
Caching Servers
for ATLAS*
CHEP 2016 San Francisco
October 10-14, 2016

1

Rob Gardner
University of Chicago

Ilija Vukotic
University of Chicago

Wei Yang
SLAC

Andy Hanushevsky
SLAC

(*) Work in collaboration with Matevz
and Alja Tadel (UC San Diego, CMS)

Why Caching?

● Many small sites have limited storage capacity and
spend a great deal of time managing datasets
downloaded from the grid

● Meanwhile the capacity of the Tier1, Tier2 sites has
increased significantly and already host the most
popular datasets and are directly accessible via FAX

● Most analysis datasets are read multiple times
● Can also use proxy caches in front of opportunistic

computing sites which do not have managed storage
2

Xrootd Caching Proxy Concept

3

● Provides disk-based cache for WAN access:
○ performs read-ahead to reduce latency
○ avoids WAN access on subsequent access.

● Use fixed-size blocks between 32kB and 4MB

● Opening files
○ Cold cache: remote open through FAX
○ Warm cache: open the file from local disk

■ Remote read only happens if not block not local

● Read, Vector Read
○ If in local RAM/disk => serve from RAM/disk
○ Otherwise request from remote and:

■ Serve to client and write to disk cache via write queue (remains in
RAM until written to disk)

■ All read requests padded to align with cache blocks

Operating Modes

4

Authentication

● Local
○ Any method supported by XRootd

● Remote
○ Proxy uses GSI to authenticate itself to FAX

5

Some details about the service

● cinfo file: stores details about downloaded blocks and
local accesses.

● Prefetching: the proxy can issue advance read requests
to reduce RTT latency (optional).

● Decision plugin: allows users to configure which parts
of namespace are to be cached.

● Cache purging: high/low watermark algorithm used to
start/stop purging.

6

Stress Testing at SLAC Tier3 Cluster

● Caching server (Dell R730xd)
○ Single Intel Xeon CPU E5-2643 v4 @ 3.40GHz (6 physical cores)
○ 128GB memory
○ Intel X540 10Gbps NIC
○ H730 raid controller
○ 12x 2TB 7200rpm HDD in raid-0

● Configured block size of 1MB
● Caching server memory limit set to 30 GB
● 750 concurrent jobs; 35 Gbps to WAN

7

Stress testing, cont.
 We prepared a list of ~5000 files, all reside at BNL-OSG2_LOCALGROUPDISK.
Each job had the following characteristics:
1. Randomly select a file from the list
2. Randomly determinate the number of reads from the file (0 - 1024), offset

(starting position) of each read, and the length of each read (0 - 128KB).
3. Data read from network are discarded and the next read follows

immediately.
4. Repeat 1-3 for each file
5. All jobs start at about the same time, with run limit of 2.5 hours.

In the stress test, the offset of each read is completely random. In a realistic
use case, though they generally move from the start to end of the file.

8

Stress testing, cont.
We conduct three sets of batch jobs:
1. Read directly from BNL over the WAN.
2. Read from the SLAC cache when it is completely cold (this warms up the

cache)
3. Read from a "warm" cache.

Note:
● We are not necessarily looking to see if we can outperform reading from

directly from remote source (BNL storage has thousand of disks)
● We look the functionality of the cache, and whether we can reach the full

potential of the cache’s hardware (thus what we need to outperform
reading directly from the remote data source).

9

Stress test 1: direct WAN
The following is a networking
traffic plot of the dedicated
cluster. The green line shows
the data coming to the
cluster directly over the
WAN.

The output also shows that
on average, each job was
able to “complete” about 100
files during the 2.5 hour run
time.

10

Stress test 2: cold cache
The following is a networking
traffic plot of the proxy
cache.
The green line shows the
data coming from the remote
data source.

The blue line shows the data
sent to the batch jobs. On
average, each job completes
~80 files in the 2.5 hour run
time (delivering ~ 250 MB/s)

11

Stress test 3: warm cache
As the cache warms, some
data are read from the
cache’s disk storage rather
than reading from the remote
data source.

While performance is limited
to disk I/O, the result is a
reduction of needed WAN
bandwidth from the site

12

Testing with Realistic Analysis Jobs

To get a flavor of cache performance with
actual ATLAS analysis jobs, we built a caching
server and placed it in front of ANALY_MWT2
and directed "overflow" brokered jobs through
it (i.e. jobs originally scheduled to another site,
rebrokered to MWT2 due to long queue times,
with input data left in place at the original site).

13

Tier2 Analysis Cache Setup
The test caching server is a Dell R730xd E5-2650 v3 @ 2.30GHz, 40 core, 96GB
RAM, 10 Gbps NIC, connected to the WAN via a Juniper EX9206 router at 80
Gbps. The storage setup is as follows:

● (10) 8TB disks in RAID-0
● Deadline scheduler selected for the kernel
● nr_requests block tunable set to 1024 (I/O request queue size, default 128)
● 5120 KB read-ahead
● Disk cache policy enabled, using 2GB NVRAM on RAID controller
● Controller set to read ahead & write back modes.

The caching software is configured to run in file block caching mode with
block size of 256kB. We allow up to 48GB of memory to be used by the cache
software as buffer. When a requested data block is not found in the cache, it
reads from FAX.

14

Tier2 Analysis Cache Testing

15

Number of jobs Bytes read

Files read Open files

WAN data accesses
from re-brokered
analysis jobs cached
by the XRootd proxy
cache

Tier2 Analysis Cache Testing Results

16

Initial cold cache filling while
delivering data to worker nodes:

Later: data re-use results in
cache hits and less traffic on
the WAN

<-- Cache hits

Green: data from WAN Blue: data to clients

Conclusions

● Disk caches offer a flexible and efficient data delivery
mechanism for ATLAS distributed processing

● Development of XRootd caching software in the past
year is becoming sufficiently robust for use in
production analysis environments

● Will be useful for Tier3, Tier2-WAN, opportunistic, and
cloud processing

● These will be highly performant caches and can scale
to available bandwidth by clustering

17

Thank you!

18

