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Abstract

Single top quark events produced in the t channel are used to set limits on anomalous
Wtb couplings and to search for top quark flavour-changing neutral current (FCNC)
interactions. The data taken with the CMS detector at the LHC in proton-proton col-
lisions at

√
s = 7 and 8 TeV correspond to integrated luminosities of 5.0 and 19.7 fb−1,

respectively. The analysis is performed using events with one muon and two or three
jets. A Bayesian neural network technique, used to discriminate between the sig-
nal and backgrounds, is found to be consistent with the standard model prediction.
The 95% confidence level (CL) exclusion limits on anomalous right-handed vector,
and left- and right-handed tensor Wtb couplings are measured to be | f R

V | < 0.16,
| f L

T | < 0.057, and−0.049 < f R
T < 0.048, respectively. For the FCNC couplings κtug and

κtcg, the 95% CL upper limits on coupling strengths are |κtug|/Λ < 4.1× 10−3 TeV−1

and |κtcg|/Λ < 1.8× 10−2 TeV−1, where Λ is the scale for new physics, and corre-
spond to upper limits on the branching fractions of 2.0× 10−5 and 4.1× 10−4 for the
decays t→ ug and t→ cg, respectively.
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1 Introduction
Single top quark (t) production provides ways to investigate aspects of top quark physics that
cannot be studied with tt events [1]. The theory of electroweak interactions predicts three
mechanisms for producing single top quarks in hadron-hadron collisions. At leading order
(LO), these are classified according to the virtuality of the W boson propagation in t-channel,
s-channel, or associated tW production [2]. Single top quark production in all channels is di-
rectly related to the squared modulus of the Cabibbo–Kobayashi–Maskawa matrix element
Vtb. As a consequence, it provides a direct measurement of this quantity and thereby a check of
the standard model (SM). The single top quark topology also opens a window for searches of
anomalous Wtb couplings relative to the SM, where the interaction vertex of the top quark with
the bottom quark (b) and the W boson (Wtb vertex) has a V–A axial-vector structure. Flavour-
changing neutral currents (FCNC) are absent at lowest order in the SM, and are significantly
suppressed through the Glashow–Iliopoulos–Maiani mechanism [3] at higher orders. Various
rare decays of K, D, and B mesons, as well as the oscillations in K0K0, D0D0, and B0B0 systems,
strongly constrain FCNC interactions involving the first two generations and the b quark [4].
The V–A structure of the charged current with light quarks is well established [4]. However,
FCNC involving the top quark, as well as the structure of the Wtb vertex, are significantly less
constrained. In the SM, the FCNC couplings of the top quark are predicted to be very small and
not detectable at current experimental sensitivity. However, they can be significantly enhanced
in various SM extensions, such as supersymmetry [5–7], and models with multiple Higgs bo-
son doublets [8–10], extra quarks [11–13], or a composite top quark [14]. New vertices with top
quarks are predicted, in particular, in models with light composite Higgs bosons [15, 16], extra-
dimension models with warped geometry [17], or holographic structures [18]. Such possibil-
ities can be encoded in an effective field theory through higher-dimensional gauge-invariant
operators [19, 20]. Direct limits on top quark FCNC parameters have been established by the
CDF [21], D0 [22], and ATLAS [23] Collaborations. There are two complementary strategies to
search for FCNC in single top quark production. A search can be performed in the s channel
for resonance production through the fusion of a gluon (g) with an up (u) or charm (c) quark,
as was the case in analyses by the CDF and ATLAS Collaborations. However, as pointed out by
the D0 Collaboration, the s-channel production rate is proportional to the square of the FCNC
coupling parameter and is therefore expected to be small [22]. On the other hand, the t-channel
cross section and its corresponding kinematic properties have been measured accurately at the
LHC [24–26], with an important feature being that the t-channel signature contains a light-
quark jet produced in association with the single top quark. This light-quark jet can be used
to search for deviations from the SM prediction caused by FCNC in the top quark sector. This
strategy was applied by the D0 Collaboration [22], as well as in our analysis. Models that have
contributions from FCNC in the production of single top quarks can have sizable deviations
relative to SM predictions. Processes with FCNC vertices in the decay of the top quark are neg-
ligible. In contrast, the modelling of Wtb couplings can involve anomalous Wtb interactions in
both the production and the decay, because both are significantly affected by anomalous con-
tributions. All these features are explicitly taken into account in the COMPHEP Monte Carlo
(MC) generator [27]. In this paper, we present a search by the CMS experiment at the CERN
LHC for anomalous Wtb couplings and FCNC interactions of the top quark through the u or
c quarks and a gluon (tug or tcg vertices), by selecting muons arising from W boson decay
(including through a τ lepton) from the top quarks in muon+jets events. Separation of sig-
nal and background is achieved through a Bayesian neural network (BNN) technique [28, 29],
performed using the Flexible Bayesian modelling package [30]. Limits on Wtb and top quark
FCNC anomalous couplings are obtained from the distribution in the BNN discriminants.
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2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity η [31] coverage provided by the barrel and endcap de-
tectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke
outside the solenoid. The first level of the CMS trigger system, composed of custom hardware
processors, uses information from the calorimeters and muon detectors to select the most in-
teresting events in a fixed time interval of less than 4 µs. The high-level trigger processor farm
further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage.
A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [31]. The particle-flow
event algorithm [32, 33] reconstructs and identifies each individual particle with an optimized
combination of information from the various elements of the CMS detector. The energy of
photons is directly obtained from the ECAL measurement, corrected for zero-suppression ef-
fects. The energy of electrons is determined from a combination of the electron momentum at
the primary interaction vertex as determined by the tracker, the energy of the corresponding
ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The energy of muons is obtained from the curvature of
the corresponding track. The energy of charged hadrons is determined from a combination
of their momentum measured in the tracker and the matching ECAL and HCAL energy de-
posits, corrected for zero-suppression effects and for the response function of the calorimeters
to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energy. Jets are reconstructed offline from particle-flow candidates
clustered by the anti-kT algorithm [34, 35] with a size parameter of 0.5. Jet momentum is deter-
mined as the vectorial sum of all particle momenta in the jet, and is found from simulation to
be within 5 to 10% of the true momentum over the whole transverse momentum (pT) spectrum
and detector acceptance. An offset correction is applied to jet energies to take into account
the contribution from additional proton-proton interactions within the same or nearby bunch
crossing (pileup). Jet energy corrections are derived from simulation, and are confirmed with
in situ measurements of the energy balance in dijet and photon+jet events. Additional selection
criteria are applied to each event to remove spurious jet-like features originating from isolated
noise patterns in certain HCAL regions. The missing transverse momentum vector ~pmiss

T is de-
fined as the projection on the plane perpendicular to the beams of the negative vector sum of
the momenta of all reconstructed particles in an event. Its magnitude is referred to as Emiss

T .

3 Data and simulated events
The analysis is performed using proton-proton collisions recorded with the CMS detector in
2011 and 2012 at centre-of-mass energies of 7 and 8 TeV, respectively, and corresponding to
integrated luminosities of 5.0 and 19.7 fb−1. The t-channel production of a single top quark
is modelled using the COMPHEP 4.5 package [27], supplemented by an additional matching
method used to simulate an effective next-to-leading-order (NLO) approach [36]. The NLO
cross sections used for t-channel single top production are σ(7 TeV) = 64.6+2.6

−1.9 pb [37] and
σ(8 TeV) = 84.7+3.8

−3.2 pb [38, 39]. The POWHEG 1.0 NLO MC generator [40] provides an alter-
native model to estimate the sensitivity of the analysis to the modelling of the signal. Contri-
butions from anomalous operators are added to the COMPHEP simulation for both the pro-
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duction and decay of top quarks. This takes into account the width of the top quark, spin cor-
relations between the production and decay, and the b quark mass in the anomalous and SM
contributions. The LO MADGRAPH 5.1 [41] generator is used to simulate the main background
processes: top quark pair production with total cross sections of σ(7 TeV) = 172.0+6.5

−7.6 pb [42]
and σ(8 TeV) = 253+13

−14 pb [43], and W boson production with total cross sections of σ(7 TeV) =
31.3± 1.6 nb and σ(8 TeV) = 36.7± 1.3 nb [44], for processes with up to 3 and 4 additional jets
in the matrix element calculations, respectively. The subdominant backgrounds from Drell–
Yan in association with jets (Z/γ∗+jets) production, corresponding to σ(7 TeV) = 5.0± 0.3 nb
and σ(8 TeV) = 4.3 ± 0.2 nb [44], and from WW, WZ, and ZZ (dibosons) production, corre-
sponding to σ(7 TeV) = 67.1 ± 1.7 pb and σ(8 TeV) = 73.8 ± 1.9 pb [45] are modelled using
LO PYTHIA 6.426 [46]. The contribution from multijet events, with one of the jets misidenti-
fied as a lepton, is estimated using a mutually exclusive data sample. The details are given
in the next section. Single top quark production in the s channel with σ(7 TeV) = 4.6+0.2

−0.2 pb,
σ(8 TeV) = 5.5 ± 0.2 pb, and in the tW channel with σ(7 TeV) = 15.7 ± 1.2 pb, σ(8 TeV) =
22.2± 1.5 pb [47] are modelled using the POWHEG generator. The PYTHIA 6.4 program is also
used to simulate parton showers for the hard processes calculated in the COMPHEP, MAD-
GRAPH, and POWHEG generators. Because of the importance of the W+jets background and
the significant difference in the kinematic distributions, the following contributions are con-
sidered separately in the analysis: W boson produced together with a pair of b or c quarks
(W+QQ); W boson produced in association with a c quark (W+c); W boson events that do not
contain heavy quarks (W+light); and events associated with underlying events (UE) that con-
tain heavy quarks originating from the initial parton interaction (W+QX). Different nuisance
parameters for the normalization scale factors are used for these components of the complete
W+jets MADGRAPH simulation. Simulated events are reweighted to reproduce the observed
particle multiplicity from pileup. Small differences between the data and simulation in trigger
efficiency [48, 49], lepton identification and isolation [48, 49], and b tagging [50] are corrected
via scale factors, which are generally close to unity.

4 Event selection
The following signature is used to identify t-channel single top quark production candidates:
exactly one isolated muon [48], one light-flavour jet in the forward region (defined below); one
b-tagged jet [50] from the b quark originating from the decay of the top quark, and an asso-
ciated “soft” b jet. The “soft” b jet is likely to fail either the pT or η threshold (given below).
The presence of a neutrino in the decay of the W boson leads to a significant amount of Emiss

T ,
which is used to enhance the signal. The analysis is performed using data collected with a trig-
ger requiring at least one muon in each event. To accommodate the increasing instantaneous
luminosity delivered by the LHC in 2011, different triggers were used for various data-taking
periods, with the muon pT threshold ranging from 20 to 27 GeV. A single trigger with muon
threshold pT > 24 GeV was used in 2012. The selected events are required to have:

(i) at least one primary vertex reconstructed from at least four tracks, and located within
24 cm in the longitudinal direction and 2 cm in the radial direction from the centre of the
detector;

(ii) only one isolated (Iµ
rel < 0.12) muon [48] with pT > 20 (27) GeV at

√
s = 7 (8) TeV and

|η| < 2.1, originating from the primary vertex, where the relative isolation parameter
of the muon, Iµ

rel, is defined as the sum of the energy deposited by long-lived charged
hadrons, neutral hadrons, and photons in a cone with radius ∆R =

√
(∆η2 + ∆φ2) = 0.4,
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divided by the muon pT, where ∆η and ∆φ are the differences in pseudorapidity and
azimuthal angle (in radians), respectively, between the muon and the other particle’s
directions. Events with additional muons or electrons are rejected using a looser quality
requirement of pT > 10 GeV for muons and 15 GeV for electrons, |η| < 2.5, and having
Iµ
rel < 0.2 and Ie

rel < 0.15, where the electron relative isolation parameter Ie
rel is measured

similarly to that for a muon;

(iii) two or three jets with pT > 30 GeV and |η| < 4.7, and, at
√

s = 8 TeV, the highest-pT jet
(j1) is required to satisfy pT(j1) > 40 GeV. For events with 3 jets we require the second-
highest-pT jet (j2) to have pT(j2) > 40 GeV;

(iv) at least one b-tagged jet and at least one jet that fails the combined secondary vertex algo-
rithm tight b tagging working-point requirement [50]. A tight b tagging selection corre-
sponds to an efficiency of ≈50% for jets originating from true b quarks and a mistagging
rate of ≈0.1% for other jets in the signal simulation.

Control regions containing events with 2 or 3 jets and no b-tagged jet, and events with 4 jets, 2
of which are b-tagged, are used to validate the modelling of the W+jets and tt backgrounds, re-
spectively. The multijet events contribute background when there is a muon from the semilep-
tonic decay of a b or c quark, or a light charged hadron is misidentified as a muon. These
background muons candidates are usually surrounded by hadrons. This feature is exploited to
define a control region by demanding exactly one muon with an inverted isolation criteria for
hadronic activity of 0.35 < Iµ

rel < 1. The jets falling inside the cone of a size ∆R = 0.5 around
the selected muon are removed and the remaining jets are subject to the criteria that define
the signal. To suppress the multijet background, we use a dedicated Bayesian neural network
(multijet BNN), with the following input variables, sensitive to multijet production: the trans-
verse mass mT(W) =

√
2pT(µ)Emiss

T (1− cos(∆φ(µ,~pmiss
T )) of the reconstructed W boson, the

azimuthal angle ∆φ(µ,~pmiss
T ) between the muon direction and ~pmiss

T , the quantity Emiss
T , and

the muon pT. The same set of variables is used for both the
√

s = 7 and 8 TeV data sets, but
because of the different selection criteria, different BNNs are trained for each set. In Fig. 1,
data-to-simulation comparisons are shown for the multijet BNN discriminant and the mT(W)
distributions for the

√
s = 8 TeV data. The predictions for the multijet BNN discriminant and

mT(W) agree with the data. The normalization of the multijet background is taken from a fit to
the multijet BNN distribution, and all other processes involving a W boson are normalized to
their theoretical cross sections. To reduce the multijet background, the multijet BNN discrim-
inant is required to have a value greater than 0.7. Using the value of the discriminant rather
than a selection on mT(W) increases the signal efficiency by 10%, with a similar background
rejection. This requirement rejects about 90% of the multijet background, while rejecting only
about 20% of the signal, as determined from simulation. The observed and predicted event
yields before and after the multijet background suppression are listed in Table 1.

5 Signal extraction with Bayesian neural networks
Events that pass the initial selection and the multijet BNN discriminant requirement are con-
sidered in the final analysis, which requires the training of the BNN (SM BNN) to distinguish
the t-channel single top quark production process from other SM processes. The s- and tW-
channels, tt, W+jets, diboson, and Drell–Yan processes with their relative normalizations are
treated as a combined background for the training of the SM BNN. The SM BNN discriminant
is used to remove the SM backgrounds in the search for an anomalous structure at the Wtb
vertex. Three additional BNNs (Wtb BNN) are used to separate the individual contributions
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Figure 1: The distributions of the multijet BNN discriminant used for the QCD multijet back-
ground rejection (left) and the reconstructed transverse W boson mass (right) from data (points)
and the predicted backgrounds from simulation (filled histograms) for

√
s = 8 TeV. The lower

part of each plot shows the relative difference between the data and the total predicted back-
ground. The vertical bars represent the statistical uncertainties.

Table 1: The predicted and observed events yields before and after the multijet BNN selection
for the two data sets. The uncertainties include the estimation of the scale and parton distribu-
tion function uncertainties.

√
s = 7 TeV

√
s = 8 TeV

Process Basic selection Multijet BNN > 0.7 Basic selection Multijet BNN > 0.7

t channel 5 580+220
−160 4 560+180

−130 21 900+980
−840 14 800+660

−560

s channel 373+16
−14 301+13

−12 1 307±47 865±31

tW 2 080±160 1 760±130 9 220±620 6 620±450

tt 20 450+770
−900 17 360+660

−770 101 100+5100
−6100 72 200+3 600

−4 300

W+jets 16 100±800 12 700±630 36 100+1200
−1200 23 700±800

Dibosons 380±10 300±8 780±20 537±14

Drell–Yan 1 520±80 660±40 5 960±320 2 060±110

Multijets 7 340+3 700
−3 400 740+380

−350 30 200+6 000
−6 300 2 630+520

−550

Total 53 800+3 900
−3 700 38 380+1 000

−1 100 206 650+8 100
−8 900 123 400+3 800

−4 500

Data 56 145 40 681 222 242 135 071

of right-handed vector ( f R
V ), and left-handed ( f L

T ) and right-handed ( f R
T ) tensor couplings from

the left-handed vector coupling ( f L
V) expected in the SM. The FCNC processes with anoma-

lous tcg and tug vertices are assumed to be completely independent of the SM contribution.
Two BNNs (tcg BNN and tug BNN) are trained to distinguish the corresponding contributions
from the SM contribution. The kinematic properties of the potential tcg and tug contributions
are slightly different owing to the different initial states. The input variables used by each
BNN are summarised in Table 2. Their choice is based on the difference in the structure of the
Feynman diagrams contributing to the signal and background processes. Distributions of four
representative variables for data and simulated events are shown in Fig. 2. Several variables
in the analysis require full kinematic reconstruction of the top quark and W boson candidates.
For the kinematic reconstruction of the top quark, the W boson mass constraint is applied to
extract the component of the neutrino momentum along the beam direction (pz). This leads to a
quadratic equation in pz. For two real solutions of the equation, the smaller value of pz is used
as the solution. For events with complex solutions, the imaginary components are eliminated
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by modifying Emiss
T such that mT(W) = MW [4].

The data-to-simulation comparisons shown in Fig. 3 demonstrate good agreement in the con-
trol regions enriched in top quark pair events (4 jets with 2 b tags) and W+jets (no b-tagged
jets), as well as in the signal regions, as discussed in Section 4. In Fig. 3, the simulated events
are normalized to the results obtained in the fit to the data.

6 Systematic uncertainties and statistical analysis
The analysis extracts the parameters of single top quark production and any signs of beyond
the SM behaviour based on the BNN discriminant distributions. It follows the same method-
ology for estimating the uncertainties as used in previously CMS measurements of single top
quark production [54, 55]. Bayesian inference is used to derive the posterior probability. A
signal strength ~µs is the central value of the posterior probability distribution p(~µs|d) with a
certain data set d. This posterior probability can be obtained as the integral

p(~µs|d) =
∫

p(d|~µs,~µb,~θ)
π(~µs)π(~µb)π(~θ)

π(d)
d~µbd~θ, (1)

where ~µb are the background yields, ~θ are additional nuisance parameters, which are the sys-
tematic uncertainties of the analysis, π(~µs), π(~µb), and π(~θ) are the prior probabilities of the
corresponding parameters, π(d) is a normalization factor, and p(d|~µs,~µb,~θ) is the probability to
obtain a given d with given ~µs, ~µb, and~θ. Uncertainties considered in the analysis are discussed
next. For the variation of the background normalization, scale parameters are introduced in
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Figure 2: Comparison of experimental with simulated data of the BNNs input variables
cos(θµ,jL)|top, η(jL), HT(j1, j2), and M(W, b1). The variables are described in Table 2. The lower
part of each plot shows the relative difference between the data and the total predicted back-
ground. The hatched band corresponds to the total simulation uncertainty. The vertical bars
represent the statistical uncertainties. Plots are for the

√
s = 8 TeV data set.
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Table 2: Input variables for the BNNs used in the analysis. The symbol × represents the vari-
ables used for each particular BNN. The number 7 or 8 marks the variables used in just the√

s = 7 or 8 TeV analysis. The symbol ”tug” marks the variables used just in the training of
the tug FCNC BNN. The notations ”leading” and ”next-to-leading” refer to the highest-pT and
second-highest-pT jet, respectively. The notation ”best” jet is used for the jet that gives a re-
constructed mass of the top quark closest to the value of 172.5 GeV, which is used in the MC
simulation.

Variable Description SM f L
V f R

V f L
V f L

T f L
V f R

T FCNC

pT(b1)
pT of the leading b jet
(the b-tagged jet with the highest pT)

×
pT(b2) pT of the next-to-leading b jet 7
pT(j1) pT of the leading jet × × ×
pT(j1, j2)

vector sum of the pT of the leading
and the next-to-leading jet

× ×
pT(∑ i 6=ibest

~pT(ji)) vector sum of the pT of all jets without the best jet 7

pT(jL)
pT of the light-flavour jet
(untagged jet with the highest value of |η|) × × × ×

pT(µ) pT of the muon 7 × ×
pT(W, b1) pT of the W boson and the leading b jet × × × ×
HT(j1, j2)

scalar sum of the pT of the leading
and the next-to-leading jet

× × × ×
Emiss

T missing transverse energy ×
η(µ) η of the muon ×
η(jL) η of the light-flavour jet × × ×
M(j1, j2)

invariant mass of the leading
and the next-to-leading jets

× × × ×
M(∑ i 6=ibest

(ji)) invariant mass of all jets without the best one 7
M(jW) invariant mass of the W boson and all jets × × ×
M(W, b1)

invariant mass of the W boson
and the leading b jet

×

∆R(µ, b1)
√
(η(µ)− η(b1))

2 + (φ(µ)− φ(b1))
2 8

∆R(µ, j1)
√

(η(µ)− η(j1))2 + (φ(µ)− φ(j1))2 7
∆φ(µ, Emiss

T ) azimuthal angle between the muon and ~p miss
T × ×

∆φ(µ, W)
azimuthal angle between the muon
and the W boson

8

cos(θµ,jL)|top

cosine of the angle between the muon
and the light-flavour jet in the top quark rest frame,
for top quark reconstructed with the leading b jet [51]

× × 7 ×

cos(θµ,W)|W
cosine of the angle between
the muon momentum in the W boson rest frame
and the direction of the W boson boost vector [52]

× × ×

cos(θW,jL)|top

cosine of the angle between the W boson
and the light-flavour jet
in the top quark rest frame [52]

8 ×

Q(µ) charge of the muon tug

Planarity
measure of the flatness of the event
using the smallest eigenvalue
of the normalized momentum tensor [53]

8

SM BNN SM BNN discriminant ×
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Figure 3: Comparison of
√

s = 8 TeV data and simulation using the SM BNN discriminant in
three separate signal regions of two jets with one b-tagged (2 jets, 1 tag) (upper), three jets with
one of them b-tagged (3 jets, 1 tag) (middle left), and three jets with two of them b-tagged (3
jets, 2 tags) (middle right), and in tt (4 jets, 2 tags) (lower left) and W+jets (no b-tagged jets)
(lower right) background control regions (CR). The lower part of each plot shows the relative
difference between the data and the total predicted background. The hatched band corresponds
to the total simulation uncertainty. The vertical bars represent the statistical uncertainties.

the statistical model, and the corresponding variations of these parameters are the same as
for the SM measurement in Ref. [55]. All background processes and their normalizations are
treated as being statistically independent. To estimate the uncertainty in the multijet distribu-
tions, two different isolation criteria are used (0.3 < Iµ

rel < 0.5 and 0.5 < Iµ
rel < 1). Also, a

comparison is made between data and events generated with the PYTHIA 6.4 simulation. The
impact of the changes in the multijet template are well within the range of −50% to +100%,
and this is included as a prior uncertainty in the statistical model. To estimate the uncertainties
in the detector-related jet and Emiss

T corrections, the four-momenta of all reconstructed jets in
simulated events are scaled simultaneously in accordance with pT- and η-dependent jet energy
correction (JEC) uncertainties [56]. These changes are also propagated to Emiss

T . The effect of the
10% uncertainty in Emiss

T coming from unclustered energy deposits in the calorimeters that are
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not associated with jets is estimated after subtracting all the jet and lepton energies from the
Emiss

T calculation. Parameters in the procedure to correct the jet energy resolution (JER) are var-
ied within their uncertainties, and the procedure is repeated for all jets in the simulation [56, 57].
The variations coming from the uncertainty in the b quark tagging efficiency and mistagging
rate of jets are propagated to the simulated events [50]. The uncertainties for c quark jets are as-
sumed to be twice as large as for b quark jets. The scale factors for tagging b and c quark jets are
treated as fully correlated, whereas the mistagging scale factors are varied independently. The
integrated luminosity in the

√
s = 7 and 8 TeV data-taking periods is measured with a relative

uncertainty of 2.2% [58] and 2.6% [59], respectively. In the combined fits, all experimental un-
certainties, including these from the integrated luminosity, are treated as uncorrelated between
the data sets. The uncertainty in the pileup modelling is estimated by using different multiplic-
ity distributions obtained by changing the minimum-bias cross section by ±5% [60]. Trigger
scale factors, muon identification, and muon isolation uncertainties are introduced in the statis-
tical model as additional factors, Gaussian-distributed parameters with a mean of 1 and widths
of 0.2%, 0.5%, and 0.2%, respectively. The uncertainties from additional hard-parton radiation
and the matching of the samples with different jet multiplicity are evaluated by doubling or
halving the threshold for the MADGRAPH jet-matching procedure for the top quark pair and
W+jets production, using dedicated MADGRAPH samples generated with such shifts in the
parameters [61]. The renormalization and factorization scale uncertainties are estimated using
MC simulated samples generated by doubling or halving the renormalization and factoriza-
tion scales for the signal and the main background processes. Uncertainties in the parton dis-
tribution functions (PDF) are evaluated with the CT10 PDF set [62] according to the PDF4LHC
formulae [63] for Hessian-based sets. We follow this recommendation and reweight the sim-
ulated events to obtain the uncertainty, which is about 5% on average. The uncertainty from
the choice of the event generator to model the signal is estimated using pseudo-experiments.
These pseudo-experiments are used to fit simulated events, obtained from the COMPHEP sig-
nal sample, and from the POWHEG signal sample. Half of the difference between these two
measurements is taken as the uncertainty (5%). Previous CMS studies [64, 65] of top quark
pair production showed a softer pT distribution of the top quark in the data than predicted by
the NLO simulation. A correction for the simulation of tt production background is applied.
The small effect of this reweighting procedure (0.8%) is taken into account as an uncertainty.
The uncertainty owing to the finite size of the simulated samples is taken into account through
the Barlow–Beeston method [66]. The BNN discriminant distributions can be affected by dif-
ferent types of systematic uncertainties. Some of these only impact the overall normalization,
while others change the shape of the distribution. Both types of systematic uncertainties are
included in the statistical model through additional nuisance parameters. Systematic uncer-
tainties related to the modelling of JEC, JER, b tagging and mistagging rates, Emiss

T , and pileup,
are included as nuisance parameters in the fit. The variations in these quantities leads to a total
uncertainty of about 6%. Other systematic uncertainties, i.e. those related to the signal model,
renormalization and factorization scales, matching of partons to final jets, and choice of PDF,
are handled through the pseudo-experiments to determine the difference between the varied
and the nominal result. The total uncertainty from these sources is about 8%. We include un-
certainties in the statistical model by following the same approach as described in previous
CMS measurements of the single top quark t-channel cross section [24, 54, 55]. The SM BNN
discriminant distribution after the statistical analysis and evaluation of all the uncertainties are
shown in Fig. 4 for the two data sets. As the

√
s = 7 and 8 TeV data sets have similar selection

criteria, reweighting, and uncertainties and the physics is expected to also be similar, the data
sets are combined by performing a joint fit. The previously described systematic uncertain-
ties and methods of statistical analysis are used in the combination. In the statistical model,
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the experimental uncertainties are treated as uncorrelated between the data sets. The theoreti-
cal uncertainties (from the choice of generator, scales, and PDF) are treated as fully correlated
between the data sets. The sensitivity of the separate

√
s = 7 and 8 TeV analyses and their com-

bination is limited by their corresponding systematic uncertainties. Therefore, the combined
statistical model does not necessarily provide the tightest exclusion limits. In order to validate
the analysis strategy and the statistical treatment of the uncertainties, we measure the cross
sections in the SM t channel, and find values and uncertainties in agreement with previous
measurements [54, 55] and with the prediction of the SM.
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Figure 4: The SM BNN discriminant distributions after the statistical analysis and evaluation
of all the uncertainties. The lower part of each plot shows the relative difference between the
data and the total predicted background. The hatched band corresponds to the total simula-
tion uncertainty. The vertical bars represent the statistical uncertainties. The left (right) plot
corresponds to

√
s = 7 (8) TeV.

7 Search for anomalous contributions to the Wtb vertex
7.1 Modelling the structure of the anomalous Wtb vertex

The t-channel single top quark production is sensitive to possible deviations from the SM pre-
diction for the Wtb vertex. The most general, lowest-dimension, CP-conserving Lagrangian for
the Wtb vertex has the following form [67, 68]:

L =
g√
2

b̄γµ
(

f L
VPL + f R

V PR

)
tW−µ −

g√
2

b̄
σµν∂νW−µ

MW

(
f L
T PL + f R

T PR

)
t + h.c., (2)

where PL,R = (1∓ γ5)/2, σµν = i(γµγν − γνγµ)/2, g is the coupling constant of the weak inter-
action, the form factor f L

V ( f R
V ) represents the left-handed (right-handed) vector coupling, and

f L
T ( f R

T ) represents the left-handed (right-handed) tensor coupling. The SM has the following
set of coupling values: f L

V = Vtb, f R
V = f L

T = f R
T = 0. The same analysis scheme proposed in

Refs. [69, 70] is used to look for possible deviations from the SM, by postulating the presence
of a left-handed vector coupling. Two of the four couplings are considered simultaneously in
two-dimensional scenarios: ( f L

V, f R
V ) and ( f L

V, f L
T ), where the couplings are allowed to vary

from 0 to +∞, and ( f L
V, f R

T ) with variation bounds from -∞ to +∞. Then, considering three
couplings simultaneously leads to the three-dimensional scenarios ( f L

V, f L
T , f R

T ) and ( f L
V, f R

V , f R
T ).

In these scenarios, the couplings have the same variation range of (0; +∞) for f R
V and f L

T , and
(-∞; +∞) for f L

V and f R
T . In the presence of anomalous Wtb couplings in both the production

and decay of the top quark, the kinematic and angular distributions are significantly affected
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relative to their SM expectations. It is therefore important to correctly model the kinematics of
such processes. Following the method of Ref. [71], the event samples with left-handed (SM)
interactions and a purely right-handed vector (left-handed tensor) interactions are generated
to model the ( f L

V, f R
V ) (( f L

V, f L
T )) scenario. Simulated event samples with the left-handed in-

teraction in the production and the right-handed vector (left-handed tensor) interaction in the
decay of the top quark, and vice versa, are also generated. The scenarios with f R

T couplings
are more complicated because of the presence of cross terms, such as ( f L

V · f R
T ), in the squared

matrix element describing the single top quark production process. Special event samples are
generated for such scenarios. Owing to the presence of the cross terms with odd power of f L

V
and f R

T couplings, the analysis is sensitive to negative values of these couplings. The details
of the simulation approach are provided in Ref. [71]. All signal samples are simulated at NLO
precision following Ref. [36].

7.2 Exclusion limits on anomalous couplings

Following the strategy described in Section 5, in addition to the SM BNN, the anomalous
Wtb BNNs are trained to distinguish possible right-handed vector or left-/right-handed tensor
structures from the SM left-handed vector structure in the t-channel single top quark events.
The set of variables chosen for the different Wtb BNNs are listed in Table 2. The first two-
dimensional scenario considers a possible mixture of f L

V and (anomalous) f R
V couplings. The

corresponding Wtb BNN ( f L
V, f R

V ) is trained to distinguish the contribution of these two cou-
plings. For the ( f L

V, f L
T ) scenario, another Wtb BNN is trained to separate the left-handed

vector interacting single top quark SM events from events with a left-handed tensor operator
in the Wtb vertex. For the third scenario, ( f L

V, f R
T ), the last Wtb BNN is trained to separate left-

handed-vector-interacting single top quark SM events from events with a right-handed-tensor
operator in the Wtb vertex. Figure 5 shows the comparison between the data and simulation
for the outputs of the Wtb BNN ( f L

V, f R
V ), Wtb BNN ( f L

V, f L
T ), and Wtb BNN ( f L

V, f R
T ). The SM

BNN and one of the Wtb BNN discriminants are used as inputs in the simultaneous fit of the
two BNN discriminants. One-dimensional constraints on the anomalous parameters are ob-
tained by integrating over the other anomalous parameter in the corresponding scenario. The
results of the fits are presented in the form of two-dimensional contours at 68% and 95% CL
exclusion limits, and as given in Table 3, as one-dimensional constraints in different scenarios.
Both the one- and two-dimension limits are measured for the individual data sets and their
combination. The combined observed and expected two-dimensional contours in the ( f L

V, f R
V ),

( f L
V, f L

T ), and ( f L
V, f R

T ) spaces are shown in Fig. 6. As the interference terms between f L
T and f R

T
or f R

V and f R
T couplings are negligible [20], it is possible to consider three-dimensional scenarios

with simultaneous variation of f L
V, f L

T , f R
T or f L

V, f R
V , f R

T couplings. The three-dimensional sta-
tistical analysis is performed using the SM BNN, Wtb BNN ( f L

V, f R
T ), and either the Wtb BNN

( f L
V, f L

T ) or Wtb BNN ( f L
V, f R

V ) discriminants to obtain the excluded regions at 68% and 95% CL
for f L

T and f R
T , again by integrating over the other anomalous couplings. The combined

√
s = 7

and 8 TeV results in the three-dimensional simultaneous fit of f L
V, f L

T , and f R
T couplings are pre-

sented in Fig. 7 (left) in the form of observed and expected 68% and 95% exclusion contours on
the ( f L

T , f R
T ) couplings. The corresponding results for the f L

V, f R
V , and f R

T couplings are shown in
Fig. 7 (right) as two-dimensional exclusion limits in the ( f R

V , f R
T ) plane. The measured exclusion

limits from the three-dimensional fits with the combined data sets are f L
V > 0.98, | f R

V | < 0.16,
and | f L

T | < 0.057. For f R
T we take the more-conservative limits from the three-dimensional fits

of−0.049 < f R
T < 0.048 as our measurement. These limits are much more restrictive than those

obtained by the D0 Collaboration in a direct search [70], and agree well with the recent results
obtained by the ATLAS [72] and CMS [73, 74] experiments from measurements of the W boson
helicity fractions.



12 8 Search for tcg and tug FCNC interactions
E

ve
nt

s/
0.

02

0

1

2

310×
Data

V
Rf
 channelt
 channels

tW
tt
W+light
W+c

QW+Q
W+QX (UE)
Dibosons
Drell-Yan
Multijet

CMS
 (7 TeV)-15.0 fb

 Wtb BNNR
VfL

Vf
0.0 0.2 0.4 0.6 0.8 1.0

M
C

D
at

a-
M

C

-0.1
0.0
0.1

E
ve

nt
s/

0.
02

0

2

4

6

8

310×
Data

V
Rf
 channelt
 channels

tW
tt
W+light
W+c

QW+Q
W+QX (UE)
Dibosons
Drell-Yan
Multijet

CMS
 (8 TeV)-119.7 fb

 Wtb BNNR
VfL

Vf
0.0 0.2 0.4 0.6 0.8 1.0

M
C

D
at

a-
M

C

-0.1
0.0
0.1

E
ve

nt
s/

0.
02

0.0

0.5

1.0

1.5
310×

Data
T
Lf
 channelt
 channels

tW
tt
W+light
W+c

QW+Q
W+QX (UE)
Dibosons
Drell-Yan
Multijet

CMS
 (7 TeV)-15.0 fb

 Wtb BNNL
TfL

Vf
0.0 0.2 0.4 0.6 0.8 1.0

M
C

D
at

a-
M

C

-0.1
0.0
0.1

E
ve

nt
s/

0.
02

0

1

2

3

4

310×
Data

T
Lf
 channelt
 channels

tW
tt
W+light
W+c

QW+Q
W+QX (UE)
Dibosons
Drell-Yan
Multijet

CMS
 (8 TeV)-119.7 fb

 Wtb BNNL
TfL

Vf
0.0 0.2 0.4 0.6 0.8 1.0

M
C

D
at

a-
M

C

-0.1
0.0
0.1

E
ve

nt
s/

0.
02

0.0

0.5

1.0

1.5

310×
Data

T
Rf
 channelt
 channels

tW
tt
W+light
W+c

QW+Q
W+QX (UE)
Dibosons
Drell-Yan
Multijet

CMS
 (7 TeV)-15.0 fb

 Wtb BNNR
TfL

Vf
0.0 0.2 0.4 0.6 0.8 1.0

M
C

D
at

a-
M

C

-0.2
0.0
0.2

E
ve

nt
s/

0.
02

0

2

4

6
310×

Data
T
Rf
 channelt
 channels

tW
tt
W+light
W+c

QW+Q
W+QX (UE)
Dibosons
Drell-Yan
Multijet

CMS
 (8 TeV)-119.7 fb

 Wtb BNNR
TfL

Vf
0.0 0.2 0.4 0.6 0.8 1.0

M
C

D
at

a-
M

C

-0.1
0.0
0.1

Figure 5: Distributions of the Wtb BNN discriminants from data (points) and simulation (filled
histograms) for the scenarios ( f L

V, f R
V ) (top), ( f L

V, f L
T ) (middle), and ( f L

V, f R
T ) (bottom). The plots

on the left (right) correspond to
√

s = 7 (8) TeV. The Wtb BNNs are trained to separate SM
left-handed interactions from one of the anomalous interactions. In each plot, the expected
distribution with the corresponding anomalous coupling set to 1.0 is shown by the solid curve.
The lower part of each plot shows the relative difference between the data and the total pre-
dicted background. The hatched band corresponds to the total simulation uncertainty. The
vertical bars represent the statistical uncertainties.

8 Search for tcg and tug FCNC interactions
8.1 Theoretical introduction

The FCNC tcg and tug interactions can be written in a model-independent form with the fol-
lowing effective Lagrangian [1]:

L =
κtqg

Λ
gsqσµν λa

2
tGa

µν, (3)

where Λ is the scale of new physics (≈1 TeV), q refers to either the u or c quarks, κtqg defines
the strength of the FCNC interactions in the tug or tcg vertices, λa/2 are the generators of
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Table 3: One-dimensional exclusion limits obtained in different two- and three-dimensional fit
scenarios. The first column shows the couplings allowed to vary in the fit, with the remaining
couplings set to the SM values. The observed (expected) 95% CL limits for each of the two data
sets and their combination are given in the following columns.

Scenario f L
V > | f R

V | < | f L
T | < < f R

T <
√

s = 7 TeV

( f L
V , f R

V ) 0.96 (0.91) 0.29 (0.37)

( f L
V , f L

T ) 0.88 (0.89) 0.11 (0.16)

( f L
V , f R

T ) 0.94 (0.91) –0.077 (–0.067) 0.046 (0.053)

( f L
V , f L

T , f R
T ) 0.95 (0.91) 0.16 (0.22) –0.074 (–0.065) 0.037 (0.055)

( f L
V , f R

V , f R
T ) 0.94 (0.89) 0.24 (0.29) –0.087 (–0.076) 0.040 (0.064)

√
s = 8 TeV

( f L
V , f R

V ) 0.96 (0.92) 0.24 (0.29)

( f L
V , f L

T ) 0.91 (0.92) 0.15 (0.18)

( f L
V , f R

T ) 0.92 (0.92) –0.041 (–0.050) 0.060(0.048)

( f L
V , f L

T , f R
T ) 0.93 (0.94) 0.070(0.12) –0.049 (–0.067) 0.080 (0.066)

( f L
V , f R

V , f R
T ) 0.95 (0.95) 0.18 (0.20) –0.035 (–0.044) 0.043 (0.032)

√
s = 7 and 8 TeV

( f L
V , f R

V ) 0.97 (0.92) 0.28 (0.31)

( f L
V , f L

T ) 0.92 (0.92) 0.10 (0.14)

( f L
V , f R

T ) 0.94 (0.93) –0.046 (–0.050) 0.046 (0.041)

( f L
V , f L

T , f R
T ) 0.98 (0.97) 0.057 (0.10) –0.049 (–0.051) 0.048 (0.046)

( f L
V , f R

V , f R
T ) 0.98 (0.97) 0.16 (0.22) –0.049 (–0.049) 0.039 (0.037)

the SU(3) colour gauge group, gs is the coupling constant of the strong interaction, and Ga
µν

is a gluon field strength tensor. The Lagrangian is assumed to be symmetric with respect to
the left and right projectors. Single top quark production through FCNC interactions contains
48 subprocesses for both the tug and tcg channels, and the cross section is proportional to
(κtqg/Λ)2. Representative Feynman diagrams for the FCNC processes are shown in Fig. 8.
Since the influence of the FCNC parameters on the total top quark width is negligible for the
allowed region of FCNC parameters, the SM value for the top quark width is used in this
analysis. The COMPHEP generator is used to simulate of the signal tug and tcg processes. The
FCNC samples are normalized to the NLO cross sections using a K factor of 1.6 for higher-order
QCD corrections [75].

8.2 Exclusion limits on tug and tcg anomalous couplings

FCNC processes are kinematically different from any SM processes, therefore, it is reasonable
to train a new BNN to discriminate between FCNC production as the signal and the SM back-
ground, including the t-channel single top quark production. Owing to the possible presence
of a FCNC tug or tcg signal, two BNNs are trained to distinguish each of the couplings. The
variable choices for these BNNs, shown in Table 2, are motivated by analysis of the Feynman
diagrams of the FCNC and SM processes. The comparison of the neural network output for
the data and model is shown in Fig. 9. Output histograms from the tug and tcg FCNC BNN
discriminants for the SM backgrounds are used as input to the analysis. The posterior probabil-
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Figure 6: Combined
√

s = 7 and 8 TeV observed and expected exclusion limits in the two-
dimensional planes ( f L

V, | f R
V |) (top-left), ( f L

V, | f L
T |) (top-right), and ( f L

V, f R
T ) (bottom) at 68% and

95% CL.
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Figure 7: Combined
√

s = 7 and 8 TeV results from the three-dimensional variation of the cou-
plings of f L

V, f L
T , f R

T (left), and f L
V, f R

V , f R
T (right) in the form of observed and expected exclusion

limits at 68% and 95% CL in the two-dimension planes (| f L
T |, f R

T ) (left) and (| f R
V |, f R

T ) (right).

q̄′

q′

t

q̄

t

q̄

q′ t
q t

g

g q q
g g

Figure 8: Representative Feynman diagrams for the FCNC processes.
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Figure 9: The FCNC BNN discriminant distributions when the BNN is trained to distinguish
t → ug (upper) or t → cg (lower) processes as signal from the SM processes as background.
The results from data are shown as points and the predicted distributions from the background
simulations by the filled histograms. The plots on the left (right) correspond to the

√
s = 7

(8) TeV data. The solid and dashed lines give the expected distributions for t→ ug and t→ cg,
respectively, assuming a coupling of |κtug|/Λ = 0.04 (0.06) and |κtcg|/Λ = 0.08 (0.12)TeV−1

on the left (right) plots. The lower part of each plot shows the relative difference between the
data and the total predicted background. The hatched band corresponds to the total simulation
uncertainty. The vertical bars represent the statistical uncertainties.

ity distributions of |κtug|/Λ and |κtcg|/Λ are obtained by fitting the histograms. The combined√
s = 7 and 8 TeV observed and expected exclusion limits at 68% and 95% CL on the anoma-

lous FCNC parameters in the form of two-dimensional contours are shown in Fig. 10. The
two-dimensional contours reflect the possible simultaneous presence of the two FCNC param-
eters. Individual exclusion limits on |κtug|/Λ are obtained by integrating over |κtcg|/Λ and vice
versa. These individual limits can be used to calculate the upper limits on the branching frac-
tions B(t → ug) and B(t → cg) [76]. The observed and expected exclusion limits at 95% CL
on the FCNC couplings and the corresponding branching fractions are given in Table 4. These
limits are significantly better than those obtained by the D0 [22] and CDF [21] experiments, and
in previous CMS results, and are comparable to recent ATLAS measurements [23].

Table 4: Observed (expected) upper limits at 95% CL for the FCNC couplings and branching
fractions obtained using the

√
s = 7 and 8 TeV data, and their combination.

√
s |κtug|/Λ (TeV−1) B(t → ug) |κtcg|/Λ (TeV−1) B(t → cg)

7 TeV 14 (13) ×10−3 24 (21)×10−5 2.9 (2.4) ×10−2 10.1 (6.9)×10−4

8 TeV 5.1 (5.9) ×10−3 3.1 (4.2)×10−5 2.2 (2.0) ×10−2 5.6 (4.8)×10−4

7 and 8 TeV 4.1 (4.8) ×10−3 2.0 (2.8)×10−5 1.8 (1.5) ×10−2 4.1 (2.8)×10−4
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Figure 10: Combined
√

s = 7 and 8 TeV observed and expected limits for the 68% and 95% CL
on the |κtug|/Λ and |κtcg|/Λ couplings.

9 Summary
A direct search for model-independent anomalous operators in the Wtb vertex and FCNC cou-
plings has been performed using single top quark t-channel production in data collected by
the CMS experiment in pp collisions at

√
s = 7 and 8 TeV. Different possible anomalous con-

tributions are investigated. The observed event rates are consistent with the SM prediction,
and exclusion limits are extracted at 95% CL. The combined limits in three-dimensional scenar-
ios on possible Wtb anomalous couplings are f L

V > 0.98 for the left-handed vector coupling,
| f R

V | < 0.16 for the right-handed vector coupling, | f L
T | < 0.057 for the left-handed tensor cou-

pling, and −0.049 < f R
T < 0.048 for the right-handed tensor coupling. For FCNC couplings of

the gluon to top and up quarks (tug) or top and charm quarks (tcg), the 95% CL exclusion limits
on the coupling strengths are |κtug|/Λ < 4.1× 10−3 TeV−1 and |κtcg|/Λ < 1.8× 10−2 TeV−1 or,
in terms of branching fractions, B(t→ ug) < 2.0× 10−5 and B(t→ cg) < 4.1× 10−4.
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R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer,
A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, P. Papacz, T. Pook, M. Radziej,
H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer
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Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
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J.B. Sauvan, C. Schäfer, C. Schwick, M. Seidel, A. Sharma, P. Silva, M. Simon, P. Sphicas45,
J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns46,
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