The VeloPix ASIC 5

States and the states

30.9.2016 Tuomas Poikela & VeloPix design and testing team TWEPP 2016, Karlsruhe, Germany

- A quick VELO upgrade overview
- Chip architecture
- First measurements
- Summary & future plans

The LHCb VELO upgrade

TWEPP 2016 : Sneha Naik "On-detector electronics for the LHCb VELO Upgrade"

VeloPix ASIC module

The hottest chips 5.1 mm from the beam

Data per chip: ~15.1 Gbps, 2.9 Tbps for VELO

The module installation during the CERN Long Shutdown 2 (LS2) 2019/2020.

Quick comparison

Feature	VeloPix (2016)	Timepix3 (2013)
Readout type	Continuous, trigger-less, binary	Continuous, trigger-less, ToT
Timing resolution/range	25 ns, 9 bits	1.5625 ns, 18 bits
Power consumption	$< 1.5 \mathrm{W cm^{-2}}$	$< 1.0 \text{ W cm}^{-2}$
Pixel matrix, pixel size	256 x 256, 55 um x 55 um	256 x 256, 55 um x 55 um
Radiation hardness	400 Mrad, SEU tolerant	-
Peak hit rate	800 Mhits/s/ASIC 50 khits/s/pixel	80 Mhits/s/ASIC
Sensor type	Planar silicon, e- collection	Various, e- and h+ collection
Max. data rate	20.48 Gbps	5.12 Gbps
Technology	130 nm CMOS, tech A	130 nm CMOS, tech B

Project overview

- Design started in June 2013 (after Timepix3 submission)
- Change of technology (130nm \rightarrow 130nm)
- The chip was submitted May 26th 2016, wafers received on 31st August
- Fabricated (and diced) chips back at CERN on 7th September
- Production testing later this year (624 chips)
- Irradiation campaign in the future with sensors bonded

VeloPix wafers

Chip architecture

The pixel matrix: 256 x 256 pixels 128 x 64 super pixels (2x4 pixels each)

Architecture: Packet-based, 8 pixels/packet + 9 bit time stamp

Leads to 30% reduction in data rate

Data-driven, 20Mpackets/s / double column - Timepix3 rate: 1.2 Mpackets/s

Front-end architecture

Double column datapath

Periphery datapath

- Manual triplication (except configuration registers)
- Pixel data flip-flops (FF) unprotected
- Full TMR in FSM & configuration FFs, pixel config latches
- No on-chip SRAM!
- NMOS ELT transistors used in analog front-end

- Std cell library characterized at 400 Mrad, High-Vt NMOS
- Corner used for syn/PnR: slow process, VDD 1.08V, 400 Mrad, 25°C

First debugging results

VeloPix TWEPP 2016

H

First signs of life

Tests performed so far

• Power:

- ≻ Analog
- Digital (IDLE), matrix clocking, time stamp bus
- DAC (work as expected)
- GWT eye diagram

- S-curves using analog test pulse
- Noise
- Threshold variation
- Super pixel packet latency

- Analog: 387 mA, 476 mW
- Digital:
 - 1. After chip power up: 374 mW
 - 2. Matrix clock enabled: 694 mW
 - 3. ToA counter enabled: 718 mW

Clock: +320 mW

ToA bus power +24 mW

Total: 1.2 W (0.52 W/cm²) (Meets < 1.5 W/cm²) Analog
Digital Periphery
Digital Matrix

TODO: Measurement with high rate

GWT Eye diagram @ 5.12Gbps

Measurements with test pulse

30.9.2016

ÈRN

Digital: ToT mode

Analog test pulses in one pixel

Test pulses in 32 pixels

Electronic noise (preliminary)

Threshold equalization (preliminary)

Summary of pixel measurements

Digital pixel front-end fully functional. Responds correctly in ToT and Photon counting modes. All measurements without sensor.

Pixel gain	~24.6 mV/Ke ⁻
Pixel to pixel gain variation	~3.3%
Pixel ENC	62.9 e-
Pixel to pixel threshold mismatch	410 e-rms
Pixel to pixel threshold mismatch calibrated (Threq)	40.3 e-rms
Expected minimum threshold = $6\sqrt{ENC^2 + Threq^2}$	> 450 e-

Threshold equalization only calculated not measured on chip All measurements assuming Ctest=5fF

Super pixel packet latency (low rate)

Summary

- VeloPix ASIC, designed in 130nm CMOS, presented
- First silicon for debugging 7th September
- First results show the chip is alive and eyes open:
 - Power 1.2 W/ASIC, DACs working, pixels functional
 - ▶ Pixel: Gain ~25 mV/ke-, ENC 63 e-, no systematics
 - ➤ GWT serializer working, time stamping works
- Debugging and fine-tuning will continue in the following weeks:
 - ► Full DAQ chain tests, GWT BER and jitter
 - PLL characterization
- Production testing later this year at CERN

- List of contributors:
 - ASIC designers: Jan David Schipper, Vladimir Gromov, Sandeep Miryala, Xavi Llopart, Rafael Ballabriga, Winnie Wong, Tuomas Poikela
 - Support, readout and testing: Jerome Alozy, Martin van Beuzekom, Henk Boterenbrood, Bas van der Heijden, Jan Buytaert, Marco Daldoss, Edgar Lemos Cid,
 - IP Blocks: Stefano Michelis, Pedro Miguel Vicente Leitao, Rui De Oliveira
 - + many others I forgot to mention...

Spares

Power routing and bump pads

30.9.2016

ÉRI