Rare decays from LHCb and CMS

Michael McCann On behalf of the LHCb collaboration

Rare decays from LHCb and CMS

Michael McCann On behalf of the LHCb collaboration

Imperial College London

22 September 2016 LHC Days – Split, Croatia

Imperial College London

Rare decays – What and why?

Rare decays from LHCb and CMS

Michael McCann On behalf of the LHCb collaboration

- Processes through loop diagrams or CKM suppressed
 Typically B < O(10⁻⁶)
- Indirect new physics searches
 - The lower SM BF allow BSM contributions to stand out
- Typical loop topologies
 - Flavour-changing neutral currents (penguin/box diagrams)

Will focus on rare decays of b quarks

 $B^0_{(s)} \rightarrow \mu^+ \mu^- - Motivation$

Michael McCann On behalf of the LHCb collaboration

Two muons \rightarrow Experimentally clean

$$B^0_{(s)}
ightarrow \mu^+ \mu^-$$
 – LHCb and CMS

Phys. Rev. Lett. 111, 101805 (2013)

Phys. Rev. Lett. 111 (2013) 101804

What if the data were combined?

$$B^0_{(s)}
ightarrow \mu^+ \mu^-$$
 – LHCb + CMS

Rare decays from LHCb and CMS

 $B_{(s)}^{0} \rightarrow J/\psi\gamma$ at LHCb

Rare decays from LHCb and CMS

Michael McCann On behalf of the LHCb collaboration

- Radiative decay of $B_{(s)}^0$
- SM predictions vary wildly
 - $B \sim 2 \times 10^{-7} 5 \times 10^{-6}$
 - Highly sensitive to QCD effects
 - Tests QCD factorisation
- Sensitive to New Physics
 - Particularly RH currents
- Limits set (90% conf): $\mathcal{B}(B_s^0) < 1.5 \times 10^{-6}$ $\mathcal{B}(B^0) < 7.3 \times 10^{-6}$

Phys. Rev. D92 (2015) 112002

$B_s^0 \rightarrow \phi \gamma$ – photon polarisation at LHCb

Rare decays from LHCb and CMS

- SM $b \rightarrow s \gamma \sim$ left-handed
 - Small right-handed component $(m_s \neq 0)$
 - $\mathcal{A}_{\rm SM}^{\Delta} = 0.047^{+0.029}_{-0.025}$
- Time dependent analysis

$$egin{aligned} \mathcal{P}(t) &\sim e^{-\Gamma_s t} \ & imes \ \{\cosh(\Delta\Gamma_s t/2) \ &- \mathcal{A}^\Delta \sinh(\Delta\Gamma_s t/2) \end{aligned}$$

• In ratio with
$$B^0 o K^{*0} \gamma$$

•
$$\mathcal{A}^{\Delta} = -0.98^{+0.46+0.23}_{-0.52-0.20}$$

$B^0 ightarrow {\cal K}^* \overline{(892)^0 \mu^+ \mu^-}$ angular analysis

Rare decays from LHCb and CMS

- FCNC process
- Angular variables less susceptible to hadronic FF
- Sensitive to Wilson coeffs
 C₉ and C₁₀ (& others)
 (vector and axial-vector)

Phys. Lett. B 753 (2016) 424

$B^0 ightarrow K^*(892)^0 \mu^+ \mu^-$ angular analysis

Rare decays from LHCb and CMS

Michael McCann On behalf of the LHCb collaboration ■ Angular dependence from 6 amplitudes (+ 2 for S-Wave)

Helicity and spin components

•
$$\mathcal{A}^{L,R}_{0,\parallel,\perp}$$
 $(\mathcal{A}^{L,R}_S)$

Many observables formed from amplitudes, e.g

$$\begin{split} F_{L} &= \frac{|\mathcal{A}_{0}^{L}|^{2} + |\mathcal{A}_{0}^{R}|^{2}}{|\mathcal{A}_{0}^{L}|^{2} + |\mathcal{A}_{0}^{R}|^{2} + |\mathcal{A}_{\parallel}^{L}|^{2} + |\mathcal{A}_{\parallel}^{R}|^{2} + |\mathcal{A}_{\perp}^{L}|^{2} + |\mathcal{A}_{\perp}^{R}|^{2}} \\ A_{\mathrm{FB}} &= \frac{3\mathrm{Re}(\mathcal{A}_{\parallel}^{L}\mathcal{A}_{\perp}^{L*} + \mathcal{A}_{\parallel}^{R}\mathcal{A}_{\perp}^{R*})/2}{|\mathcal{A}_{0}^{L}|^{2} + |\mathcal{A}_{0}^{R}|^{2} + |\mathcal{A}_{\parallel}^{L}|^{2} + |\mathcal{A}_{\parallel}^{R}|^{2} + |\mathcal{A}_{\perp}^{L}|^{2} + |\mathcal{A}_{\perp}^{R}|^{2}} \\ P_{5}' &= \frac{\sqrt{2}\mathrm{Re}(\mathcal{A}_{0}^{L}\mathcal{A}_{\perp}^{L*} + \mathcal{A}_{0}^{R}\mathcal{A}_{\perp}^{R*})}{\sqrt{F_{L}(1 - F_{L})}} \end{split}$$

Some have physical meaning

- F_L : Fraction of the longitudinal component of K^{*0}
- *A*_{FB}: Dimuon forward-backward asymmetry

$B^0 ightarrow \overline{K^{*0}} \mu^+ \mu^-$ angular analysis – LHCb and CMS

$B^0 o K^{*0} \mu^+ \mu^-$ angular analysis – LHCb

• Local $\sim 3\sigma$ deviations

• $\Delta \text{Re}(C_9) = -1.0 \pm 0.3$

vector particle

Consistent with new

QCD effects (charm)?

Rare decays from LHCb and CMS

Michael McCann On behalf of the LHCb collaboration

JHEP 02 (2016) 104

Amplitudes fitted with low q^2 ansatz, $(a + bq^2 + c/q^2)$

$B^0 ightarrow K^+ \pi^- \mu^+ \mu^-$ and $B^0 ightarrow K^* (892)^0 \mu^+ \mu^-$

Rare decays from LHCb and CMS

- $K^+\pi^-$ system in S- and P-wave
- SM predictions for P-wave only
- Need S-wave fraction to extract BF measurement
- Ratio of spin states S- & P-wave important for understanding hadronic effects

$B^{\pm} ightarrow \pi^{\pm} \mu^{+} \mu^{-}$ differential BF and \mathcal{A}_{CP} at LHCb

Rare decays from LHCb and CMS

- $b \rightarrow dll$ transition
 - More suppressed than $b \rightarrow sll$
- Access to CKM element $|V_{td}|$
 - $\blacksquare ~|V_{td}/V_{ts}|$ with $K^+\mu\mu$
- Not exclusively a top loop
 CP asymmetry non-zero

$B^\pm o \pi^\pm \mu^+ \mu^-$ differential BF and ${\cal A}_{C\!P}$

Rare decays from LHCb and CMS

Michael McCann On behalf of the LHCb collaboration

enalt of LHCb poration

Other recent rare decays at LHCb

Rare decays from LHCb and CMS

Michael McCann On behalf of the LHCb collaboration Can only give a taste of the full rare decays program: Recent

- \blacksquare Ratio BF $B^+ \to K^+ \mu^+ \mu^- / B^+ \to K^+ e^+ e^-$
 - $R(K) = 0.74 \pm 0.10$, 2.6 σ deviation from SM.
- Search for Hidden bosons in $B^0 \to K^{*0} \mu^+ \mu^-$
- $B_s^0 \rightarrow \phi \mu^+ \mu^-$ diff. BF and angular
- $\Lambda^0_b
 ightarrow \Lambda^0 \mu^+ \mu^-$ diff. BF and angular
- $B^0
 ightarrow K^{*0} e^+ e^-$ angular analysis

•
$$B^{0}_{(s)} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}$$
 BF

- Search for $\tau^- \rightarrow \mu^- \mu^+ \mu^-$
- \blacksquare Ratio BF $B^+ \to K^+ \mu^+ \mu^- / B^+ \to K^+ e^+ e^-$

Many more in the works

Conclusions

Rare decays from LHCb and CMS

- A rich and varied rare decays programme at the LHC
- Rare decays a speciality of LHCb
 - GPDs can contribute
- Collaboration between the experiments yield valuable
- Interesting hints at departures from the SM
- More to come with LHC Run II data

	Backup
Rare decays from LHCb and CMS Michael McCann On behalf of the LHCb collaboration	

LHCb and CMS

Michael McCann On behalf of the LHCb collaboration

- Excellent momentum resolution
- Excellent PID
- Excellent vertexing

- Excellent energy resolution
- Full acceptance
- Vast integrated luminosity