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1. Introduction2

Quarks and leptons in the Standard Model (SM) of particle physics are organized in flavours.3

Changes between flavours can only occur through the charged current weak interaction—that4

is, mediated by a W boson—and transitions between same-charge fermions must occur through5

second order, loop processes [1]. Since the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing6

matrix [2, 3], which governs transitions between flavours, is found to be approximately diagonal,7

generation-changing processes are suppressed. As a consequence, processes involving flavour8

changing neutral currents (FCNC) are predicted to be rare within the SM.9

Observables related to these decays—branching fractions, CP asymmetries, kinematic distribu-10

tions, among others—can be predicted in the SM with low theoretical uncertainty. Many models11

of New Physics (NP) predict noticeable differences in the measured quantities, making the study12

of rare decays of flavoured hadrons an ideal laboratory for studying physics Beyond the Standard13

Model. In particular, loop-mediated processes allow indirect access to quantum corrections from14

degrees of freedom at larger scales and provide excellent complementarity to direct searches of new15

phenomena.16

FCNC transitions with |∆B|= |∆S|= 1 are described by a low energy effective field theory in17

the form of an Operator Product Expansion [4–6]:18

Heff =−
4GF√

2
VtbV ∗ts

α

4π
∑

i

{
CiOi +C′iO

′
i
}
, (1.1)

where GF is the Fermi constant, Vi j are CKM matrix elements and αe is the fine structure constant.19

The O(′)
i local operators take into account all possible left(right)-handed Lorentz structures and come20

with their corresponding Wilson coefficients C(′)
i . The fact that the charged current interaction is21

left-handed implies that the Wilson coefficients corresponding to the right-handed O′i operators are22

suppressed by O(ms/mb).23

The most important operators for the study of rare b→ sγ , b→ s`+`− and b→ `+`− decays1
24

are25

O(′)
7 =

mb

e
s̄σ

µνPR(L)bFµν ,

O(′)
9 = s̄γµPR(L)b ¯̀γµ`,

O(′)
10 = s̄γµPR(L)b ¯̀γµ

γ5`,

O(′)
S = s̄PR(L)b ¯̀̀ ,

O(′)
P = s̄PR(L)b ¯̀γ5`,

(1.2)

where PL(R) denotes the left(right)-handed chiral projector and Fµν the electromagnetic field strength26

tensor. Radiative b→ sγ transitions are controlled by the photon penguin operator O(′)
7 ; semileptonic27

b→ s`+`− processes receive contributions from O(′)
7 and the electroweak penguin operators O(′)

928

and O(′)
10 ; and the fully leptonic b→ `+`− decays are ruled by O(′)

9,10 and the scalar and pseudoscalar29

penguin operators O(′)
S and O(′)

P .30

1b→ dγ and b→ d`+`− transitions are treated analogously, but are more suppressed due to the replacement of VtbV ∗ts
by VtbV ∗td in Eq. 1.1.
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Figure 1: Feynman diagrams of the B0
s→ µ+µ− and B0→ µ+µ− decays.

Effects from NP can be easily incorporated in Eq. 1.1 by adding an extra term for each operator31

H NP
eff = ∑

i

CNP
i

Λ2
NP

ONP
i , (1.3)

where ΛNP is the NP scale.32

Measurements of different observables and decay modes can then be combined in global fits33

of Wilson coefficients and used to constrain NP contributions in FCNC. Hence, the strategy in the34

indirect searches for NP in rare decays is to perform many measurements, study their discrepancies35

and agreements with the SM through global fits, and try to solve the puzzle: how do we explain all36

these results in a single model, i.e., which is the structure of the model beyond the SM?37

The current situation in terms of rare decay results and the constraints they impose on NP are38

discussed in the next sections.39

2. Fully leptonic b→ `+`− decays40

The dileptonic B0
s→ µ+µ− and B0→ µ+µ− decays are suppressed due to their loop only41

diagrams, the involved CKM matrix elements and the particular helicity structure of a pseudoscalar42

decaying into a pair of leptons (Fig. 1), and thus are very rare in the SM. More precisely, the43

time-integrated branching fractions are predicted to be [7]44

B(B0
s→ µ

+
µ
−) = (3.66±0.23)×10−9,

B(B0→ µ
+

µ
−) = (1.06±0.09)×10−10,

(2.1)

where the main uncertainties come from the knowledge of the decay constants and the CKM matrix45

elements. Several NP models including sizeable scalar or pseudoscalar operators can enhance the46

branching fractions of one or both the B0
s and the B0 modes [8], as shown in Fig. 2.47

Culminating a story started more than thirty years ago by the CLEO collaboration [9], the48

LHCb and CMS collaborations performed a combined analysis of the data collected during Run I,49

and reported the first observation of B0
s→ µ+µ− with a significance of 6.2σ and an evidence for50

B0→ µ+µ− at 3σ . The measured branching fractions [10]51

B(B0
s→ µ

+
µ
−) = (2.8+0.7

−0.6)×10−9,

B(B0→ µ
+

µ
−) = (3.9+1.6

−1.4)×10−10,
(2.2)

are compatible with the SM at 1.2σ and 2.2σ , respectively, as shown in Fig. 3. Despite this fact,52

these results are very important as they put strong constraints on NP scenarios [11].53
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Figure 2: Correlation between the branching ratios of Bs ! µ+µ� and Bd ! µ+µ�

in MFV, the SM4 and four SUSY flavour models. The gray area is ruled out experi-
mentally. The SM point is marked by a star.

3.2 Bs ! µ+µ� vs. Bd ! µ+µ�

The correlation between the decays Bs ! µ+µ� and Bd ! µ+µ� is an example of a
“vertical” correlation mentioned in section 2. Beyond the SM, their branching ratios
can be written as

BR(Bq ! µ+µ�) / |S|2
�
1 � 4x2

µ

�
+ |P |2, (5)

S = Cbq
S � C 0bq

S , P = Cbq
P � C 0bq

P + 2xµ(Cbq
10 � C 0bq

10 ) , xµ = mµ/mBs . (6)

Order-of-magnitude enhancements of these branching ratios are only possible in the
presence of sizable contributions from scalar or pseudoscalar operators. In two-Higgs-
doublet models, the contribution to Cbq

S from neutral Higgs exchange scales as tan �2,
where tan � is the ratio of the two Higgs VEVs. In the MSSM, the non-holomorphic
corrections to the Yukawa couplings even enhance this contribution to tan�3.

Figure 2 shows the correlation between BR(Bs ! µ+µ�) and BR(Bd ! µ+µ�)
in MFV, the SM4 and four SUSY flavour models¶ analyzed in detail in [10]. The
MFV line, shown in orange, is obtained from the flavour independence of the Wil-
son coe�cients, cf. eq. (3). The largest e↵ects are obtained in the SUSY flavour
models due to the above-mentioned Higgs-mediated contributions. While in some

¶The acronyms stand for the models by Agashe and Carone (AC, [13]), Ross, Velasco-Sevilla
and Vives (RVV2, [12]), Antusch, King and Malinsky (AKM, [11]) and a model with left-handed
currents only (LL, [14]).

5

Figure 2: Correlation between the branching fractions of B0
s → µ+µ− and B0→ µ+µ− in several NP

models [8]. The grey area was the one excluded experimentally before the LHC.
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Figure 3: Likelihood contours in the B(B0
s→ µ+µ−) vs B(B0→ µ+µ−) plane (a), with variations of the

−2∆ lnL test statistic for each of the modes shown in (b) and (c) [10].

The ATLAS collaboration has also found compatible results with CMS and LHCb [12]:54

B(B0
s→ µ

+
µ
−) = (0.9+1.1

−0.8)×10−9,

B(B0→ µ
+

µ
−)< 4.2×10−10 at 95% C.L..

(2.3)

3. Semileptonic b→ s(d)`+`− decays55

Semileptonic b→ s(d)`+`− decays have been extensively studied at the LHC, where the signal56

yields of many modes are large enough for precision measurements. Results on differential branching57

fractions and angular distributions, as well as ratios between muonic and electronic decays, have58

provided many constraints on NP and have yielded interesting tensions with the SM, and will be59

discussed in the following.60

Differential branching fractions The LHC measurements of the branching fractions of B→61

Kµ+µ− [13], B→ K∗µ+µ− [13–16], B0
s→ φ µ+µ− [17] and Λ 0

b → Λ µ+µ− [18], performed in62
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Figure 4: Differential branching fraction in bins of q2 of the B+→ K+µ+µ− (top left), B0→ K0µ+µ− (top
right) and B+→ K∗+µ+µ− (bottom) decays as measured by LHCb [13]. Theoretical predictions obtained
with LCSR [19] and lattice QCD [20, 21] calculations are shown for comparison.

bins of the dilepton mass squared (q2), are much more precise than the corresponding theoretical63

predictions, sensitive to hadronic uncertainties in the form factors. These theoretical uncertainties,64

typically of the order of 30%, limit the sensitivity to NP, but are expected to improve in the future65

with progress from lattice QCD.66

While some precision results from the large datasets collected by LHCb point towards lower67

values than the SM prediction in some cases, as shown in Figs. 4 and 5, the measurements are68

in general compatible with the SM prediction. The branching fractions of the B0→ K∗0µ+µ−,69

measured both by CMS [15, 16] and LHCb [14], and the Λ 0
b→Λ µ+µ− decays, affected by large70

form factor uncertainties, don’t show any deviations from the SM prediction, as shown in Figs. 671

and 7. The latest LHCb result on B0→ K∗0µ+µ− [14] is the first one to include a measurement of72

the S-wave component in the K+π− system, in contrast with previous studies, which considered73

it small and treated it as a systematic uncertainty. As the theory predictions are made for purely74

resonant P-wave, an accurate assessment of the S-wave fraction is critical, and, as can be seen on75

the left plot in Fig. 7, agreement between the measurement and the SM prediction from lattice QCD76

is good.77

As a complement to the measurement of b→ s`+`− transitions, b→ d`+`− decays, suppressed78

by |Vtd/Vts|2, allow to test whether NP—if any—is minimally flavour violating (MFV). The LHCb79

collaboration has the B+→ π+µ+µ− [26] and has found good compatibility with the SM predictions,80

as can be seen in Fig. 8, with the uncertainty in the result still dominated by statistics. Further81

improvements in this study, as well as observations of more b→ d`+`− modes, are expected in the82
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Figure 5: Differential branching fraction in bins of q2 of the B0
s→ φ µ+µ− decay as measured by LHCb [17].

The SM prediction with LCSR [22, 23] is overlaid in purple and magenta for different q2 binning schemes,
while the LQCD prediction for high-q2 is showed in cyan [21].

Figure 6: Differential branching fraction in bins of q2 of the Λ 0
b→Λ µ+µ− decay as measured by LHCb [18].

The plot, obtained from Ref. [24], shows an updated SM prediction from lattice QCD with respect to that
included in Ref. [18].

coming years.83

Angular distributions The angular distributions of b→ s`+`− decays provide a large number of84

observables with different sensitivities to different types of NP. In particular, each of the observables85

arising from the angular distributions—or combinations thereof—has a different dependence on the86

Wilson coefficients—mainly C(′)
7 , C(′)

9 and C(′)
10 —and form factors.87

The B0→ K∗0µ+µ− angular distribution depends on three angles: the direction of the µ+ (µ−)88

with respect to the B0 (B0) in the dimuon rest frame (θl), the direction of the kaon with respect to89

the B in the Kπ system rest frame (θK), and the angle between the dimuon plane and the Kπ system90
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Figure 7: On the left, differential branching fraction in bins of q2 of the B0→ K∗0µ+µ− as measured by
CMS, LHCb, the B factories and CDF, taken from Ref. [16]. On the right, latest differential branching
fraction LHCb result in bins of q2 of the purely resonant B0→ K∗0µ+µ− decay, after measuring the S-wave
component [14]; the overlaid theory prediction is from Refs. [23, 25].
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Figure 8: Differential branching fraction in bins of q2 of the B+→ π+µ+µ− decay as measured by
LHCb [26], compared with the APR13 [27], HKR15 [28] and lattice QCD FNAL/MILC15 [29] SM predic-
tions.

plane (φ ). The CP averaged differential decay rate in terms of these angles and q2 can be written as:91

1
d(Γ+ Γ̄)/dq2

d4(Γ+ Γ̄)

dq2 d~Ω
=

9
32π

[
3
4(1−FL)sin2

θK +FL cos2
θK

+1
4(1−FL)sin2

θK cos2θ`

−FL cos2
θK cos2θ`+S3 sin2

θK sin2
θ` cos2ϕ

+S4 sin2θK sin2θ` cosϕ +S5 sin2θK sinθ` cosϕ

+4
3 AFB sin2

θK cosθ`+S7 sin2θK sinθ` sinϕ

+S8 sin2θK sin2θ` sinϕ +S9 sin2
θK sin2

θ` sin2ϕ

]
,

(3.1)

where Si, FL (fraction of longitudinal polarization of the K∗0) and AFB (forward-backward asymmetry92
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Figure 9: Forward-backward asymmetry of the dimuon system, AFB, (left) and fraction of longitudinal
polarization of the K∗0 mesons, FL, (right) in B0→ K∗0µ+µ− decays in bins of q2 as measured by the CDF,
BaBar, Belle, CMS and LHCb collaborations, taken from Ref. [34]. The SM prediction is obtained from
Ref. [23].
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Figure 10: The optimized angular observable P′5 in bins of q2 as measured by LHCb and Belle, overlaid with
the SM prediction from Ref. [36].

of the dilepton system) are the observables to be measured. It is possible to build theoretically93

cleaner observables by combining helicity amplitudes to exploit cancellations. In particular, the P′i94

set of observables [30], such as95

P′5 =
S5√

FL(1−FL)
, (3.2)

focuses on reducing the dependence on form factors, thus reducing the theoretical uncertainty.96

While the measurements of the standard B0→ K∗0µ+µ− angular observables performed by97

CDF [31], BaBar [32], Belle [33], CMS [16] and LHCb [34] have been found to be compatible with98

the SM (see Fig. 9), the optimized P′5 observable, measured by LHCb and Belle [35], presents a99

large local discrepancy between data and the SM prediction, shown in Fig. 10, at the level of 3.7σ .100

Measurements of simplified angular distributions in bins of q2 carried out by LHCb in the101

B0
s→ φ µ+µ− [17] and Λ 0

b→Λ µ+µ− [18] decays don’t show large deviations from the SM, and102
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Figure 11: Fraction of longitudinal polarization of the K∗0 mesons, FL, S3, S4 and S9 distributions in
B0

s → φ µ+µ− decays in bins of q2 as measured by LHCb [17]. The SM prediction is obtained from
Refs. [22, 23].
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Figure 12: Forward-backward asymmetry of the dimuon system, Al
FB, (left) and forward-backward asymmetry

of the hadron system, Ah
FB, (right) in Λ 0

b→Λ µ+µ− decays in bins of q2 as measured by LHCb [18]. The SM
prediction is obtained from Ref. [37].

can be seen in Figs. 11 and 12, respectively.103

Additionally, the LHCb collaboration has studied the angular distribution of the B0→ K∗0e+e−104

decay in the low-q2 region [38], performing some angular transformations to reduce the number of105
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angular observables on account for the limited signal yield. The obtained results,106

FL = 0.16±0.06±0.03,

ARe
T = 0.10±0.18±0.05,

A(2)
T =−0.23±0.23±0.05,

AIm
T = 0.14±0.22±0.05,

(3.3)

are compatible with the SM predictions [39,40] and help constrain the C(′)
7 Wilson coefficient thanks107

to the low lepton mass.108

Global fits With the wealth of measurements produced at the LHC, including some tensions with109

the SM predictions, it becomes possible to gain insight on possible NP contributions to the Wilson110

coefficients through the combination of these measurements, i.e., performing global fits of b→ s111

observables. Taking into account more than eighty observables from b→ `+`−, b→ s(d)`+`− and112

b→ sγ transitions, measured by six experiments, most global fits [41–44] prefer a negative NP113

contribution C9 ∼−1, with other NP parameters consistent with zero, as shown in Fig. 13. While114

this destructive contribution would better accommodate the data by reducing the branching fraction115

of b→ s(d)µ+µ− decays and modifing the angular distribution of B0→ K∗0µ+µ− to be more116

consistent with the P′5 measurements, it is worth noting that these fits are still compatible with the117

SM prediction at 3−4.6σ .118

Further measurements b→ s`+`− transitions, in particular of angular observables, with the119

LHC Run II dataset, will be crucial in the clarification of the real nature of this tension—currently120

one of the most significant in flavour physics.121

Lepton flavour universality Another interesting tension with the SM, complementary to those122

described above, arises from the studies of lepton flavour universality. In the SM, with the exception123

of the Higgs boson, particles couple equally to different lepton flavours. As a consequence, ratios of124

decay rates such as125

RK =
B(B+→ K+µ+µ−)
B(B+→ K+e+e−)

, (3.4)

are expected to be very close to unity, save from very small Higgs penguin contributions and126

difference in phase space due to the lepton mass. The LHCb collaboration has measured RK in127

the 1 < q2 < 6GeV2/c4 range to be 0.745+0.090
−0.074 (stat)±0.036(syst) [45], 2.6σ away from the SM128

prediction of RK = 1.0003±0.0001 [46]. While the significance of this discrepancy is not enough129

to be considered even as evidence, the combined 4.0σ enhancement, shown in Fig. 14, of τ with130

respect to µ in tree-level B+→ D(∗)`+ν` decays observed by BaBar, Belle and LHCb [47], has131

prompted great theoretical interest in these types of measurements.132

Interpretation While the results discussed so far are basically compatible with the SM picture, a133

pattern of NP seems to start emerging in flavour physics, with two different sets of anomalies in134

b→ s transitions: angular distributions of b→ s`+`− decays and lepton flavour universality violation.135

These point to a preference for sizable NP in vector leptonic couples and lepton non-universality,136

leaving room for the contribution of non-SM right-handed currents and, thus, a non-MFV flavour137

sector.138
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Figure 13: Results from the global fits to b→ s observables: the top left plot, from Ref. [41], shows the
C9−C′9 plane, including NP contributions, with the SM prediction represented as a black dot; on the top right,
taken from Ref. [42] one can see the one- and two-sigma contours of the relative NP contributions in C9 and
C10, with the SM being at (0,0); the bottom left plot, from Ref. [43], shows, in red, directly the contours of the
value of the NP contributions in C9 and C10, highlighting as well the contributions coming only from angular
observables (blue) and branching fractions (green); the bottom right plot, taken from Ref. [44], shows, in
blue, the contours of the real values of the NP contributions in C9 and C10, also highlighting the contributions
coming only from angular observables (red) and branching fractions (green).

Several types of models have been built to explain these hints of anomalies, including the139

existence Z′ bosons [54,55] or leptoquarks [56,57], as well as the gauged Lτ−Lµ SM extension [58,140

59]. There exists, however, concern in the theory community about to which extent the long-141

distance contributions from cc resonances pollute the observables and how factorisation holds in142

this case [60]; it is hard to answer those concerns from first principles, so it is necessary to use143

models to try to measure the size of the cc pollution. While this could affect the uncertainty of144

the SM prediction in the case of angular observables, reducing the significance of the anomalies,145

measurements such as RK are mostly free of this type of hadronic uncertainties.146

10



P
o
S
(
L
H
C
P
2
0
1
6
)
0
3
5

Rare decays of flavoured mesons at the LHC Albert Puig

R(D)
0.2 0.3 0.4 0.5 0.6

R
(D

*)

0.2

0.25

0.3

0.35

0.4

0.45

0.5
BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015)
LHCb, PRL115,111803(2015)
Belle, arXiv:1603.06711

) = 67%2χHFAG Average, P(
SM prediction

 = 1.02χ∆

R(D), PRD92,054510(2015)
R(D*), PRD85,094025(2012)

HFAG
Prel. Winter 2016

Figure 14: One sigma contour (red) of the combination of the BaBar (black) [48], Belle (green and dark
blue) [49, 50] and LHCb (cyan) [51] results of the ratio of tauonic and muonic channels in B+→ D`+ν` and
B+→ D∗`+ν` decays, taken from Ref. [47], with the SM prediction from Refs. [52, 53] overlaid in magenta.

4. Other rare decays147

Rare charm decays The short-distance contributions to rare c→ u transitions are very small due148

to the stronger GIM suppression (mb << mt), so rare charm decays are dominated by long-distance149

contributions.150

While the current state of measurements, shown in Fig. 15, is still not close to the SM predictions,151

typically of <O(10−9), large improvements on the limits have been achieved at the LHC. In particu-152

lar, LHCb has significantly improved the limits in the searches for the FCNC D0→ π+π−µ+µ− [61],153

D0→ µ+µ− [62] and D+
(s)→ π+µ+µ− [63] decays, and the LFV D0→ e±µ∓ decay [64]. Addi-154

tionally, it has performed the first observation of the D0→ K−π+µ+µ− decay in the ρ-ω region155

in µ+µ− mass [65], necessary to understand the long-distance, tree-level contributions of vector156

resonances to the rare D→ Xµ+µ− mode.157

Great improvements are expected in the Run II of the LHC thanks to the improved trigger158

strategy at LHCb—increasing the sample size by more than proportionally to the luminosity—with159

the potential for reaching even more interesting regions in the LHCb upgrade.160

Rare strange decays While the LHC is not the main player in rare kaon physics, a very competi-161

tive result in the search for the K0
S → µ+µ− decay was published by the LHCb collaboration using162

data from 2011 [66]. The limit on the branching fraction of this decay,163

B(K0
S → µ

+
µ
−)< 9×10−9 at 90% C.L., (4.1)

is still far from the SM prediction of B(K0
S → µ+µ−) = (5.1±1.5)×10−12 [67], but the LHC has164

the potential of reaching the most interesting region of study, in which it will be possible to assess165

possible NP short-distance effects in the K0
L→ µ+µ− decay.166
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Figure 15: Status of rare charm searches for D0 (top), D+ (bottom left) and D+
s (bottom right) mesons [47].

The limit K0
S → µ+µ− on shows, nonetheless, the potential of LHCb to produce significant167

results in the following years—especially in its Upgrade phase—such as the study of the Σ+→168

pµ+µ− decay to assess the HyperCP anomaly [68], the update of the limit K0
S → µ+µ− with the169

full Run I dataset, and the exploration of further modes, including those with electrons in their final170

state. These all will contribute to the exciting prospects from non-LHC experiments: NA62 took its171

first data in 2015 and is currently getting ready for its 2016 run, while KOTO is expecting to reach172

SM sensitivity in the search for the K0
L→ π0νν decay by 2018.173

Hidden sector The b→ s penguin decay is also an excellent place to search for low-mass hidden174

sector particles, which can mix with the Higgs boson and then decay in SM final states. The LHCb175

collaboration has performed a search for hidden-sector bosons in B0→ K∗0χ(→ µ+µ−) decays176

allowing—but not requiring—non zero lifetime of the µ+µ− system [69]. The search at different177

lifetimes, covering prompt and displaced µ+µ− vertices and shown in Fig.16, found no significant178

signal and allowed both to set model-independent limits and to constrain specific models, such as179

the ones described in Refs. [70–73].180
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Figure 16: Upper limit at 95% C.L. for the B0→ K∗0χ(→ µ+µ−) decay as a function of the µ+µ− mass,
obtained at different lifetimes of the µ+µ− system [69].

5. Conclusions181

Rare flavoured decay observables place strong constraints on many NP models, allowing to182

probe higher energies than direct searches due to the fact that they are forbidden at tree-level in the183

SM. A large number of analyses performed using data collected during Run I of the LHC have lead184

to substantial improvement in the precision of several key observables. Results like the observation185

of the B0
s→ µ+µ− decay or the study of angular observables in B0→ K∗0µ+µ−, while largely186

consistent with the SM, have given rise to interesting tensions with the SM expectations.187

While there is not significant NP evidence from a single measurement, global fits to rare decays188

observables point to a pattern that favours the existence of NP. In this situation, it is necessary to189

continue improving the precision and to add measurements, both of new, more sensitive observables,190

and of new decay modes. An effort in the theory side, especially in the reduction of uncertainties191

due to hadronic effects, will also be needed.192

In a nutshell, the main goal in the next few years will be to try to confirm these tensions of193

the SM, find the first evidences of NP and then study their features to determine which models are194

favoured by the data.195
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