ATLAS Detector: Performance and Upgrades

Denis Oliveira Damazio (Brookhaven National Laboratory) on behalf of the ATLAS experiment.

Obvious disclaimer: impossible to cover the wide range of activities in the detector, performance, physics and upgrade groups in one talk

Outline:

- * detector presentation.
- * Run 1 -> Run 2 upgrades.
- * Run 2 initial performance.
- Higher luminosity upgrades.

LHC performance

- * After a quite calm 2015, LHC provided much more intense beams in 2016 so far.
- Amazing and very stable operations at ✓s=13 TeV colliding at 25 ns with more than 2000 bunches per ring. The goal is to go beyond 100 fb⁻¹ with total data from 2015-2018.

ATLAS detector

- Complex set of detectors operating with excellency since the beginning of the LHC data taking.
- Capable of coupling with a wide range of operating conditions (25ns/50ns; 900GeV, 7TeV, 8TeV, 13TeV; Heavy Ions, Cosmic Rays, beam splashes).

ATLAS detector

- * 3 Tracking detectors with large number of channels (Pixels, Semi-Conductor Tracker and Transition Radiation Tracker with particle discrimination capability).
- * 4 Sampling Calorimeters covering different detector regions (EM: lead/liquid Argon, Tile Hadronic: iron/scintillators, Hadronic EndCaps: copper/liquid Argon, Forward: copper-tungsten/liquid Argon).
- 4 Muon detectors with complementary measuring and triggering capabilities.
- Solenoid and toroid magnetics for charge and momentum measurement.
- * Forward detectors not show in the picture (far down the accelerator tunnel).

ATLAS Trigger

- * The ATLAS trigger in Run 2 is divided in a hardware and a software level.
- * The Level 1 (L1 custom hardware based) reduces the collision rate from the bunch crossing frequency (40 MHz) to 100 kHz compatible with the detector read-out system. Only the calorimeter and the Muon detectors are used.
- * Detector data "pre-digested" by the Read-out drivers (RODs) is stored temporally in buffers in the Read-Out System and used in the High-Level Trigger (HLT) Processing Units (software based). The algorithms can use L1 information (for instance, (η, φ) coordinates of electron candidates) and run specialised or offline-like algorithms, combining data from all detectors necessary.
- * Final recording "budget" is 1kHz on average.

ATLAS status - Run 2

Detector efficiency in May, 2016

- All different
 detectors working
 with high efficiency.
- Pixels here include our newly installed
 12 M Insertable Blayer (see next slide).

Subdetector		Approximate Operational Fraction
Pixels	92 M	98.2%
SCT Silicon Strips	6.3 M	98.7%
TRT Transition Radiation Tracker	350 k	97.2%
LAr EM Calorimeter	170 k	100%
Tile calorimeter	5200	100%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.7%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	383 k	99.8%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	357 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Chambers	383 k	96.6%
TGC Endcap Muon Chambers	320 k	99.6%
ALFA	10 k	99.9 %
AFP	188 k	98.8 %

Time Line of LHC operation

- * LHC energy (13 TeV) is already close to the nominal limit (14 TeV).
- * luminosity-wise, LHC is already beyond the nominal value ($<\mu>=27.5$). Will probably be beyond the double by 2019 ($<\mu>=55$) and maybe more than 5 times in 2024 ($<\mu>>140$). $<\mu>=200$ could be reachable.
- * Complexity of the events is even larger: challenge, in particular for the trigger. To protect the electroweak sector, single lepton thresholds must be preserved below half of Z or W mass with as high efficiency as possible.
- * Some detectors won't survive the particle flux.
- * Experience with present detector helps to define main concerns in upgrade.

Run 2 - IBL performance

- * Insertable B-Layer installed at mere 33 mm from collision center (as well as new beam-pipe).
- * Alignment procedure showed clear dependency with temperature (online alignment necessary).
- * Major improvement (up to 4 times) in impact parameter resolution, early conversions identification and B-tagging.

IBL installation

impact parameter resolution 400 □ ATLAS Preliminary 350 Data 2012, \s = 8 TeV $0.0 < \eta < 0.2$ Data 2015, \s = 13 TeV 300 250 200 150 100 50E 2015/2012 4×10 5 6 7 8 9 1 0 20 temperature dependent IBL alignment

B-jet tagging highly improved

p_T [GeV]

Run 2 - Trigger updates

- High pile-up and long calorimeter pulse: bunch-crossing structure effects in energy measurement.
- New L1 hardware sample calorimeter analog signals at 80 MHz (was 40 MHz). Flexibility (ASIC versus FPGA) allows to perform bunch crossing dependent pedestal suppression on the fly: Very relevant for MET rates.
- More integrated HLT farm allows for higher rate access to the detectors (including full detector access at tens of kHz): challenge to adapt offline algorithms in HLT.
- * Track finding performed with pattern matching technique via content addressable associative memory (Fast TracKer FTK) to speed up HLT processing being installed/tested.

Run 2 - L1 Topological trigger

- * Some objects like Z's and W could be better selected at early trigger stages if operation on multiple L1 Trigger OBjects (TOBs) were possible.
- * L1 Topological trigger (FPGA based processor) can perform mass cuts on electron, muons, jets or taus and missing ET phi direction, Some isolation and Large Jets also possible.
- * separate jet triggers based on detector regions (central/forward) helps to keep rates under control.
- * Being commissioned/tested and helping to test some other upgrade hardware.

Energy sums performed in eta constrained regions

Electrons/photons performance

- * Likelihood for electrons based on Shower Shapes and tracks properties. Cut based for photons.
- * New TRT Likelihood variable capable to work with new TRT gas mixture (argon instead of Xenon).
- * Calorimeter and track based isolation (isolation cone ΔR variable with object P_T).
- MVA-based calibration (BDT) for electrons and photons (converted and unconverted treated separately).
- * Tag & Probe (J/ ψ , Z and W) used for efficiency estimation based on data only : stable operation in 3 operation points with respect to luminosity. Photons use radiative Z and more complicated matrix method (see perf. note) for performance evaluation.

Much more details in the 3 performance notes about : 2015 electron ID; 2015 photon ID; calibration

Photon efficiency using radiative Z boson decays

electron efficiency dependency with respect Number of Vertices

Muons performance

- * Specific muon chambers or Tracking failures reduce efficiency in well located regions. Otherwise excellent performance.
- * Efficiency maps prepared for offline analysis.
- * Calorimeter and track based isolation (isolation cone ΔR variable with object P_T) also available.
- * Also using Tag & Probe with J/ψ and Z's for efficiency measurement.

Reconstructed muons efficiency with 2016 data

Jets performance

- * Jets reconstruction starts from topological calorimeter clustering (no predefined cluster shape, cluster grows as cells touching it have significance) which are later used in anti-Kt (R=0.4).
- * Cleaning from detector noise is also used. Jet quality cuts.
- * Jet suffers a lot from pile-up (soft jets like) despite the topological clustering.
- * Event-wide or track based variables (Jet Vertex Fraction JVF) also used to mitigate pile-up effects.
- * Jet Energy Scale (JES) used to combine EM and noncompensating calorimeter response to form final Jet energy.
- * Recent addition of Larger Jet areas to cover the cases when multiple jets are coming from similar source (boosted).

Missing Transverse Energy

- * Reconstruction algorithm uses all identified objects to calculate MET.
- * Calorimeter and Tracking information (Soft-Terms) are included to increase resilience to underlying events and pile-up: stable resolution.
- * Results including 2015/2016 data sets. Comparison of MET selection with MC events (good modelling).

Some description about TST MET : http://cds.cern.ch/ record/2037700/files/ATL-PHYS-PUB-2015-023.pdf

On going Analysis

- Many preliminary results already including 2016 data available.
- Multiple Higgs and Top analysis and measurements started with 13 TeV data (2015/2016). Significance, coupling being studied.
- Since this will be further explored during this conference, I will refrain from detailing too much here.

Phase 1- Lar Calorimeter upgrades

- * L1 EM rates will go well beyond experiment capability with increased pile-up scenario : limited in shower shape definition with present hardware primitives ($\delta\eta x \delta\varphi = 0.1x0.1$) : Trigger Towers to the Level 1 system.
- Proposed increase granularity, longitudinal granularity to become exactly as at the cell level. Lateral granularity also improved.
- * rate reduction helps to keep similar E_T thresholds with increased luminosity.
- * Demonstrator already installed in a small detector wedge. Production of new electronics going on.

Hardware already being tested and partially installed in ATLAS for testing

Phase 1 - New Muon Wheel

Rate

- L1 muons rates also extremely high, specially in forward direction.
- Only two wheels in the forward region instead of 3 in the central region. So, new solutions have to be found (eg: Tile Calorimeter being used in muon triggers). But it is not enough.
- Using MicroMegas and sTGCs. Improved tracking and trigger capability. Compatibility with luminosity up to $\langle \mu \rangle = 200$.

Quad Pixel Module Prototype

Phase 2 - ITk

- * Given the luminosity increase on phase 2, the present ATLAS Inner Detector electronics will not survive the radiation, so complete replacement is necessary.
- * A completely new trajectory detector being designed/simulated, the Inner TracKer (ITk).
- Only silicon based, no more transition radiation detector (Pixels - blue points; strips - red points with double readout)
- * Slightly reduced material, prototypes being tested and final layout still under discussion. Increased η range : resolution compatible with Run-2 values.

Phase 2 - DAQ restructuring

- * In phase 2, phase 1 level 1 becomes level 0 with about 500 kHz of acceptance (Muon/Calo).
- * ITk (tracking, see next slide) to be used together with digital readout of the full detectors (including precision muons chambers) in the new Level 1. Level 1 output rate (200 kHz) beyond present acceptance by readout electrons (100 kHz), whole detector Front-End to be redesigned.
- Present L1 phase 1 design will help build Front-End Readout in phase 2.
- * More complex Level 1 algorithms will be possible (using Level 0 Regions of Interest).

Phase 2 - muon upgrades

- * Additions of more muon walls with more trigger capabilities, and also integrated in the new L0/L1 framework.
- Use the detected trigger muon to extrapolate inside the precision detectors (MDTs) and refine muon measurement.

Conclusions

- * ATLAS detector evolving continuously facing harsh LHC operating conditions. Run 2 already with special upgrades (IBL, L1 Topo, more muon chambers) to face LHC beyond the design luminosity.
- * Detector performance evaluated over a wide range of luminosity scenarios and energy. Results usually rather stable with $<\mu>$ increase.
- * Upgrade program well established with phase 1 under construction and phase 2 in prototyping stage. Some parts already integrated in the detector for testing.
- * More integration between different sub-systems, specially for triggering purposes.
- * Once more, this is NOT a complete description of the activities in ATLAS (no talking about HI results, Forward detectors, many different analysis or all upgrade plans). Also could talk about outreach, hardware developments, etc...
- * Such rich development program still has a lot of work for students and new collaborators.

Events Displays

Still in this conference...

- * "Neutrinos at LHC" by Toshi Sumida (Friday, Sep 23rd).
- * "B-physics in ATLAS and CMS" by Dario Barberis (Thursday, Sep 22nd).
- * "Top Physics in ATLAS and CMS" by José Enrique García Navarro (Thursday, Sep 22nd).
- * "Recent highlights of hard QCD with W and Z bosons, jets and photons by ATLAS" by Bogdan Malaescu (Thursday, Sep 22nd).
- * "Recent highlights of Electroweak Physics in ATLAS" by Manuella Vincter (Thursday, Sep 22nd).

Still in this conference...

- * "Overview of ATLAS heavy ions results" by Brian Cole (Thursday, Sep 20th).
- * "ttH measurements and combinations in ATLAS" by Antonio Baroncelli.
- * "SM Higgs boson results ATLAS" by Dominik Duda (Monday, Sep 19th).
- * "Higgs boson BSM ATLAS" by Anna Kaczmarska (Monday, Sep 19th).
- * "Search for high mass resonances through 2 gamma channel in ATLAS" by Yee Chinn Yap (Tuesday, Sep 20th).

Still in this conference...

- * "Heavy Higgs searches in diboson final states in ATLAS" by Zhiqing Zhang (Monday, Sep 19th).
- * "Supersymmetry searches in ATLAS" by Edoardo Gorini (Tuesday, Sep 20th).
- * "BSM physics in ATLAS and CMS" by Young-Kee Kim (Tuesday, Sep 20th).

Back up

Run 2 - Fast TracKer

- * In the High-Level Trigger (HLT) finding a track is a very intense computational task.
- Processing time depends on the combinatorial search on space-points for tracks. This increases with luminosity.
- * Using Associative Content Addressable Memories which accumulate all possible tracking patterns, tracks can be matched in 100 kHz and informed to the HLT.
- * HLT tracking thresholds can be kept lower. Many HLT algorithms can benefit from a good number of vertices estimative as well. Being commissioned.

phase 2 - electronics upgrade

Radiation hard Electronics to be used in the Front-End

* Front-end upgrades

