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Abstract: We investigate a potential of determining properties of a new heavy resonance

of mass O(1) TeV which decays to collimated jets via heavy Standard Model intermediary

states, exploiting jet substructure techniques. Employing the Z gauge boson as a concrete

example for the intermediary state, we utilize a “merged jet” defined by a large jet size to

capture the two quarks from its decay. The use of the merged jet benefits the identification

of a Z-induced jet as a single, reconstructed object without any combinatorial ambiguity. We

find that jet substructure procedures may enhance features in some kinematic observables

formed with subjet four-momenta extracted from a merged jet. This observation motivates

us to feed subjet momenta into the matrix elements associated with plausible hypotheses on

the nature of the heavy resonance, which are further processed to construct a matrix element

method (MEM)-based observable. For both moderately and highly boosted Z bosons, we

demonstrate that the MEM in combination with jet substructure techniques can be a very

powerful tool for identifying its physical properties. We also discuss effects from choosing

different jet sizes for merged jets and jet-grooming parameters upon the MEM analyses.
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1 Introduction

The Large hadron collider (LHC) has played an important role in deepening our understanding

of electroweak symmetry breaking by discovering a Higgs particle. As the LHC experiment

reaches the energy scale of tera electronvolt (TeV), it is of paramount importance to study

potential new physics such as various extended Higgs sectors, existence of other fundamental

scalars [1–3], vector resonances under the set-up of composite models [4–9], and so on. We

remark that resonances in those new physics models often have sizable branching fractions

to heavy SM particles including the weak gauge bosons, the Higgs, and the top quark, if

kinematically allowed. As increased center-of-mass energy at the LHC enables us to probe

heavier new particles of O(1) TeV, a substantial mass gap between a new particle and a

heavy SM state would result in a large boost of the latter, accompanying highly collimated

objects along the boost direction of the latter in the final state. While the leptonic decay

products of the above-listed heavy SM particles often carry advantages in conducting data
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analyses thanks to their cleanness, hadronic decay products are expected to play an important

role in not only discovery opportunity but property measurement at the early stage due to

their larger branching fractions. However, their jetty nature at the detection level renders

associated analyses challenging because of significant overlaps between the final state jets,

requiring robust analysis tools to deal with such hadronic objects reliably. A promising venue

in developing relevant techniques is the field of jet substructure [10].

A successful application of the jet substructure techniques is to tag single-jet-looking

objects from decays of boosted, heavy SM states (e.g., t/W/Z/H) against structureless or

single-prong QCD jets [11]. The idea is that one can capture hadrons from the decay of a

heavy SM particle, using a single “merged” jet which is defined by a proper choice of the jet

size. An expected benefit from utilizing a resultant (massive) merged jet is mitigation of the

systematics which often arises in considering multi-particle final states (e.g., combinatorial

ambiguity), by reducing the number of reconstructed objects. The price for it is the possibility

that even a normal QCD jet may acquire a sizable mass in combination with underlying QCD

activities including pile-ups.1 In this regard, there are dedicated studies

• to reduce corruptions from irrelevant hadrons for a given jet [13–16], and

• to differentiate a jet resulting from a boosted heavy SM state from an ordinary QCD

jet by looking into its substructure [13, 17–25].

Many proposed methods along the line have been successfully implemented for analyz-

ing the LHC data, and they concurrently improve the sensitivities for the high mass region

by reducing relevant SM backgrounds efficiently. While tagging a boosted jet by jet sub-

structure techniques is useful for discovery opportunities e.g., heavy resonance searches, the

constituent-jet information itself allows to construct various experimental observables for fur-

ther data analyses. In this context, it is interesting to question how far characteristic features

in kinematic distributions are preserved after subjet isolations, if included are various real-

istic effects such as parton shower, hadronization/fragmentation, detector response, and jet

clustering. We first point out that rather precise identification of the features is viable in

some controlled environment, despite the presence of realistic effects. Motivated by the spin-

parity determination of the SM Higgs boson [26] and the diboson resonance [27, 28] through

massive bosonic intermediary states in relevant decay processes, we focus on the analysis

of W/Z-induced two-prong jets and examine well-motivated angular variables formed with

reconstructed subjets. In the case of production of a new, bosonic heavy resonance, the

jet substructure techniques are relevant to the channels of WW , ZZ, and Zγ in which the

associated final state is, at least, partially hadronic.

For a sufficiently boosted, heavy state V , the angular separation ∆R between its two

decay products is given by

∆R ≈ 2mV

P VT
, (1.1)

1See Ref. [12] for the jet substructure techniques alleviating the pile-up contamination.
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where mV and P VT denote the mass and the transverse momentum of particle V . Since usual

jet substructure techniques begin with identifying a “merged” jet by a fairly large fixed cone

size to capture all constituent jets followed by a declustering procedure to find subjets, the

hardness of P VT is crucial in choosing a reasonable cone size, hence too a successful subjet

analysis. Moreover, considering the fact that the generic shape analysis demands global

information, we see that a proper definition of merged jets is a key component for posterior

analyses. In particular, the phase-space reduction induced by fixing a cone size for merged

jets would cause adverse distortions of the kinematic distributions of interest, becoming an

obstacle in decoding the physics behind signals. To illustrate these points, we employ two

benchmark points for a heavy resonance decaying into a ZZ final state in order to cover

kinematically distinctive regions, one for the moderately boosted Z case and the other for the

highly boosted one. We contrast/compare them in terms of the angle particularly sensitive

to the CP state of the resonances. We there explicitly show that remarkably, jet substructure

techniques preserve useful information quite well.

Being confident of the above single-variable analysis, we then move our focus onto matrix

element method (MEM)-based observables which allow us to make full use of all available

information encrypted in four-momenta of final state particles [29–38]. Unlike other statis-

tical methods based on distributions of multiple observables, the MEM is predicated on a

straightforward and elegant interpretation on the probability measure P, that is, the quan-

tum amplitude of a given process with hypothesis α is schematically given as follows:

P ({preco}|α) ∝
∫

dΠqiW (qi, {preco})
∣∣∣M (qi ;α)

∣∣∣2 , (1.2)

whereM is the matrix element for hypothesis α andW is the transfer function introduced to

map parton-level momentum vectors ({q}) to reconstruction-level ones ({preco}). Markedly,

the usefulness of the MEM has been proven in discriminating different spin/CP state hy-

potheses [26, 29, 30, 34, 35, 39]. In particular, the MEM was a driving force to determine

various properties of the SM Higgs particle in the four-lepton channel, which has been consid-

ered as one of the most exciting achievements at the LHC. In more detail, by identifying the

interaction between the Higgs boson and a Z-boson pair, it has been shown that the Higgs

boson is indeed related to the SU(2)L × U(1)Y gauge symmetry breaking mechanism. We

note that this channel comes with ten degrees of freedom compared to its competing diphoton

channel with only four degrees of freedom although the former involves smaller statistics than

the latter. Therefore, given low statistics, it is imperative to combine different information

from various degrees of freedom in an optimized way, for which the MEM is well-suited.

We remind that many of the collider studies for the decay of a heavy resonance into

the final state particles via massive SM states often advocate fully leptonic channels in not

only search for new particles but measurement of their properties, due to the clean nature of

leptonic final states even at the reconstruction level. While it is challenging to extract useful

information from hadronic decay products unlike leptonic ones, the remarkable discriminating

power of the MEM motivates us to construct an MEM-based kinematic discriminant (KD)
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using four-momenta of subjets. We then investigate how much the discrimination potential is

retained in the context of jet substructure techniques again employing the benchmark scalar

resonances.

To convey our main ideas coherently, we organize this paper as follows. In Section 2,

we begin with the discussion on the phase-space reduction occurred by the introduction of

a fixed cone size. In Section 3, we provide a brief review on various angular variables for

discriminating the spin and the CP states of heavy resonances, and discuss the impact of

the phase-space reduction upon kinematic observables, in particular, CP-sensitive ones. In

Section 4, we confirm the observations made in the two previous sections, using detector-

level Monte Carlo simulation. We then, in Section 5, present our main results obtained from

the MEM-based analyses under the circumstance of negligible background contamination,

in conjunction with the jet substructure techniques. Our concluding remarks and outlook

appear in Section 6. Finally, Appendices A and B are reserved for the discussion on the MEM-

based analyses including backgrounds and the phase-space reduction in other jet substructure

techniques, respectively.

2 Phase-space reduction

We begin this section by estimating the cone size R for “Merged Jets” (MJ) to capture both

of the two visible particles v1 and v2 emitted from a highly boosted massive particle (e.g.,

W/Z/H → v1v2). For simplicity, we assume that the two partonic decay products are massless

and well-approximated to two subjets j1 and j2 which are the constituents of a merged jet.

We define PT (MJ) and mMJ as the laboratory-frame transverse momentum and the mass of

a merged jet, respectively. With the assumption of PT (MJ) � mMJ, simple kinematics in

leading-order QCD leads to

R ' 1√
z(1− z)

mMJ

PT (MJ)
≥ 2mMJ

PT (MJ)
, (2.1)

where z is defined as
min(PT (j1)

,PT (j2))
PT (MJ)

, i.e., the fractional transverse momentum of the leading

subjet (say, j1) with respect to the total transverse momentum. Here the equality is obtained

in the limit of z = 1/2.

We then closely look at the relation between R and the angular separation ∆R12 of two

subjets which is defined as

∆R12 ≡
√

∆η2
12 + ∆φ2

12 , (2.2)

where ∆η12 and ∆φ12 denote the differences between the two subjets in pseudorapidity and

azimuthal angle in the laboratory frame, respectively. The angular distance between j1 and

j2 in the laboratory frame can be expressed in terms of the polar angle θ and the azimuthal

angle φ of the leading subjet in the heavy particle rest frame relative to the boost direction
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to the laboratory frame [40]:

∆R2
12 =

[
tanh−1

(
2 cosh η sin θ sinφ

sin2 θ(sinh2 η + sin2 φ) + 1

)]2

+

[
tan−1

(
2 sinh η sin θ cosφ

sin2 θ(sinh2 η + sin2 φ)− 1

)]2

,

(2.3)

where cosh η = EMJ/mMJ is a Lorentz boost factor of the MJ. One can show that ∆R12 has

a minimum at θ = π/2 and φ = 0 for any fixed η [40]. Therefore, a necessary condition to

capture the two subjets for a given η is that the cone size R should be greater than the lower

limit of ∆R12:

R ≥ ∆Rmin
12 = 2 csc−1(cosh η) −−−−−−−−−→

PT (MJ)�mMJ

2mMJ

PT (MJ)
, (2.4)

where the last step is done by setting cosh η in the transverse plane and taking a large

transverse momentum limit. Note that this asymptotic behavior is identical to the estimate

in eq. (2.1). Now if we set the cone size to be RMJ, all events with R < RMJ are accepted.

We then translate this inequality to the upper bound for the polar angle θ:

| cos θ| ≤
√

1− 1

sinh2 η
cot2

(
RMJ

2

)
=

√
1−

(
mMJ

PT (MJ)

)2

cot2

(
RMJ

2

)
. (2.5)

This inequality implies that fixing the cone size for MJs confines the polar angle to a certain

range, resulting in a reduction of the accessible phase space.

To visualize this observation, we exhibit cos θ distributions of quarks (say, b) from Higgs

or Z gauge boson decays. To minimize any effects on the angular distributions from their

production, we assume that a pair of H or Z bosons are produced via the decay of a heavy

scalar S, for example, gg → S → HH/ZZ. Trivially, cos θ for the Higgs boson case has a

flat distribution. On the other hand, a Z boson has transverse and longitudinal polarization

components, and thus its coupling to particle S is described in a somewhat complicated

manner. Denoting MZ and Λ as the Z gauge boson mass and a scale parameter, we define

the interaction Lagrangian between S and Z as

Lint = κ1
M2
Z

Λ
S Zµ Zµ +

κ2

Λ
S ZµνZµν +

κ3

Λ
S Zµν Z̃µν , (2.6)

where Zµν and Z̃µν are the field strength tensor and the dual field strength tensor for the

Z boson, respectively. In MS � MZ limit, the first term takes care of the interaction of

the longitudinal polarization component while the other two describe that of the transverse

polarization components [29, 41], and the resulting differential cross section in cos θ is given

by
dσ

d cos θ
∼ 2κ2

1(1− cos2 θ) +
(
κ2

2 + κ2
3

)
(1 + cos2 θ) +O

(
M4
Z

M4
S

)
. (2.7)

Figure 1 displays our numerical results with parton-level Monte Carlo simulation for

which the input mass of the heavy resonance S is 1 TeV for illustration. As mentioned above,

– 5 –



0
0.5 10 1.5 2 2.5 3

Z ! bb̄

R = 0.8

R = 1.2

R = Rpeak

H ! bb̄

�Rbb̄

0.06

0.04

0.02

N
�

1
d
N

/d
�

R
b
b̄
/

0.
0
1

cos ✓
0.5�0.5�1 10

0

R  0.8

R  1.2

Theoretical expectation

Higgs from SH†H

0.04

0.02

N
�

1
d
N

/d
co

s
✓
/

0
.0

4

cos ✓
0.5�0.5�1 10

0

R  0.8

R  1.2

Theoretical expectation

Longitudinal Z from SZµZµ

0.04

0.02

N
�

1
d
N

/d
co

s
✓
/

0
.0

4

cos ✓
0.5�0.5�1 10

0

R  0.8

R  1.2

Theoretical expectation

Transverse Z from SZµ⌫Zµ⌫ (or SZµ⌫Z̃µ⌫)

0.04

0.02

N
�

1
d
N

/d
co

s
✓
/

0
.0

4

Figure 1. Parton-level Monte Carlo simulation results for S → HH/ZZ → 4b with MS = 1 TeV. The

upper-left panel shows unit-normalized ∆Rbb distributions for the Higgs boson (orange histogram)

and the Z gauge boson (blue histogram) cases. The red and blue dashed lines mark the positions

corresponding to R = 0.8 and R = 1.2, respectively. The other three panels (upper-right for H,

lower-left for ZL, and lower-right for ZT ) show unit-normalized cos θ distributions with cone sizes for

MJs R ≤ 0.8 (red histogram) and R ≤ 1.2 (blue histograms) and compare them with corresponding

theory predictions (solid black lines). Dashed vertical lines represent the upper bounds on | cos θ| for

a given RMJ according to eq. (2.5).

we take the decay process of H or Z into a bottom quark pair. The upper-left panel shows the

unit-normalized distributions of ∆Rbb for the Higgs boson (orange histogram) and the Z gauge

boson (blue histogram). The red and the blue dashed lines mark the locations corresponding

to R = 0.8 and R = 1.2, respectively, allowing us to develop our intuition on what fraction

of events are tagged. The other three panels (upper-right for the Higgs boson, lower-left for

the longitudinal Z, and lower-right for the transverse Z) demonstrate the unit-normalized

cos θ distributions with R ≤ 0.8 (red histogram) and R ≤ 1.2 (blue histogram) and compare

them with the corresponding theory expectations represented by solid black lines. We clearly
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Figure 2. Angular degrees of freedom in γγ (the (a) panel), Zγ (the (b) panel), and ZZ/W+W−

(the (c) panel) processes. For a sufficiently heavy X (i.e., mX � 2MZ), we can neglect the possibility

of off-shellness of internal gauge boson propagators. Then the processes in (a), (b), and (c) panels

have two, four, and six degrees of freedom, respectively, at the X rest frame.

observe that a fixed cone size for MJs distorts the shape of differential distributions. Hence,

when investigating physics governing experimental signatures with kinematic distributions

including angular observables, one should conduct a careful examination on how much of

partonic information would be missing by the introduction of a fixed cone size for MJs in

reconstructing final state objects.

3 Angular correlations among final state particles

As in the case of the SM Higgs boson whose first signature appeared in the final states with

γγ and ZZ, if a heavy new particle X respects the SM electroweak gauge symmetry, it may

appear as a resonance in the final states with ZZ, WW , Zγ, and γγ. We divide them into

three categories according to the number of angular degrees of freedom measured in the rest

frame of particle X.

(a) X → γγ: Two angular degrees of freedom as (θ∗,Φ∗)

(b) X → Zγ: Four angular degrees of freedom as (θ∗,Φ∗, θ1, φ1)

(c) X → ZZ/W+W−: Six angular degrees of freedom as (θ∗,Φ∗, θ1, φ1, θ2, φ2) 2

We schematically show angular configurations for three cases in Figure 2, matching the item

numbers with the panel ones. The decay of X into two gauge bosons V1 and V2 involves

two degrees of freedom, polar angle θ∗ and azimuthal angle Φ∗ of V1 (or equivalently V2)

about the beam axis. In a similar manner, each of the two gauge bosons (except the photon)

2 These angles are not suitable for the spin and parity analysis in X →W+W− → `+ν`−ν̄ channel because

the two neutrinos are not detected. Instead, we can use the azimuthal angle between two leptons, ∆φ``, the

dilepton invariant mass, m``, and the transverse mass of the dilepton system, mT , to distinguish spin and

parity hypotheses [39, 42].
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involves two degrees of freedom, polar angle θi and azimuthal angle φi of one of the decay

products relative to the Vi boost direction in the Vi rest frame. Another degree of freedom

comes with the rapidity of the whole decay system which encodes the information of initial

state partons through the parton distribution functions. However, imposing a rapidity cut

on the reconstructed heavy resonance, we anticipate that any of its associated impact upon

kinematic observables becomes mild [35].

We begin with the observables related to the decay process of X itself, which are the two

angles θ∗ and Φ∗. They can be evaluated as follows:

cos θ∗ = p̂V1 · ẑ|X , (3.1)

cos Φ∗ = x̂ · (ẑ × p̂V1)|X , (3.2)

where |X implies that all relevant physical quantities are measured in the rest frame of particle

X. Here ẑ lies on the beam direction as usual, while x̂ is chosen to be an azimuth reference

direction on the plane perpendicular to ẑ. The determination of the helicity/spin of X by

variable Φ∗ or θ∗ is closely connected to the production mechanism for it. The azimuthal

angle Φ∗ carries the helicity information of X, which becomes available if there is interference

among different helicity states [43]. If X is produced in association with another particle, its

helicity state is obtained by a linear superposition of various helicity states with corresponding

amplitudes given in terms of relevant Clebsch-Gordan coefficients. Under a spatial rotation

around the X momentum axis by say, Φ, each helicity state obtains a phase factor eiλΦ where

λ denotes the helicity value of the state. Therefore, the sum over various helicity states give

rise to non-trivial interference among the corresponding quantum amplitudes in the resulting

cross section, which will be imprinted in the Φ∗ distribution. On the other hand, if X is

singly produced, its helicity state is uniquely fixed by initial partons, rendering the helicity

sum incoherent. Thus we do not expect to observe distinctive features in the Φ∗ distribution.

When it comes to polar angle θ∗, the spin state of X can be inferred from the distribution

in θ∗ [44]. At the tree level, the matrix element contains a projection of the X helicity onto

the beam direction. In more detail, the Wigner d-function, which depends on the net spin

between the initial and the final states, describes the amplitude of this projection whose angle

is θ∗. Therefore, the θ∗ distribution can be a good observable for identifying the production

mechanism and the spin of X.

We next consider angular variables related to the decay of Vi. As we demonstrated

explicitly in Section 2, the impact of a fixed RMJ upon cos θi differs in polarization states (see

also the bottom panels in Figure 1). This implies that we can infer the Vi polarization from

its decaying angles θi, which are crucial in understanding the coupling of X-V1-V2, and they

are defined as follows:

cos θ1 = p̂q̄ · p̂V2 |V1 , (3.3)

cos θ2 = p̂`+ · p̂V1 |V2 , (3.4)

where the decay products of V1 and V2 are distinguished merely to avoid any potential nota-

tional confusion (see also Figure 2(c) for relevant decay products).
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It turns out that the remaining angles φi pertain to the CP state, which is one of the

highly non-trivial properties to be identified in collider analyses.

Indeed, the difference between two azimuthal angles of the V1 and V2 decaying planes,

i.e., φ ≡ φ1−φ2, provides the strongest discriminating power between different CP states [29,

34, 41],3 and this quantity is evaluated by

cosφ ≡ cos(φ1 − φ2) =
(p̂q × p̂q̄) · (p̂`− × p̂`+)

|p̂q × p̂q̄| |p̂`− × p̂`+ |

∣∣∣∣∣
X

. (3.5)

In the rest of this paper, we focus on the determination of the CP state of X assuming

that X is a scalar S, as other properties such as the spin of X or the interaction to a longi-

tudinal or transverse component of Vi can be measured by other angular variables explained

above. We remark that if there are interactions between CP-even scalar and the longitudinal

polarization of Vi through either a tree level coupling SV µ
i Viµ or a higher dimensional oper-

ator S DµH†DµH, we can easily distinguish them from the corresponding interactions with

CP-odd scalar because the latter mostly interacts with the transverse polarization vector of

Vi. We therefore consider only higher dimensional operators of dimension 5, for which iden-

tifying the CP state is more challenging. Before the breakdown of the SM electroweak gauge

symmetry SU(2)L × U(1)Y , relevant Lagrangians for CP-even and CP-odd state scalars are

L0++ 3 cY
Λ
S BµνB

µν +
cW
Λ
SW a

µνW
aµν , (3.6)

L0−+ 3 c̃Y
Λ
S BµνB̃

µν +
c̃W
Λ
SW a

µνW̃
aµν , (3.7)

where W a
µν and Bµν are field strength tensors of SU(2)L and U(1)Y , respectively, while W̃ a

µν

and B̃µν are their corresponding dual field strength tensors. After electroweak symmetry

breaking, the couplings between S and mass eigenstate vector bosons can be described as

L0++ 3 cWW

Λ
SW+

µνW
−µν +

cZZ
Λ
S ZµνZ

µν +
cγγ
Λ
S AµνA

µν +
cZγ
Λ
SZµνA

µν , (3.8)

L0−+ 3 c̃WW

Λ
SW+

µνW̃
−µν +

c̃ZZ
Λ
S ZµνZ̃

µν +
c̃γγ
Λ
S AµνÃ

µν +
c̃Zγ
Λ
SZµνÃ

µν , (3.9)

where new coupling constants cWW , cZZ , cγγ , and cZγ are related to cY , cW , and the Weinberg

angle θw as follows:

cWW = 2 cW , (3.10)

cZZ = cW cos2 θw + cY sin2 θw, (3.11)

cγγ = cY cos2 θw + cW sin2 θw, (3.12)

cZγ = (cW − cY ) sin 2θw. (3.13)

Similarly, we have c̃WW , c̃ZZ , c̃γγ , and c̃Zγ in terms of c̃Y and c̃W as in eqs. (3.10)

through (3.13).

3In Ref. [30], the authors considered JPC = 0++ with the SM-like Higgs boson case where a scalar interacts

mostly with the longitudinal polarization vector of gauge bosons through an interaction of HZµZµ.
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As two coupling constants cY and cW determine four decay modes of S, at least two

decay channels should be non-vanishing. For example, if the S → γγ channel is observed,

one can expect to observe at least either S → ZZ or S → Zγ channel as well. However,

S → W+W− may not be available, as it depends only on cW which could vanish if S were

SU(2)L-singlet.

As briefly discussed before, φ plays an important role in determining the CP state of

resonance S. In this sense, Zγ and γγ final states are irrelevant because they do not involve

two decaying planes. In our numerical study, we focus on S → ZZ which subsequently

decay semileptonically, i.e., qq̄`+`−. One reason for this choice is that the qq̄`+`− final state

is expected to offer a better handle in inferring the underlying decay mode than the fully

hadronic decay channel in which there exists non-negligible chance to misidentify observed

events as S →W+W− due to the issue of jet mass resolution [28, 45].4 Compared to the fully

leptonic channel, the semileptonic channel certainly enjoys higher statistics due to the larger

branching fraction of Z into quark pairs, allowing us to have better signal sensitivity. However,

in a more realistic situation, this naive expectation is not straightforwardly applied. Once

we take SM backgrounds into consideration, we are forced to impose severe cuts to suppress

huge backgrounds including Z+jets so that we may end up with a similar order of sensitivity

compared to the 4` channel. More specifically, it turns out that for mS & 700 GeV, the

signal sensitivity expected from the semileptonic channel becomes comparable to that from

the fully leptonic channel [46, 47]. Remarkably, the jet substructure techniques come into play

in this high-mass regime. Note again that a merged jet from major backgrounds contains a

single quark together with additional QCD activities from radiation, whereas a signal merged

jet consists of two partons. Therefore, jet substructure techniques enable us to reduce SM

backgrounds more efficiently, hence get them under control.

On top of background rejection, we pro-actively utilize jet substructure methods to ex-

tract partonic information from a merged jet initiated by Vi → qq̄. As explicitly demonstrated

in Section 2, the procedures in the methods effectively restrict relevant phase space of final

states, and in particular, the accessible region in θi angles may be significantly affected.

The coefficients for the differential distributions in φ are related to θi in the narrow width

approximation (NWA) as follows [29]:

d3σ0++

d cos θ1d cos θ2dφ
∝ 2 sin2 θ1 sin2 θ2 + cosh2 (2η)

(
1 + cos2 θ1

) (
1 + cos2 θ2

)
− cosh (2η) sin (2θ1) sin (2θ2) cosφ

+ cosh2 (2η) sin2 θ1 sin2 θ2 cos (2φ) , (3.14)

d3σ0−+

d cos θ1d cos θ2dφ
∝
(
1 + cos2 θ1

) (
1 + cos2 θ2

)
− sin2 θ1 sin2 θ2 cos (2φ) , (3.15)

where we average contributions from different quark and anti-quark flavors as we cannot

discern them. Here η defines a Lorentz boost factor as cosh η = MS/(2MZ). Certainly, the

4One could study the S → W+W− → qq̄`ν channel by reconstructing the four vector of a neutrino (ν)

using the energy-momentum conservation.
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above expressions imply that jet clustering procedures alter φ distributions by limiting θi
angles. If there were no restrictions on θi, integrating θi over the full ranges of (0, π) would

give rise to differential distributions in φ as

dσ0++

dφ
∝ 2 + cosh2 (2η) [4 + cos (2φ)] −−−−−−→

MS�MZ

4 + cos (2φ) , (3.16)

dσ0−+

dφ
∝ 4− cos (2φ) . (3.17)

However, as we pointed out in the previous section, fixing the angular separation between rel-

evant subjets results in shrinking accessible phase space with respect to θi (see also eq. (2.5)),

and therefore, to appropriately interpret outputs from any data analyses for discriminating

the CP state of S, we should be armed with a solid understanding of relevant effects.

We shall closely look at this observation in the next section, taking a couple of bench-

mark points (BPs) with different jet size parameters in Cambridge/Aachen (C/A) algo-

rithm [48, 49]. The following BPs are chosen to cover different kinematical regions: one

for the moderately boosted Z and the other for a highly boosted kinematics of Z.

• BP1 : MS = 750 GeV with a large jet size of RMJ = 1.2,

• BP2 : MS = 1500 GeV with a decent jet size of RMJ = 0.6.

For the mass choice in BP1, we expect moderately boosted phase space in which the associated

merged jet analysis becomes comparable to analyses based on a normal jet size because the

efficiency for tagging a single merged jet with C/A of R = 1.3 becomes similar to that for

tagging two ordinary jets with the anti-kt algorithm of R = 0.5 [47, 50, 51]. We find that

typical Lorentz boost factors in the two BPs are large enough (e.g., cosh η ' 4.17 for BP1

and cosh η ' 8.33 for BP2) to simplify eq. (3.14) as

d3σ0++

d cos θ1d cos θ2dφ
∝
(
1 + cos2 θ1

) (
1 + cos2 θ2

)
+ sin2 θ1 sin2 θ2 cos (2φ) . (3.18)

Note that the second term in this expression differs from that of eq. (3.15) by the sign.

Denoting two relevant coefficients by C1 and C2, we have

C1 ≡
[∫ (cos θ1)max

(cos θ1)min

d cos θ1

∫ (cos θ2)max

(cos θ2)min

d cos θ2

] (
1 + cos2 θ1

) (
1 + cos2 θ2

)
, (3.19)

C2 ≡
[∫ (cos θ1)max

(cos θ1)min

d cos θ1

∫ (cos θ2)max

(cos θ2)min

d cos θ2

]
sin2 θ1 sin2 θ2 , (3.20)

from which we find

dσ0±+

dφ
∝ 1± C2

C1
cos(2φ) = 1±Rφ cos(2φ) , (3.21)
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Figure 3. The functional behavior of Rφ according to (cos θ1)max. The black dashed, horizontal line

represents the Rφ value in the full phase space limit.

where we define the ratio of C2 to C1 as Rφ. Hence, a better discriminating power is expected

with a larger Rφ. The expressions in eqs. (3.16) and (3.17) suggest that this ratio at the

parton level without any restriction on the phase space should converge to a quarter.

Rφ −−−−−−−−−−→
Full phase space

1

4
(3.22)

As discussed in the previous section, finding hadronic decaying Z boson by a merged

jet causes a phase space reduction toward the plane orthogonal to the Z boson propagation

direction as illustrated in eq. (2.5). In this context, it is interesting to look into the behavior

of Rφ as we restrict the phase space. Assigning θ1 and θ2 to hadronic and leptonic branches,

respectively, we restrict θ1 under the assumption that (cos θ1)max = −(cos θ1)min and θ2 is

unrestricted for simplicity.5 Noting that the integrands in eqs. (3.19) and (3.20) are even in

cos θ1, we find that Rφ can be expressed as

Rφ =
1

2
· (cos θ1)max − (cos θ1)3max

3

(cos θ1)max + (cos θ1)3max
3

, (3.23)

from which we see that Rφ becomes 1/4 with (cos θ1)max approaching to 1 (i.e., full phase

space). Figure 3 shows the functional behavior of Rφ over (cos θ1)max, wherein Rφ monoton-

ically increases as (cos θ1)max decreases. This implies that phase space reduction by a fixed

cone size renders Rφ greater than 1/4 (dashed black horizontal line in Figure 3), remarkably

achieving better identification on the CP state. In the next section we shall confirm this

observation with Monte Carlo simulation at both parton and detector levels.

5In more realistic situations, there arises some mild phase space reduction even on the leptonic side. How-

ever, we here isolate the effect induced in jet substructure techniques for developing the relevant insight.
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Figure 4. Parton level distributions of ∆Rff̄ for MS = 750 GeV (left panel) and MS = 1500 GeV

(right panel) for which f denotes any fermionic decay product of the Z gauge boson. We select events

with a mass window of |MZ −mff̄ | < 15 ΓZ . Dashed black lines mark the expected lower bounds of

∆Rff̄ as in eq. (2.4) for which PT of a Z boson is localized at the Jacobean peak of MZ sinh η with

cosh η being a boost factor.

4 Results with jet substructure techniques

In this section, we present our results with jet substructure techniques, using Monte Carlo

simulation. For a more realistic study, we consider various effects such as parton shower,

hadronization/fragmentation, and detector responses. To this end, we take a chain of simu-

lation programs. We first create our model files using FeynRules [52] and plug them into a

Monte Carlo event generator MadGraph5 [53] with parton distribution functions parame-

terized by NN23LO1 [54]. The generated events are further pipelined to Pythia 6.4 [55] for

taking care of showering and hadronization/fragmentation, and to Delphes-3.3.2 [56] with a

CMS detector model for taking care of detector responses. In order to form jets from the final

state particles, we employ the particle-flow algorithm in Delphes-3.3.2 and feed resultant

particle-flow objects to FastJet [57, 58].

4.1 Event reconstruction

As we discussed earlier, for our benchmark points belonging to a high mass regime, Z decay

products are likely to be highly collimated. Denoting the angular distance between the two

(fermionic) decay products as ∆Rff̄ , its distribution develops a peak as shown in Figure 4,

which is inherited from a Jacobian peak in the Z-boson transverse momentum distribution.
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MS 750 GeV 1500 GeV

Riso 0.3 0.2

pmin
T 0.5 GeV 0.5 GeV

Iiso 0.12 0.12

Table 1. Isolation parameters for each benchmark point to reconstruct an individual lepton from a

Z boson decay.

The last statement can be understood by restricting eq. (2.4) into the transverse plane, i.e.,

∆Rff̄ ≈ 2 csc−1


√
P 2
T (ff̄)

+m2
ff̄

mff̄

 , (4.1)

where mff̄ is the invariant mass of two decay products. The minimum opening distance is

obtained by setting the numerator to be half the mass of S

∆Rff̄ ≥ 2 csc−1

(
MS

2mff̄

)
' 2 csc−1

(
MS

2MZ

)
. (4.2)

Note that mff̄ follows the usual Breit-Wigner distribution around MZ , and therefore, some

small fraction of events can populate even below the expected minimum value 2 csc−1(MS/(2MZ))

in the ∆Rff̄ distributions exhibited in Figure 4.6 Predicated upon this parton level assess-

ment, we determine an isolation criteria for leptonic decay products of Z bosons in Sec-

tion 4.1.1 and a jet size for clustering merged jets to capture hadronic decaying Z bosons into

a single jet in Section 4.1.2.

4.1.1 Lepton isolation criteria

To reconstruct individual Z boson-induced leptons without any confusion with heavy flavor

quark-induced leptons, we require the following isolation criteria:

I =
1

pT,`

∑
i 6=`

pT,i < Iiso , (4.3)

where ` is a candidate for an isolated lepton, and i’s are any particles in the vicinity of the

lepton candidate ` which satisfies

∆Ri` < Riso and pT,i ≥ pmin
T . (4.4)

Isolation parameters for each benchmark point are tabulated in Table 1, for which the values

are conventional [59, 60] except that for Riso. We choose Riso so as to have an isolated lepton

according to the observation made in Figure 4.

6Note that csc−1(x) is a monotonically decreasing function in terms of x.
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MS 750 GeV 1500 GeV

RMJ 1.2 0.6

(µ∗ , y∗) (0.67 , 0.09)

R∗ 0.3 0.2

Jet size Efficiency

RMJ − 0.2 10.5% 12.9%

RMJ 10.4% 13.4%

RMJ + 0.2 10.4% 13.3%

RMJ + 0.4 - 13.0%

Table 2. Parameters of the MDT procedures for the two benchmark points. Here we adopt the same

µ∗ and y∗ as in the original BDRS Higgs boson tagger [13] for MZ ∼ MH ∼ O(100) GeV. Z-tagging

efficiencies in the table are evaluated after selection cuts in Table 3 for a given merged jet size. A jet

size RMJ is chosen such that tagging efficiencies with different RMJ’s remain unchanged.

4.1.2 Tagging a merged jet

We begin with applying C/A algorithm to cluster particles from a hadronically decaying

Z boson. As this is a sequential recombination algorithm based on the angular separation

between two objects, it is useful for us to access sub-clusters by the angular order, in particular,

to evaluate the φ angular variable. The algorithm combines two objects, which have the

smallest angular distance, by adding up their momenta. This combining process continues

until every clustered object is isolated from the others by an angular distance RMJ. Here RMJ

defines the jet size for a merged jet in the C/A algorithm. In language of the kT algorithm [61],

the C/A algorithm is equivalent to the sequential clustering with a metric between objects,

dij =
∆R2

ij

R2
MJ

, diB = 1 , (4.5)

whereB denotes the beam line.7 For each iteration, two objects which have the smallest dij are

combined. If diB is smallest, the object i is promoted to a C/A jet and escapes from clustering.

The iteration terminates if all objects are identified as jets. After completion of clustering, we

can obtain an angular hierarchy of sub-clusters by simply rewinding the clustering procedure.

We then match sub-clusters to partons from a Z gauge boson, imposing relevant cuts to

reduce the possibility of mistagging a QCD jet as a Z-induced one. To achieve this goal,

we employ the Mass Drop Tagger (MDT) [13] whose procedure is briefly summarized below.

The MDT essentially traces back the clustering sequences of a C/A jet and attempts to find

subjets satisfying the symmetric conditions.

(1) Clustering: We cluster energy deposits in calorimeters using the C/A algorithm of a jet

radius R = RMJ.

7Here B is a legacy notation of kT algorithm, as diB for C/A algorithm does nothing with the beam line

and it is just related to the threshold angular scale RMJ.
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(2) Splitting to look into a substructure: We rewind the last clustering sequence of a jet j,

labelling two subjets as j1 and j2 with mj1 > mj2 .

(3) Checking symmetric conditions: Major backgrounds in our case would be Z(→ `+`−)+

js where a quark-initiated jet appear as a merged one. In this case, most of the energy

deposits are inclined to be localized along the momentum direction of the initial quark,

so that there is a high chance of unbalanced energy sharing between two subjets includ-

ing mass and transverse momentum. In contrast, a signal MJ consists of two prongs

(i.e., two quarks) that ensure democratic energy sharing in two subjets. To quantify

this difference, the MDT demands an upper bound µ∗ and a lower bound y∗ on MDT

parameters µ and y, respectively:

µ ≡ mj1

mj
< µ∗ , y ≡

min
(
P 2
T (j1), P

2
T (j2)

)
m2
j

∆R2
j1j2 > y∗ . (4.6)

This procedure is useful to discriminate prongs in subjects from soft showering, on top

of reducing backgrounds. If subjets do not satisfy above criteria, the MDT procedure

redefines j1 as j and repeats the rewinding procedure in (2).

Once the MDT tags a signal MJ and locates two prongs in the MJ, it decontaminates QCD

corruptions in subjets by reclustering energy deposits in the MJ again with the C/A algorithm

of a small radius jet size Rfilt,

(4) Filtering: We reculster constituents of an MJ with the C/A algorithm of radius,

Rfilt = min

(
R∗ ,

∆Rj1j2
2

)
(4.7)

to find n new subjets {s1, s2, · · · , sn} ordered in descending PT . HereR∗ is the maximum

allowed size for subjets in order to minimize the QCD contamination. The MDT takes

into account an O(αs) correction from hard radiation, by allowing up to three subjets

in redefining an MJ as

pµMJ =

min(n,3)∑
i=1

pµsi . (4.8)

(5) Assigning subjets to prongs from a Z: If we have only two subjets {s1, s2}, we take

these two subjets as two particles from a Z boson. In the case where we have three

subjets {s1, s2, s3}, we merge s3 with other subjet si which has the smaller angular

distance from s3. By this merging process, we identify subjets {j1, j2} in an MJ as

{pµj1 , p
µ
j2
} =

{
{pµs1 , pµs2} for n = 2 ,

PT -ordered {pµsi + pµs3 , p
µ
sj} with ∆Rsi s3 < ∆Rsj s3 for n = 3 .

(4.9)
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We summarize parameters of the MDT procedures for two benchmark points in Table 2.

As an MDT procedure has a cut y∗ on the phase space, we expect certain effects on the

angular distributions in return as the cone size of a merged jet restricts the polar angles of

decaying particles from Z bosons. Since a jet clustering procedure with the MDT is a key

process to recover the parton-level information from the corresponding reconstruction-level

information, we investigate effects from the MDT to understand phase-space distortion in

reconstruction-level analyses.

4.2 Phase-space distortion from a jet substructure

As discussed earlier, constructing a merged jet to capture partons from the decay of a heavy

(boosted) particle often accompanies cuts to suppress the rate to misidentify an ordinary QCD

jet as an MJ. In the MDT procedure, symmetric cuts µ∗ and y∗ are utilized to reduce single-

prong jets from QCD backgrounds. While the µ∗ cut does not give any strong restriction

on signal MJs, the y∗ cut may result in a limit on the phase space of the subjets from a Z

boson. Suppose that the softer subjet j2 carries away z fraction of the total momentum, i.e.,

zPT (MJ). We then find that symmetric cut y in eq. (4.6) can be expressed as

min(P 2
T (j1), P

2
T (j2))

m2
MJ

∆R2
j1j2 '

(
z2 P 2

T (MJ)

m2
MJ

)(
1√

z(1− z)
mMJ

PT (MJ)

)2

> y∗ , (4.10)

where in the first step we make use of eq. (2.1) in the limit of PT (MJ) � mMJ. A similar

expression is readily available for the harder subjet j1 which takes away the momentum of

(z − 1)PT (MJ). Solving the two inequalities for z (one from eq. (4.10) and the other from the

corresponding one for j1), we find that for a given y∗, the momentum sharing z should be

confined to a region defined by
y∗

1 + y∗
< z <

1

1 + y∗
, (4.11)

which, in turn, restricts the angular distance between the two subjets in terms of y∗,

R
(y∗)
est ≤

1 + y∗√
y∗

mMJ

pT (MJ)
. (4.12)

To develop our intuition on the effects from this restriction, we apply symmetric condi-

tions of the MDT to parton-level simulation data for S → ZZ → qq̄`+`−. In a parton-level

simulation, only the y∗ cut in eq. (4.6) remains effective. Thus we impose a symmetric cut y∗
to the two quarks from a Z boson. We then plot distributions of ∆Rqq̄ with the events whose

y values are greater than a certain y∗. Figure 5 shows those distributions for three different

y∗ values (red solid histogram for y∗ = 0, blue dotted histogram for y∗ = 0.09, and green

dotted histogram for y∗ = 0.3) with MS = 750 GeV (left panel) and MS = 1500 GeV (right

panel). We impose a basic cut of PT (MJ) > P ∗T (MJ) = 0.40MS as well, which is well-motivated

in the sense of reducing backgrounds by focusing on the central region.

We clearly observe that as we increase the y∗ cut, more phase space with large ∆Rqq̄ is

removed. This implies that even though we begin with a sufficiently large cone size RMJ to
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Figure 5. ∆Rqq̄ distributions between the two quarks from a Z boson decay for (a) MS = 750 GeV

and (b) MS = 1500 GeV with a basic cut of PT (MJ) > 0.40MS . R
(y∗)
est is an estimated distance between

subjets evaluated from eq. (4.12) with a symmetric cut y∗ in the BDRS tagger.

retain most of phase space as in Table 2, the y∗ cut in the MDT procedure effectively restricts

the available region of ∆Rqq̄ below R
(y∗)
est . Moreover, we find that ∆Rqq̄ is smaller than typical

choices of RMJ, for example,

∆Rqq̄ ≤ R(y∗=0.09)
est ' 1.1 < RMJ (= 1.2) for MS = 750 GeV , (4.13)

∆Rqq̄ ≤ R(y∗=0.09)
est ' 0.55 < RMJ (= 0.6) for MS = 1.5 TeV , (4.14)

which are marked by blue arrows in Figure 5. The resulting restriction on cos θ (i.e., the Z

rest-frame polar angle of the harder quark relative to the Z boost direction) can be derived

from eqs. (2.5) and (4.12):

| cos θ| ≤

√√√√1−
(

mMJ

P ∗T (MJ)

)2

cot2

(
RMJ

2

)
'

√√√√1− 4y∗
(1 + y∗)2

+
2

3

(
mMJ

P ∗T (MJ)

)2

, (4.15)

where the approximation is valid up to the second order in (RMJ/2). Thus as far as RMJ

is larger than R
(y∗)
est , the cone size RMJ does not invoke any direct deformation on the phase

space, compared to cuts in the MDT procedure, which are introduced to reduce background

QCD jets.

Our Monte Carlo study indeed confirms this observation. In Figure 6, we contrast the

φ distributions at the parton level with those at the detector level. For parton-level distri-

butions, we restrict the angular distance between two quarks from a Z boson decay by two

different upper bounds of ∆Rqq̄ for each benchmark point. In the case of MS = 750 GeV

(upper panels), the two upper bounds are chosen to be 1.0 (red lines) and 1.4 (blue lines)

to have RMJ = 1.2 between them. Similarly, in the case of MS = 1.5 TeV (lower panels),

they are chosen to be 0.6 (red lines) and 1.0 (blue lines). We clearly see that φ distributions
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Figure 6. φ distributions under the hypotheses 0++ (left column) and 0−+ (right column) at the

parton level (solid lines) and the detector level (dotted lines). Black solid lines in the four panels

are theoretical expectations without any restriction on the angular distance between two quarks as in

eqs. (3.16) and (3.17).

depart further from the theory expectation (solid black curves) with the smaller cone size

∆Rqq̄, whether the resonance is CP-even (left panels) or CP-odd (right panels). When it

comes to detector-level analyses, however, once we introduce a fairly hard y∗ cut resulting in

R
(y∗)
est < RMJ, the above-discussed parton-level effect simply disappears. Corresponding dot-

ted lines in Figure 6 clearly support our expectation that final φ distributions are not much

different even with different RMJ values.8 We also understand this point from “constant”

8Additional cuts including a detector geometry cut and object selection cuts (especially PT ) give further

restrictions on the phase space. Thus angular distributions are distorted further, compared to parton-level
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MJ-tagging efficiencies even with different C/A jet sizes in Table 2. Although we vary the

size of MJs with different RMJ values, the overall cut on the angular distance of a quark pair

is determined by R
(y∗)
est , allowing us to have a “stable” MJ-tagging rate.

Another important message that one may realize from this series of exercises is that the

impact of analysis cuts upon detector-level reconstructed objects is in more favor of our goal

of discriminating CP states, unlike typical expectations in detector-level data analyses. More

specifically, the difference of φ distributions between CP-even and CP-odd cases appears

enhanced even after incomplete integrations over angular variables such as polar angles θi in

eqs. (3.14) and (3.15) (see also Figure 3). This enhancement overcomes the adverse effects of

detector resolution which often degrade subsequent data analyses.

5 Analysis with matrix element methods

In this section, we discuss further analyses with matrix element methods using four-momentum

information of subjets obtained by the jet substructure technique delineated in the previous

section. We begin with a general overview for CP state discrimination with various measures,

followed by matrix element methods and our main results with them.

5.1 Determining the CP property

To deal with experimental systematics properly and maximize distinctive asymmetric features

between the φ differential distributions for CP-even and CP-odd resonances, a simple measure

Aφ has been introduced for the S → ZZ → 4` channel [62]:

Aφ =
N
(
φ > π

4

)
−N

(
φ < π

4

)
N
(
φ > π

4

)
+N

(
φ < π

4

) , (5.1)

where N simply denotes the number of events. One may make use of the below-defined

cumulative probability over Aφ as a measure to determine the unusualness for any observation

Aobs
φ under a given hypothesis,

p0++(Aobs
φ ;Aφ) = P (Aφ ≥ Aobs

φ |0++) , (5.2)

p0−+(Aobs
φ ;Aφ) = P (Aφ ≤ Aobs

φ |0−+) , (5.3)

where P implies the associated probability.

An alternative method to obtain a probability density function (pdf ) is the kernel density

estimation (KDE). One may estimate a pdf from simulated data, and use the estimated

function fKDE in performing a log-likelihood ratio test as

qφ =

Nevt∑
i=1

ln

(
fKDE(φi|0++)

fKDE(φi|0−+)

)
, (5.4)

distributions.
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to obtain the most powerful test between two simple hypotheses at a given significance level

α according to the Neyman-Pearson lemma [63, 64]. The pdf P (qφ|0PC) for a test statistic qφ
with a given hypothesis 0PC and the given number of events Nevt is calculated from a huge

number of pseudo-experiments which are generated with hypothesis 0PC. The corresponding

cumulative probabilities based on qφ are

p0++(qobs
φ ; qφ) = P (qφ ≤ qobs

φ |0++) , (5.5)

p0−+(qobs
φ ; qφ) = P (qφ ≥ qobs

φ |0−+) . (5.6)

However, the above approaches, which are based on φ distributions, rely on the projection

of our observed momenta of visible particles, {preco} = {pj1 , pj2 , p`− , p`+}, into a single angular

variable φ. Although in our study, phase-space reduction by cuts in jet substructure methods

can enhance the difference between two CP hypotheses as we have observed in the previous

section, it does not guarantee whether this projection attains the best sensitivity in cases

where there exist at least three correlated angular variables as in eqs. (3.14) and (3.15). In

the next section, we instead directly convert the observed momenta into a probability under

a given model hypothesis. We then utilize this probability as a likelihood ratio test between

different hypotheses on the CP state of a scalar resonance S in our study.

5.2 Matrix Element Method

As briefly mentioned in eq. (1.2), the probability based on the matrix element in a given

hypothetical process α is given by

P ({preco}|α) =
1

σα

∫
dx1dx2

fp1(x1)fp2(x2)

2s x1 x2

∫
dΠqiW (qi, {preco})

∣∣∣M (qj ;α)
∣∣∣2 , (5.7)

where fpi(xi) is a parton distribution function of parton pi inside the beam with a fractional

energy of xi. Πqi describes the phase space of parton-level particles qi which are related to ob-

served momenta {preco} of corresponding particles. If detectors were perfect, such a relation

would be trivial. However, as instrumental effects including detector smearing and responses

become important factors in precise measurements, transfer functions W (qi, {preco}) are in-

troduced to map the information from reconstructed particles to the parton-level input for

the MEM by modelling energy smearing, in particular, effects in jet reconstruction stemming

from showering, hadronization/fragmentation, and jet energy scales with gaussian functions

that were obtained in the course of understanding top-quark properties in the Tevatron ex-

periments [65–70]. To reduce the dependence on the transfer function in (5.7), one may

use a deeper substructure of merged jets, e.g., finer subjet analyses as in the shower decon-

struction method [37, 71, 72]. Fine structure analyses often benefit the studies based on

parton-showering-sensitive features, e.g., distinguishing merged jets from ordinary QCD jets.

We, however, emphasize that the deeper pattern of parton showering is less relevant to

identifying the CP state of resonance S with merged jets. In our study, we instead take a

simplified but conservative approach for which we set W (qi, {preco}) to be a delta function
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of momenta of quarks from the decay of Z boson at the point of momenta of the two prong

subjets from the mass drop tagger as we are not aware of precise information on detector

responses. Ignorance of details of parton showering and the detector response significantly

simplifies the probability in (5.7) at the cost of maximal sensitivity suggested by the Neyman-

Pearson lemma. Indeed, such details are less relevant as long as reconstructed subjets do

depict quarks from the Z boson decay reasonably well. We can further minimize potential

impact from ignorance of higher-order parton showering by selecting a merged jet with its

mass around mZ . To regain sensitivity from above projections, we model a pdf based on

the reconstruction-level distributions as we describe below, instead of modeling the transfer

function.

We remark that for the case at hand, all kinematic information can be restored with

measured four-momenta of visible particles, meaning that the xi’s in parton distribution

functions become fixed. Hence, the probability evaluated from a matrix element can be

simplified as follows:

P ({preco}|α) ' 1

σα

fp1(x1)fp2(x2)

2s x1 x2

∣∣∣M ({preco} ;α)
∣∣∣2 . (5.8)

We then decompose the matrix element into the production part p1p2 → S and the decay

part S → j1, j2 , `
+ , `− through a narrow width approximation (NWA) which is valid as long

as the decay width ΓS of resonance S is negligible compared to its mass MS . We also note

that S is a scalar particle so that any helicity connections with partons in production part

are disconnected unlike higher spin cases [44]. Therefore, we have the ratio of probabilities

with different CP hypotheses 0PC as

P ({preco}|0++)

P ({preco}|0−+)
'
∣∣M(S→qq̄`+`−) ({preco} ; 0++)

∣∣2∣∣M(S→qq̄`+`−) ({preco} ; 0−+)
∣∣2 , (5.9)

where we dropped the common parts involving a production mode. Here we use the fact that

cross sections σ0PC are fixed by the observed value. There is a subtlety in calculating a matrix

element M as the current jet algorithms cannot specify the charge or flavor for light quarks.

In order to deal with this issue, we symmetrize a matching between subjet (j1, j2) and (q, q̄)

as

|M(S→qq̄`+`−)

(
{preco} ; 0PC

) ∣∣2
sym
≡

∑
q∈{u,d}

(∣∣M(S→qq̄`+`−)

(
{j1, j2, `+, `−} ; 0PC

) ∣∣2
+
∣∣M(S→qq̄`+`−)

(
{j2, j1, `+, `−} ; 0PC

) ∣∣2) , (5.10)

which alters the above-given probability ratio to the symmetrized ratio called a kinematic

discriminant (KD)

KD ≡ P ({preco}|0++)

P ({preco}|0−+)
'
∣∣M(S→qq̄`+`−) ({preco} ; 0++)

∣∣2
sym∣∣M(S→qq̄`+`−) ({preco} ; 0−+)
∣∣2
sym

. (5.11)
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Cut flow selection 750 GeV 1500 GeV

parton level 100.0 % 100.0 %

object tagging one merged jet, two ` 61.0 % 63.4 %

lepton PT PT > 25 GeV 52.0 % 58.8 %

m(`+, `−) [83, 99] GeV 47.4 % 53.5 %

mMJ [75, 105] GeV 20.6 % 25.5 %

yZZ |yZZ | < 0.15 16.3 % 21.3 %

PT (MJ) PT (MJ) > 0.4m(MJ, `+, `−) 11.5 % 14.7 %

m(MJ, `+, `−)
within MS ± 50 GeV 10.4 % -

within MS ± 100 GeV - 13.4 %

Table 3. Event selection criteria and corresponding efficiencies for each benchmark point. As

rapidities of final particles do not depend on the CP states of a spin 0 particle, we expect that the

efficiencies in different CP states of S are the same.

Predicated upon the KD, we construct two pdf ’s P0PC(KD) = P (ln KD|0PC) with a large

number of reconstructed events for each hypothesis that are prepared with Monte Carlo

simulation at the detector level, ensuring the consideration of various experimental effects.

Assuming that each pseudo-experiment is independent and identically distributed, we set two

likelihoods L(0PC) with the fixed number of events Nevt

L(0PC) ≡
Nevt∏
i=1

P0PC(KDi). (5.12)

Corresponding test statistic qM is defined as the log-likelihood ratio,

qM ≡ ln
L(0++)

L(0−+)
=

Nevt∑
i=1

ln

(
P0++(KDi)

P0−+(KDi)

)
. (5.13)

A pdf of P (qM|0PC) for a test statistic qM with a given hypothesis 0PC and a given number of

events Nevt is calculated from a huge number of pseudo-experiments. Cumulative probabilities

based on qM are given by

p0++(qobs
M ; qM) = P (qM ≤ qobs

M |0++) , (5.14)

p0−+(qobs
M ; qM) = P (qM ≥ qobs

M |0−+) . (5.15)

5.3 Results

We finally present our main results on distinguishing CP-even and CP-odd states in this

section, comparing three methods, two with angular variables Aφ and φ , and the other with

an MEM-based variable. To maximize relevant performances, we first construct pdf s for test

statistics in both methods based on the log-likelihood ratio. In our analyses we do not consider

backgrounds since (1) we compare the performance of each method in the best case, and (2)
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background subtraction can be performed with sPlot [73]. We rather focus on studying

effects from cuts to reduce backgrounds. Detailed information on potential backgrounds and

recipes to take them into consideration in KD-based analyses shall be provided in Appendix A,

and we simply continue our discussion here, having the dominant reducible backgrounds in

our mind.

As discussed earlier, the main SM backgrounds to two leptons plus a single MJ are

Z(→ `+`−) + js where a QCD jet can mimic an MJ by dressing up a mass due to QCD

contaminations [46, 51, 74–76]. Obviously, the resonance mass window cut is useful to sup-

press backgrounds, i.e., the invariant mass formed by an MJ and a lepton pair should fall into

the range around the mass of S. We set a different mass range in each benchmark point to

consider effects of smearing. To reduce backgrounds further, it is noteworthy that for a signal

event, a merged Z-jet and a di-leptonic Z are typically symmetric since they originate from a

single resonance, whereas for a background event, the corresponding objects are asymmetric

because a quark-initiated jet and Z are expected to have a sizable mass gap between them.

This observation motivates us to introduce a PT -asymmetric variable yZZ [75] that is expected

to be a reasonable choice to reduce Z + js backgrounds:

yZZ =
PT (MJ) − PT (`+`−)

PT (MJ) + PT (`+`−)
. (5.16)

Cut-efficiency flows for our benchmark points are summarized in Table 3. Note that the

efficiencies here are the same for both CP-even and CP-odd states. Basically, the reconstruc-

tion efficiency through detector geometry (i.e., rapidity coverage) and PT selection depends

on the rapidity of visible objects. However, their rapidity depends on θ∗ and θi, the former

of which has nothing to do with the CP state (as discussed in Section 3) and the latter of

which is sensitive only to the Z decay structure. Imposing those cuts on Monte Carlo event

samples, we conduct posterior analyses to determine the CP state of S using the pdf s from

three methods listed below.

1. Aφ variable in eq. (5.1)

2. Log-likelihood ratio qφ on φ distributions in eq. (5.4)

3. Log-likelihood ratio qM based on the MEM in eq. (5.13)

We present our results for MS = 750 GeV in Figure 7 and MS = 1500 GeV in Figure 8: Aφ in

the first row, qφ in the second row, and qM in the third row. To ensure enough statistics, we

prepare 5 million pseudo-experiments for both BPs at the center-of-mass energy of 13 TeV.

The first two columns show their distributions under the 0++ hypothesis (red histogram)

and the 0−+ hypothesis (blue histogram) with different numbers of events Nevent = 10 (first

column) and Nevent = 50 (second column).

In discriminating different hypotheses 0++ and 0−+ with a test static χ, we calculate

p0−+(χobs;χ) to reject the 0−+ hypothesis in favor of 0++ (Type I error α) [30], exhibiting

“Brazilian” plots in the third column, i.e., 1σ (green) and 2σ (yellow) bands around the peak
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Figure 7. Performance comparisons among various methods for the BP of MS = 750 GeV with

RMJ = 1.2: the method based on Aφ variable of eq. (5.1) in the first row, a log-likelihood ratio test

based on the φ angular distributions from eq. (5.4) in the second row, and a log-likelihood ratio test

based on the MEM of eq. (5.13) in the third row.

in p0++(χobs;χ) according to the number of required events to separate the two hypotheses.

We clearly observe that the most CP-sensitive method is to utilize a test static with the MEM-

based log-likelihood ratio. In our study, we find that the separating power of the MEM-based

method remarkably does not change much with resonance mass MS , providing its robustness

over a wide range of mass space. In BP1 of MS = 750 GeV representing the moderate boost

region, the required number of events to have Type I error in the level of 3σ is N
(3σ)
event = 18+14

−10

within 1σ deviation for the 0++ hypothesis. For BP2 of MS = 1.5 TeV representing highly

boosted region, the corresponding required number of events is N
(3σ)
event = 21+17

−12 . This can be
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Figure 8. Similar results to Figure 7 for the BP of MS = 1500 GeV with RMJ = 0.6.

understood in terms of the distortion in the differential distribution in φ as it is the most

crucial angular variable encapsulated in the MEM to determine the CP state. If we neglect

restriction on the phase space of leptons as lepton isolation Riso is larger than the minimum

angular distance ∆Rff̄ in eq. (4.2), the most relevant one is from the phase-space reduction

in the jet clustering procedure as in eq. (4.15). The corresponding coefficient ratios Rφ, which

are defined in eq. (3.21), for the two BPs are

Rφ ' 0.299 for BP1 , (5.17)

Rφ ' 0.309 for BP2 . (5.18)

As the shapes in φ distributions between the two benchmark points become similar after

MDT procedures, we anticipate that N
(3σ)
event for both BPs are of same order, accordingly.
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6 Conclusion

As the second phase of the LHC accumulates more data, resonance searches in the TeV

mass range are readily available in many channels. A wide range of new physics models

predict such massive particles which often decay into heavy SM states such as top quark,

Higgs, and W/Z gauge bosons. While their leptonic decay modes enjoy the clean nature

of the associated final state, the hadronic ones, which typically come with larger branching

fractions, are anticipated to play an important role in discovery potential as well as property

measurement at earlier stages. Nevertheless, relevant analyses are often challenging because

(hadronic) decay products are inclined to be highly collimated due to the substantial mass

gap between the heavy resonance and the SM heavy states involved in the process of interest.

In this paper, we tackled this challenge with the aid of jet substructure techniques,

and showed that it is possible to measure physical properties of new particles using subjet

information. More specifically, we illustrated that the Matrix Element Method can be a

powerful method for identifying properties of a new particle in the final state with two jets

and two leptons via a pair of SM gauge bosons. As a concrete example, we focused on

discriminating the CP property of a spin-0 resonance which decays into a pair of SM gauge

bosons. For a systematic approach, we adopted the prescription of the “merged” jet to capture

two quarks from the decay of an SM gauge boson, which also helps to reduce combinatorial

issues. We then studied effects from jet clusterings and associated jet substructure methods

on the phase space for visible particles.

A certain extent of prejudice in performing data analyses with detector-level recon-

structed particles is typically expected in comparison with relevant theoretical expectations.

However, our study based on both analytical calculations and Monte Carlo simulation demon-

strated that restrictions on the phase space invoked by jet clustering procedures could enhance

the difference in angular distributions for new particles with different CP states, unlike the

naive expectation stated above. We also showed that the performance of our data analyses

does not significantly depend on the size of MJs, as internal cuts in jet grooming procedures

affect the phase space for visible particles stronger. We believe that our finding here benefits

the determination of a reasonable size of MJs to make a balance between analysis performance

and enhancement of the ratio of signal-over-background.

In our analyses with the MEM, we refrained from integrating partonic phase space

through transfer functions which map reconstructed objects to the partonic phase space. We

rather modeled a probability density function (pdf ), generating many pseudo-experiments

with Monte Carlo simulation for a given signal hypothesis. This procedure can take into

account various effects from jet clustering procedures together with detector effects as well as

offer computational advantages compared to the situation where 2Nvis-dimensional integration

is required in dealing with transfer functions.

Two benchmark points were selected to cover various phase space regions from the mod-

erately boosted one to the highly boosted one. According to our numerical studies, discrimi-

nating different CP states requires O(20) signal events at the level of 3σ significance over the
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BP1 (MS = 750 GeV)

cut flow selection criterion σZ+jets σZZ σZW
parton level PT of leading jet ≥ 150 GeV 8.65 pb 8.19 fb 8.96 fb

object tagging One merged jet, two ` 44.11% 55.30% 55.83%

lepton PT PT > 25 GeV 33.47% 44.88% 47.24%

m(`+, `−) [83, 99] GeV 30.54% 40.91% 42.92%

mMJ [75, 105] GeV 1.60% 12.10% 10.72%

yZZ |yZZ | < 0.15 0.72% 11.06% 9.83%

PT (MJ) PT (MJ) > 0.4m(MJ, `+, `−) 0.48% 7.22% 5.29%

m(MJ, `+, `−) within MS ± 50 GeV 0.037% 0.82% 0.68%

Cross section (σ) - 3.16 fb 0.0671 fb 0.0609 fb

Table 4. Cut flows for major backgrounds of BP1. In a signal region defined with a merged jet,

Z + jets becomes the dominant background, compared to irreducible electroweak process pp→ ZZ.

mass range of a new particle from over 700 GeV that the current LHC has the equal level of

sensitivity in a merged jet with dileptons compared to a full leptonic channel [46].
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A Background consideration in MEM analyses

The major irreducible background in which the final state particles are the same as those in

our case (i.e., jj`+`−) is ZV pair production. Here V includes not only Z but W± gauge

bosons which decay into two jets because a W -induced MJ can easily fake a Z-induced MJ

due to jet mass resolution. On the other hand, the major reducible background is Z + js

where a QCD jet j can mimic an Z-induced MJ by acquiring a non-vanishing mass due to

QCD corruptions. To estimate contributions from above backgrounds, we perform detector-

level Monte Carlo simulation for ZV and Z + js, and summarize the associated cut flows in

Table 4. We also demonstrate, in Figure 9, m(MJ,`+,`−) distributions for the backgrounds and
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Figure 9. m(MJ,`+,`−) distributions of backgrounds and signal after all the cuts except m(MJ,`+,`−)

in Table 4.

signal after all the cuts except m(MJ,`+,`−) in Table 4, suggesting that the Z + js dominates

ZV backgrounds by far.

In the presence of backgrounds (denoted as bkg), we express probability density func-

tion P with respect to a set of discriminator variables {x} for the signal-plus-background

hypothesis as follows:

P({x}|0±+ + bkg) = rSP({x}|0±+) + rBP({x}|bkg) , (A.1)

where rS(B) is the “observed” fractional signal (background) cross section to the total observed

one. Here P({x}|α) is an individual pdf under hypothesis α (either signal or background),

which is built from the associated amplitude. It turns out that the best discriminator is the

set of momenta {p} itself. The matrix elements for the signal and background processes are

needed to convert observed momentum information into a form of probability under a given

hypothesis. We then define the likelihood ratio qM as

qM =

Neve∑
i

ln
P({p}i|0++ + bkg)

P({p}i|0−+ + bkg)
=

Neve∑
i

ln

(P({p}i|0++) +RσP({p}i|bkg)

P({p}i|0−+) +RσP({p}i|bkg)

)
, (A.2)

where Rσ is the ratio of the “observed” background to the “observed” signal cross sections.

If the relevant backgrounds are well under control or sufficiently suppressed, i.e., Rσ < 1, the

above expression is approximated to

qM =

Neve∑
i

ln
P({p}i|0++)

P({p}i|0−+)
+

Neve∑
i

ln

[(
1 +Rσ

P({p}i|bkg)

P({p}i|0++)

)/(
1 +Rσ

P({p}i|bkg)

P({p}i|0+−)

)]

'
Neve∑
i

ln
P({p}i|0++)

P({p}i|0−+)
+Rσ

Neve∑
i

(P({p}i|bkg)

P({p}i|0++)
− P({p}i|bkg)

P({p}i|0−+)

)
+O(R2

σ) . (A.3)
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Figure 10. Similar results to those in Figure 7 for the BP of MS = 750 GeV in the presence of all

backgrounds shown in Figure 9.

Note that it is not necessary to consider the second term in order to discriminate the CP

property of resonance S, because the first term already carries relevant information to be used

for the hypothesis test as we have seen in Section 5. Certainly, using the second term can

improve the discriminating power according to the Neyman-Pearson lemma. However, the

likelihood ratio between signal and background is not easily factorizable into matrix elements,

and therefore, we conservatively utilize the first term only for the hypothesis test.

We conduct similar exercises as in Figure 7 for BP1 including the contribution from all

backgrounds shown in Figure 9, and exhibit the resulting discrimination power in Figure 10.

We evaluate qM using only the dominant term in eq. (A.3), setting us free from the pdf

under the background hypothesis. For each of the event samples for the CP-even and CP-

odd, we take the same numbers of signal and background events. Comparing them with the

corresponding plots in the second row of Figure 7, we see that (not surprisingly) more events

are required to discriminate the CP property of the scalar. In this sense, more reduction of

background events would help to probe the properties of the new particles.

As the main background is from Z + js in which QCD jets fake MJs, an analytic matrix

element of Z + js after the MDT should be provided in order to implement the background

into the MEM more accurately. The leading order and next-to-leading order results are shown

in Refs. [77, 78]. However, it would be challenging to go beyond next-to-leading logarithmic

accuracy since the original definition of the MDT carries non-global logarithms [77, 78]. While

a modified Mass Drop Tagger or a soft drop have been proposed [16, 77, 78] and next-to-next-

to-leading logarithmic accuracy has been shown recently [79], dedicated examinations along

the line are certainly beyond the scope of the paper in which a simple MDT is employed. We

therefore do not provide any further discussion on the MEMs including backgrounds.

B Phase space restriction from other jet substructure methods

Besides the MDT, there are other jet substructure methods which have been widely used in

the literature. We give brief comments on how they affect the phase space.
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Figure 11. Distributions of ∆Rqq̄ between two partons from a Z boson decay for (a) MS = 750 GeV

and (b) MS = 1500 GeV, after we apply τ21 cuts in the N-subjettiness onto the corresponding recon-

structed jets.

• Trimming: The trimming procedure [15] uses a kt algorithm to divide a merged jet

into subjets with a size Rsub, and then removes the subjets with PT (ji)/PT (MJ) < fcut,

where fcut is a parameter. The remaining subjets are then reclustered as a trimmed

jet. Similar to the MDT, the fcut applies a cut on the PT fraction of a subjet z such

that z > fcut. Like eq. (4.12), it effectively reduces the cone size of MJs.

• Pruning: The pruning method [14] uses the C/A or kt algorithm to cluster the jets.

At each recombination step j1j2 → MJ, either min(PT (j1), PT (j2))/PT (MJ) > zcut or

∆Rj1j2 < mMJ/PT (MJ) needs to be satisfied. Interestingly, both cuts set some upper

limit on the cone size of MJs.

• N-subjettness: N-subjettiness [23, 24] is defined as

τN =
1

d0

∑
k

PT,k min(∆Rj1k, ...,∆RjNk) (B.1)

where d0 =
∑

i PT,kR0 with R0 being the characteristic jet radius used in the original jet

finding algorithm. Here ji denotes the usual ith subjet, while k runs over all constituent

particles in a given MJ. For a two-prong MJ, usually τ21 ≡ τ2/τ1 is computed with its

upper limit/cut. Since τ2 = 0 at the parton level, it is interesting to see how a non-zero

τ21 cut affects the relevant phase space at the reconstruction level. In Figure 11 we show

distributions in ∆Rqq̄ between two partons from a Z boson decay for BP1 (left panel)

and BP2 (right panel), after applying τ21 cuts to the corresponding reconstructed jets.

We see that a τ21 cut reduces the associated selection rate over the entire ∆Rqq̄ region,

so it could be taken as an independent cut after a jet grooming procedure (e.g., MDT,

trimming, or pruning).
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