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In simulations of a model with topological sectors, algaris which proceed in small update steps
tend to get stuck in one sector, especially on fine latticéss d@istorts the numerical results; in
particular it is not straightforward to measure the topatabsusceptibilityy:. We test a method to
measure; even if configurations from only one sector are availables based on the topological
charges in sub-volumes, which we denote as “slabs”. Thiblesahe evaluation of;, as we
demonstrate with numerical results for non-lineamodels and for 2-flavour QCD. In the latter
case, the gradient flow is applied for the smoothing of theggazonfigurations, and the slab
method results fox; are stable over a broad range of flow times.
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1. The topological susceptibilityx;
In models with topological sectors, a quantity of intereghie topological susceptibility

Xt = \% (@ -(Q?) ,  Q: topological charge V : volume (1.1)
We are going to address settings with parity invariance revgesimplifies due to/Q) = 0.

A prominent application is the Witten-Veneziano formulaaaguantitative solution to the U(1)
problem: for three massless quark flavours and Iagethe /N, corrections yieldy“®"*"%~
FZMZ, /6, whereFZ O N, andM7, [0 1/Ne. For QCD with dynamical quarks, there is a similar
relation to a putative axion mass and decay conspant, F2, M2 .. Hence the value of; (at
finite temperature) is relevant for the question whetherobttime axion is a valid Cold Dark Matter
candidate; for a review and recent lattice results,esgeRefs. [1].

Xt can only be determined non-perturbatively, hence numeameasurements in lattice sim-
ulations are appropriate. If a Monte Carlo history changestdpological sector frequently, it is
straightforward to measur&?) (once one has defined the topological charge of the lattinéigzo
urations). This is the case for instance in quenched QCDylabed with the heatbath algorithm at
lattice spacing > 0.1fm; an example is described in Ref. [2].

Another direct approach is to measure (in lattice unis} Sy (dodx), whereagy is the
topological charge density. This has been applied suadbssd 2+ 1 flavour QCD [3]. The
long-distance correlation function was fitted to an exptiteear combination of modified Bessel
functionsKy, where the phenomenological valueswyf andM,, were inserted.

As we decreasa, however, the topological sectors are separated by higlikhigher potential
barriers. Then an algorithm which performs small updatesstends to get stuck in one topological
sector for a very long (computation) time. According to Rdl, the autocorrelation time with
respect tdQ, To, in simulations of SU{) Yang-Mills theories (with the Wilson lattice action, and
alternating overrelaxation and heatbath steps), is cabipatith an exponential growth, or a high
power, in ¥a. For QCD, Ref. [5] observed a behaviddr(1/a)* with z~ 5 in the quenched case,
and similar with dynamical quarks, represented@j)-improved Wilson fermions (thoughis
less accurate). Dynamical chiral quarks make the growtiy @ven worse.

One way to deal with this issue is to modify the algorithm stiwdit changes o) become
more frequent; such efforts are reviewed in Ref. [6]. A didf& approach suggests the use of
open boundary conditions in Euclidean time [7], which reemthe topological sector§ € R,
but it breaks lattice translation invariance. Here we aslliget another concept, which aims at
determiningy; even from data in one fixed (“frozen”) topological sector.

One approach which — in principle — could be used for this pagpis an approximation for
some expectation valug’), if only measurements in fixed secto(g)|q, are available [8],

const Q?
(@)= (0)+ - (1—\/—)&) . (1.2)
This is the beginning of an expansion iff(¥ x;) = 1/(Q?), extensions are discussed in Refs.
[9,10]. Once we have a set of results far)|q, in differentV and|Q|, a fit provides values for the
unknown (intensive) quantities?’), x; and the const. A detailed numerical study [10], in a variety
of models, shows that this works quite well for the deterriamaof (¢) if suitable conditions are
fulfilled®, but the results foy; are plagued by large uncertainties.

Mypically (Q?) > 1 is required, and one should only involve sectors with si@ll
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More successful for the determination yaf— though exclusively devoted to that purpose —

is an approximation derived in Ref. [11] (in a way similar tefR8]),
QZ
th> '

One measures the left-hand side and searches for a platéhe obrrelation function over long
distances. This determingg, under conditions similar to footnof¢ 1. The problem is tsotee
tiny plateau values as the volume increases, but their sapjan can be compensated by computing
all-to-all correlations [12].

Here we discuss yet another, particularly simple approadiich we denote as the “slab
method”.

2. The slab method

The idea of the slab method was first mentioned in Ref. [13]randntly tested in the frame-
work of g-models [14] and in two flavour QCD [15]. There is some sinijewith the method of
Ref. [16], and with an instanton-liquid consideration inf R&7].

We assume a Gaussian distribution of the topological chait@) 0 e~ ?/(2xV) which is
approximately confirmed, see below. Next we split the voldirto sub-volumes of sizes/ and
(1-x)V (0< x < 1) — which we denote aslabs— as illustrated in Fig[]1. For a configuration
with total topological charg®, the slabs carry chargesandQ — g (obtained by summing up the
density). Note thatj andQ — g do not need to be integers, because the face between thesséabs
non-periodic boundary. At fixed, x andQ, the probabilitiesa,, p, for the slab charges obey

o (Q—0)? 1 q°
p1(a) - P2(Q—q) U exp(— 2xth> -exp(— 2xtV(1—x)> O exp(— AV x(l—x)) , (2.1)

<QOQX>|\Q\.Iarge\x| = _é (1 (1.3)

whereq := q—xQ, and from(q) = xQwe infer (¢/?) = (q2) — x2Q?. The idea is to measure?)
(and (q’2>) at variousx. A fit of the x-dependence to the expected parabola yields a valug.for
v Q

xV 1-x) Vv

Figure 1: Division of a volumeV into slabsof sizesxV and(1— x)V, with topological chargeg, Q—qg < R.

3. Results
3.1 Quantum rotor

We start with high-precision results for the quantum rotorld XY model, or 1d O(2) model)
[14]. Each site of a periodic lattice in Euclidean time casran angular variablg, and we define
the topological charge geometrically,

QoI = 57300 Aq = (@2~ @) mod 2re (7. 31)
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We consider three lattice actions,

0 |A@|<od vt
400 otherwise

Sstandar(ﬁq’] = B Z(l_ COS(A(R)), Sl\/lanton[q)] = g Z(A(R)zy S:onstrain{(p] = {

Typical results forg?) and(qf ) are shown in Fig]2. In each case they match the expectedgsarab
to high accuracy; this parabola conne2)|x_o = 0 with (¢?)|x_1 = Q?, and(¢/ *)|x_o = O with
(¢ ?)]x=1 = 0; the latter is predicted dsy;x(1— x).
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Figure 2: Left: (q?) measured foBstandard(L = 400, B = 4) in the sector$Q| = 0, 1, 2. Centre/right}(g?)
and(q’2> for Sconstraint (L = 100, 8 = 211/3) at|Q| = 1 (centre) andQ| = 2 (right).

Now we consider the results for the scaling quargit§, whereé is the correlation length. For
all three lattice actions the value is known analyticallg,[19] in the thermodynamic limit, — co.
The plots in Fig[B illustrate the convergence towards tivesiges (horizontal lines) at fixel, for
increasing size. This convergence is manifest, but sloyaiticular for the standard action there
are permille level finite size effects evenla€ > 30; these effects are enhanced for increa|g

1d O(2), Standard action, =4, £=6.8 1d O(2), Manton action, =2, £=4.0
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Figure 3: The finite size scaling of; ¢, for the standard action #t= 4, and for the Manton action fit= 2.

3.2 Heisenberg model

We proceed to the 2d Heisenberg model, or O(3) model. Herésttading term”, x; &2,
diverges logarithmically in the continuum limit, seeg.Ref. [19]. Hence we consider jugt at
finite & (in lattice units). Again we apply the geometric definitiar € [20], and we consider the
three lattice actions, which are analogous to SubsectibnFg.[} shows that the results are very
close to the directly measured valuesygfthose are precise in this case, thanks to the use of the
Wolff cluster algorithm, which avoids topological freeginThe data are given in Ref. [14].

We also consider the kurtosis,

s = o (3@ (@) (3.2)
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Figure 4: Data for the 2d O(3) model i = 48 and 64: each quadruplet of points shows (from left to
right) the directly measureg, and the values obtained by the slab method in the sel@bes 0, 1, 2.

which represents a measure of the deviation from a Gausistidtion (wherec, vanishes). Fig.
H shows the convergence of the (dimensionless) matig; in the continuum limit towards- —1,
the value for a dilute instanton gas; this is best visibletfier Manton actio. Comparing the two
plots in Fig[b suggests that — in this regime — the volume lyaatfects the ratiac/ x;.2
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Figure 5: Dependence af4/ x: on the correlation lengt8, for different lattice actions and volumes.

3.3 2-flavour QCD

Finally we proceed to 2-flavour QCD, formulated with the Wilsgyauge action. The topolog-
ical charge density is constructed from the standard éfield strength tensor. After smoothing,
> x0x is slightly re-scaled (for optimal proximity to integerg)4nd then rounded tQ € Z.

For the quarks we used twisted mass fermions (full twiste lmaass M15), which leads to a
somewhat heavy pion madd;; ~ 650 MeV (here we are only interested in testing the slab ntgtho
The statistics involved 20000 configurationsMn= 16° x 32 (and slab volumes #6< 32x and
16° x 32(1—x)) at B = 3.9, which implies a lattice spacing af~ 0.079fm.

Smoothing was performed by the gradient flow (or Wilson flowhis case), with Runge-Kutta
integration in the flow time (step sizes 0.01 and 0.001 yield consistent results). Taeerece point
proposed by Luscher [22§5(E) piaquette= 0.3, requires the flow time = 2.42.

Fig.[6 (left) shows data fo(q’2> from |Q| =0, 1, 2, after flow timet = 5t [15]. At extreme
values, x>0 andx<1 (where thin slabs are involved), the data deviate from alpdic shape.

2In d = 1 the Manton action is classically perfect [18], which ekmits excellent scaling behaviour. Apparently

its 2d version was used first in Ref. [14], and it has favolwegibperties as well.

3This quantity has been investigated extensively in 4d SY&B)g-Mills theory, see.g.Refs. [21]. According to
the latest studies,/ xt converges of to a small but finite value aroun@.26 in the continuum and infinite volume limit.
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Figure 6: Left: (¢ 2) in 2-flavour QCD, aftet = 5tp, in |Q| < 2, and a global fit. Right: data and fits for the
AFHO method [11], cf. eq[(1]3).

This effect, caused by smoothing, is exponentiak-ad we observed: |deviation] exp(—c(t)x).
Therefore we focus on the interval20< x < 0.8, and perform a joint fit — of all data fdQ| < 2
— to the shifted parabola

(%) =V xex(1—X) + const (3.3)

which is shown in Fig[]6. This fit works well, and it yields auésfor x;, which perfectly agrees
with a direct measurement, and with the result of the AFHCho@{11] (cf. Section 1),

7.76(20)-10°° direct
xa' =< 7.63(14)-10°  slab method fotQ| < 2 (3.4)
7.69(22)-10° AFHO method forlQ| < 2.

Regarding the AFHO method, which refers to formla](1.3% t¢orrelations of the topological
charge density and the plateau values (after flow timesty) are shown in Fig[]6 on the right.

Fig. [T (left) illustrates the evolution dty %) for flow timety ... 5to, in the sector withQ = |1|
(as an example). Longer flow time reduces the statisticar&fthe configurations are smoother),
but the deviations at the extreme valuescafre enhanced, and the additive constant in feg. (3.3)

becomes more negative. This constant is required here  Imaisi not been anticipated in the
3
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Figure 7: Left: (q’2> in 2-flavour QCD atQ| =1, at flow timeg =ty...5tp. Even in the range=ty... 8to,
the value forx;a* - 10° — from a fit to eq. [3]3) — is stable within errors.§. b : 7.70(20), 2to : 7.69(21),
4ty : 7.67(18), 6tp : 7.80(18), 8t : 7.90(20)). Right: the additive const. of ed. ($.3) as a functio.of

t/t

slab formula [[2]1). The plot in Fig] 7 on the right shows thasiconsistent with a behaviour
const [0 1/t, which corresponds to a diffusion process. If we fit the datthé ansatz;+/t + c,,
we obtainc, = 0.003(18), which confirms that this constant (practically) vanishiets=a0.
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4. Conclusions

The slab method is a simple and robust procedure to meggswréhin a fixed topological
sector. Hence it is not affected by “topological slowing adywand it hardly costs any computing
time, but there are persistent finite size effects (they termk polynomial at fixed topology [8—12,
14]). It works best at smalQ|, which is also the case for the alternative fixed topologyhoes
of Refs. [8, 11]. In contrast to them, however, thrdy assumption needed for the slab method is a
Gaussian distribution of the topological charges, whicli$ito a very good approximatidhn.

We reviewed successful tests inND(models [14] and in 2-flavour QCD [15]. In the 2d O(3)
model we obtained correct results fprto %-level, and in the 1d O(2) model far beyond. In 2-
flavour QCD, %-level precision is attained as well, afterdggat flow timest =tp...8tg. Here an
additive constant is required in the fit, and one has to exctudall intervals ok close to 0 and 1.
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