiss

T )p2 . The systematic uncertainty in the shape
is symmetric and taken to be the fractional difference in each Emiss

T bin between these fitted
functions. This yields a systematic effect between 12% and 18% in the lower three Emiss

T signal
bins, and a systematic effect of 150% in the final bin that covers Emiss

T above 140 GeV.

The main source of uncertainty in the electroweak background estimate comes from the uncer-
tainty in the extended likelihood fit used to calculate the misidentification rate. This is com-
puted by shifting the rate up and down by its uncertainty and scaling the Emiss

T distribution
of the eγ control sample by the altered rates. The difference between the estimates from the
two shifted misidentification rates gives the systematic uncertainty in the rate of electroweak
events. Because this represents an uncertainty in the overall normalization, it is constant across
Emiss

T bins. The uncertainty is a constant 19% across the Emiss
T bins.

The signal efficiency uncertainties are related to the statistical uncertainty from the finite size of
the T5gg and T6gg signal samples (0–16%), knowledge of the jet energy scale (0–23% depend-
ing on the g̃–χ̃0

1 mass difference), parton distribution function uncertainties (13–22% depending
on the signal point), and photon identification and reconstruction efficiencies (2%). The uncer-
tainty related to the integrated luminosity of the data sample is 2.7% [34].
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6 Results
The measured Emiss

T distribution and corresponding background predictions are shown in Fig. 3.
The expected number of events from the QCD and EWK backgrounds, as well as the total num-
ber of expected and observed events, are shown in Table 2 for each bin in the signal region. We
observe 9 events total in the signal region, compared to an expected background of 7.2± 2.5
events. The number of events in the signal region agrees with the background estimate within
the uncertainties.

0 50 100 150 200 250 300

E
ve

nt
s/

G
eV

3−10

2−10

1−10

1

10

210

Data
QCD
EWK
Combined uncertainty

 = 0.6 TeV0

1
χ∼

 = 1.4 TeV, M
g~

T5gg, M

 = 0.6 TeV0

1
χ∼

 = 1.6 TeV, M
g~

T5gg, M

 (13 TeV)-12.3 fbCMS

 (GeV)miss
TE

0 50 100 150 200 250 300

D
at

a/
B

kg

1

2

Figure 3: Measured Emiss
T distribution in comparison with the background prediction. The

four bins with Emiss
T ≥ 100 GeV constitute the signal region, and the Emiss

T < 100 GeV bins
serve mainly to normalize the background. The systematic uncertainty on the background
prediction and the ratio of the data to the prediction are also shown. The last bin includes
all events with Emiss

T ≥ 140 GeV, but for normalization by bin width, the bin is taken to be
from 140 ≤ Emiss

T < 300 GeV. The distributions for two signal model points are overlaid for
comparison.

Table 2: Numbers of expected and observed events in the signal region. The last row shows
the total number of expected and observed events in the inclusive bin Emiss

T ≥ 100 GeV.
The expected numbers of events for two T5gg mass points are also shown. For Signal A,
Mg̃ = 1400 GeV and Mχ̃0

1
= 600 GeV. For Signal B, Mg̃ = 1600 GeV and Mχ̃0

1
= 600 GeV.

The uncertainties include all of the systematic uncertainties described in Section 5.

Emiss
T bin (GeV) QCD EWK Total background Signal A Signal B Observed

100 ≤ Emiss
T < 110 1.9±1.0 0.4±0.1 2.3±1.0 0.12±0.01 0.04±0.01 4

110 ≤ Emiss
T < 120 1.5±0.6 0.3±0.1 1.8±0.6 0.13±0.02 0.04±0.01 2

120 ≤ Emiss
T < 140 1.0±0.6 0.5±0.2 1.5±0.6 0.31±0.04 0.08±0.01 2

Emiss
T ≥ 140 0.6±2.2 1.0±0.3 1.6±2.2 13.0±0.7 4.4±0.2 1

Emiss
T ≥ 100 5.0±2.5 2.2±0.3 7.2±2.5 13.6±0.7 4.6±0.2 9

We determine 95% confidence level (CL) upper limits on gluino pair and squark pair produc-
tion cross sections using the modified frequentist CLs method [35, 36] based on a log-likelihood
test statistic that compares the likelihood of the SM-only hypothesis to the likelihood of the
presence of a signal in addition to the SM contributions. The likelihood function is constructed
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from the background and signal Emiss
T distributions across the four bins described in Section 3.

The systematic uncertainties described in Section 5 are included in the test statistic as nuisance
parameters, with log-normal probability distributions.

In Fig. 4 we present 95% CL upper limits on the cross section as a function of the mass pair
values for the two models considered in this analysis, Mχ̃0

1
versus Mg̃ and Mχ̃0

1
versus Mq̃

for gluino pair and squark pair production, respectively. From the NLO+NLL predicted cross
sections and their uncertainties we derive contours representing lower limits in the SUSY mass
plane. We also show expected limit contours based on the expected experimental cross section
limits and their uncertainties. For typical values of the neutralino mass, we expect to exclude
gluino masses up to 1.60 TeV and squark masses up to 1.35 TeV, and we observe exclusions of
1.65 and 1.37 TeV respectively. The excluded mass ranges for gluino pair production have been
improved by approximately 300 GeV with respect to previous searches performed at

√
s =

8 TeV [15, 16]. The observed exclusions are consistent with the results of the ATLAS analysis
performed at

√
s = 13 TeV [17].
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Figure 4: The 95% CL upper limits on the gluino (left) and squark (right) pair production
cross sections as a function of neutralino versus gluino (squark) mass. The contours show the
observed and median expected exclusions assuming the NLO+NLL cross sections, with their
one standard deviation uncertainties. The limit curves terminate at the centers of the bins used
to sample the cross section.

7 Summary
A search is performed for supersymmetry with general gauge mediation in proton-proton col-
lisions yielding events with two photons and large missing transverse energy. The data were
collected at a center-of-mass energy of 13 TeV with the CMS detector in 2015, and correspond
to an integrated luminosity of 2.3 fb−1.

The data are interpreted in the context of two simplified SUSY models with gauge-mediated su-
persymmetry breaking, one assuming gluino pair production and the second assuming squark
pair production. In both models, the branching fraction of the NLSP neutralino to decay to a
gravitino and a photon is assumed to be unity. Using background estimation methods based
on control samples in data, limits are determined on the gluino and squark pair production
cross sections, and those limits are used together with NLO+NLL cross section calculations
to constrain the masses of gluinos, squarks, and neutralinos. Gluino masses below 1.65 TeV
and squark masses below 1.37 TeV are excluded at a 95% confidence level. This represents
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an improvement of approximately 300 GeV with respect to previous analyses performed at a
center-of-mass energy of 8 TeV [15, 16] and is consistent with the results of the ATLAS analysis
performed at a center-of-mass energy of 13 TeV [17].
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A Supplemental information
A.1 Contributions to control samples

As described in Section 4, the small contribution to the ee control sample from tt events and
the contribution to the ff sample from Z→ νν + jets events are estimated with simulation. The
size of the contributions are listed in Table A.1.

Table A.1: Percent contributions from background samples to the ee and ff control samples.

Emiss
T <100 GeV ≥100 GeV

tt events 0.17% 24.3%
Z→ νν + jets events 0.03% 5.0%

A.2 Reweighting distributions

Figure A.1 shows the di-EM pT distributions of the γγ candidate sample and ee and ff control
samples, as well as the ratios used for reweighting.
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Figure A.1: Di-EM pT distribution of the γγ candidate sample and ee and ff control samples.
The ratios of the candidate sample to each of the control samples are shown in the bottom pane.
These ratios serve as the reweighting factors for the events.
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C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler,
Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute
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P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem,
R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller,
M. Hoffmann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz,
I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo16, T. Peiffer,
A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann,
J. Schwandt, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai,
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G. Abbiendia, C. Battilana, D. Bonacorsia ,b, S. Braibant-Giacomellia,b, L. Brigliadoria ,b,
R. Campaninia ,b, P. Capiluppia,b, A. Castroa ,b, F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia ,b,
M. Cuffiania ,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia,
C. Grandia, L. Guiduccia ,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa ,b,
A. Perrottaa, A.M. Rossia,b, T. Rovellia ,b, G.P. Sirolia ,b, N. Tosia ,b ,16

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
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A. Braghieria, A. Magnania ,b, P. Montagnaa ,b, S.P. Rattia ,b, V. Rea, C. Riccardia ,b, P. Salvinia,
I. Vaia,b, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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L. Baronea ,b, F. Cavallaria, M. Cipriania ,b, G. D’imperioa,b,16, D. Del Rea,b ,16, M. Diemoza,
S. Gellia ,b, E. Longoa ,b, F. Margarolia ,b, B. Marzocchia ,b, P. Meridiania, G. Organtinia,b,
R. Paramattia, F. Preiatoa,b, S. Rahatloua ,b, C. Rovellia, F. Santanastasioa ,b
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69: Also at Argonne National Laboratory, Argonne, USA
70: Also at Erzincan University, Erzincan, Turkey
71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
72: Also at Texas A&M University at Qatar, Doha, Qatar
73: Also at Kyungpook National University, Daegu, Korea


	1 Introduction
	2 Detector, data, and simulated samples
	3 Event selection
	4 Estimation of backgrounds
	5 Sources of systematic uncertainty
	6 Results
	7 Summary
	A Supplemental information
	A.1 Contributions to control samples
	A.2 Reweighting distributions

	B The CMS Collaboration 

