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1 Introduction

Recent measurements of the cosmic microwave background (CMB) [1–3] provide important
constraints on the scalar tilt ns and tensor-to-scalar ratio r in the perturbation spectrum,
which in turn provide important restrictions on possible models of cosmological inflation [4–
6]. Among the models that fit the data very well is the Starobinsky model [7–9] that is based
on an R + R2 modification of minimal Einstein gravity. Another model that is consistent
with the CMB data is Higgs inflation [10], which assumes a non-minimal coupling of the
Standard Model Higgs field to gravity.1 A central challenge in inflationary model-building
is therefore the construction of a model that incorporates not only the Standard Model but
also plausible candidates for new physics beyond, such as neutrino masses and oscillations,
dark matter, and the baryon asymmetry of the Universe.

Among the leading frameworks for physics beyond the Standard Model at the TeV scale
and above is supersymmetry. It has many advantages for particle physics, could provide the
astrophysical dark matter, offers new mechanisms for generating the baryon asymmetry, and
could also stabilize the small potential parameters required in generic models of inflation [12–
15]. In cosmological applications, it is essential to combine supersymmetry with gravity in the
supergravity framework [16–19]. However, generic supergravity models are not suitable for
cosmology, since their effective potentials contain ‘holes’ of depth O(1) in natural units [20,
21], an obstacle known as the η problem. One exception to this ‘holy’ rule is provided by
no-scale supergravity [22–24], which offers an effective potential that is positive semi-definite

1This model is disfavoured by current measurements of the top and Higgs masses, which indicate that the
effective Higgs potential becomes negative at large field values [11], unless the Standard Model is supplemented
by new physics.
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at the tree level, and has the added motivation that it appears in compactifications of string
theory [25]. In this case, the η problem can be avoided [26] and it is natural, therefore, to
consider inflationary models in this context [27–40].

Consequently [41], there has been continuing interest in constructing no-scale super-
gravity models of inflation [42–71], which lead naturally to predictions for the CMB variables
(ns, r) that are similar to those of the Starobinsky model [41]. In particular, no-scale models
have been constructed in which the inflaton could be identified with a singlet (right-handed)
sneutrino [43, 68, 69], and also no-scale GUT models have been constructed in which the in-
flaton is identified with a supersymmetric Higgs boson, avoiding the problems of conventional
Higgs inflation [72, 73].

In this paper we take an alternative approach to the construction of a no-scale GUT
model of inflation, namely we consider a supersymmetric SO(10) GUT in which the sneutrino
is embedded in a 16 of the gauge group and the inflaton is identified with a singlet of SO(10).
We show that this model also makes Starobinsky-like predictions for the CMB variables
(ns, r). However, achieving this result makes non-trivial demands on the structure of the
SO(10) model, which we study in this paper.

One issue is the behaviour of the GUT non-singlet scalar fields during inflation, which
we require to be such that the model predictions are Starobinsky-like. Another issue is
the form of the neutrino mass matrix. In our model, the superpartner of the inflaton field
mixes with the doublet (left-handed) and singlet (right-handed) neutrino fields, leading to a
double-seesaw structure, which must satisfy certain conditions if it is to give masses for the
light (mainly left-handed) neutrinos that are compatible with oscillation experiments and
late-time cosmology. Finally, we also consider the issue of reheating and the generation of
the baryon asymmetry following inflation, which, in addition to being compatible with the
Planck constraints on ns, should not lead to overproduction of gravitinos.

We find parameters for the no-scale SO(10) GUT model that are compatible with all
these cosmological and neutrino constraints, providing an existence proof for a more complete
model of particle physics and cosmology than has been provided in previous Starobinsky-like
no-scale supergravity models of inflation.

The structure of this paper is as follows. In section 2 we set up our inflationary model,
including the no-scale and SO(10) aspects of its framework. The realization of inflation in
this model is described in section 3, paying particular attention to the requirements that
its predictions resemble those of the Starobinsky model. Section 4 explores the generation
of neutrino masses in this model, as they are generated via a double-seesaw mechanism.
Reheating and leptogenesis after inflation is discussed in section 5, with particular attention
paid to the gravitino abundance. Finally, our conclusions are summarized in section 6.

2 An SO(10) inflationary model set-up in no-scale supergravity

2.1 No-scale framework

No-scale supergravity provides a remarkably simple field-theoretic realization of predictions
for the CMB observables that are similar to those of the R + R2 Starobinsky model of
inflation [41]. In the minimal two-field case [74] useful for inflation, the Kähler potential can
be written as

K 3 −3 ln

(
T + T ∗ − |φ|

2

3
+ . . .

)
+ . . . , (2.1)

– 2 –
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where T and φ are complex scalar fields and the . . . represent possible additional matter
fields; untwisted if in the log, twisted if outside. Restricting our attention to the the two-field
case for the moment, the Kähler potential (2.1) yields the following kinetic terms for the
scalar fields T and φ:

LKE =
3

(T + T ∗ − |φ|2/3)2
(∂µφ

∗, ∂µT
∗)

(
(T + T ∗)/3 −φ
−φ∗ 1

)(
∂µφ
∂µT

)
. (2.2)

For a general superpotential W (T, φ), the effective potential becomes

V =
V̂

(T + T ∗ − |φ|2/3)2
, (2.3)

with

V̂ ≡
∣∣∣∣∂W∂φ

∣∣∣∣2 +
1

3
(T + T ∗)|WT |2 +

1

3

(
WT (φ∗W ∗φ − 3W ∗) + h.c.

)
, (2.4)

where Wφ ≡ ∂W/∂φ and WT ≡ ∂W/∂T .

If the modulus T is fixed with a vacuum expectation value (vev) 2 〈ReT 〉 = c and
〈ImT 〉 = 0, as was shown in ref. [41], the Starobinsky inflationary potential

V =
3

4
M2(1− e−

√
2/3φ′)2 (2.5)

would be obtained with the following Wess-Zumino choice of superpotential [75]:

W =
µ̂

2
φ2 − λ

3
φ3 (2.6)

if λ = µ/3 where µ = µ̂/
√
c/3, as may be seen after a field redefinition to a canonically-

normalized inflaton field φ′. In order to obtain the correct amplitude for density fluctuations,
we must take M = µ/

√
3 ≈ 10−5 in natural units with M−2

P = 8πGN ≡ 1. Alternatively, if
the field φ is fixed (with φ = 0), and the superpotential is given by [76]

W =
√

3Mφ(T − 1/2) , (2.7)

the Starobinsky potential (2.5) is found when T is converted to a canonical field. In fact,
there is a large class of superpotentials that all lead to the same inflationary potential [42].
The stabilization of either φ or T in this context can be achieved through quartic terms in
the Kähler potential [42, 44, 57, 68–70, 77].

In order to achieve reheating the inflaton must be coupled to matter. In no-scale models,
supergravity couplings of the inflaton are strongly suppressed [78], and require either a non-
trivial coupling through the gauge kinetic function [69, 78, 79], or a direct coupling to the
matter sector through the superpotential. It was proposed in ref. [43] that the inflaton
could be associated with the scalar component of the right-handed (SU(2)-singlet) neutrino
superfield νR, and a specific no-scale supersymmetric GUT [80–86] model based on SU(5) was
proposed, in which the νR appeared as a singlet. In this model, reheating takes place when
the inflaton decays into the left-handed sneutrino and Higgs (or neutrino and Higgsino), and
may occur simultaneously with leptogenesis [34, 87, 88].

– 3 –
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2.2 SO(10) GUT construction

We consider here possibilities for no-scale inflation in the context of SO(10) grand unifica-
tion [89–94]. We immediately observe that, if we consider the superpotential (2.6) for the
inflaton, then φ cannot be associated with the right-handed neutrino. This is because, in
SO(10), the νR is included in the 16 representation of SO(10), and there are no gauge-
invariant 162 or 163 couplings in SO(10). In principle, one could imagine using either a 54
or 210 representation which do allow both quadratic and cubic couplings in the superpoten-
tial. Indeed, it might seem natural to utilize one of these fields, which are often present as
Higgs fields used to break SO(10) down to some intermediate gauge group. An interesting
possibility utilizing the 210 was considered in ref. [71], where different possible directions
within the 210 were considered as inflaton candidates. There are however, two major hurdles
in this approach. The first is that the mass scale µ for the Higgs field would typically be of
order the GUT scale rather than ∼ 10−5 needed for inflation. Secondly, Starobinsky-type in-
flation drives the field toward zero vacuum expectation value (vev), which in this case would
correspond to SO(10) symmetry restoration. Then one is left with the problem (reminiscent
of early problems associated with degenerate vacua in supersymmetric GUTs [95–97]) of
breaking SO(10) after inflation, whereas normally it is assumed that the appropriate choice
of vacuum is determined during inflation. Finally, we note that reheating is so efficient in a
model with the inflaton associated with a GUT-scale Higgs field that the reheating temper-
ature is very high, leading to the overproduction of gravitinos [98–103].

We are therefore led to consider a construction with an SO(10)-singlet inflaton field.
While there is no problem writing a superpotential as in eq. (2.6) for a singlet, one must
couple it to matter for reheating in such a way as to preserve its inflationary evolution
and respect the other phenomenological constraints. In the model discussed below, we will
see that the fermionic partner of the inflaton mixes with the neutrino sector, leading to a
double-seesaw structure, and the twin requirements of Planck-compatible inflation and an
acceptable reheating temperature place constraints on the parameters of the neutrino mass
matrix whose consistency with experimental data we discuss.

2.2.1 Model

We consider this scenario within an SO(10) model of grand unification that breaks to an
intermediate-scale gauge group Gint via a vev of a 210 representation at the GUT scale
MGUT. The intermediate-scale gauge group is subsequently broken to the Standard Model
(SM) group GSM = SU(3)C ⊗SU(2)L⊗U(1)Y by vevs of a pair of 16 and 16 representations
at the intermediate scale Mint, and to SU(3)C ⊗ U(1)EM symmetry via vevs of the minimal
supersymmetric Standard Model (MSSM) Higgs fields Hu and Hd as usual. The MSSM Higgs
fields are given by mixtures of the 10, 16, and 16 fields as we will see below. As a result,
the symmetry-breaking chain we consider is given by

SO(10) −−→
210

Gint −−−→
16,16

GSM −−−−→
Hu,Hd

SU(3)C ⊗U(1)EM . (2.8)

The intermediate gauge symmetry Gint we obtain after the SO(10) symmetry breaking de-
pends on the vev of the 210. We also consider the case where MGUT = Mint, namely, where
the SO(10) gauge symmetry is broken into the Standard Model gauge symmetry directly.
We use the following notations for the SO(10) fields: Σ is the 210 representation that breaks
SO(10) at the GUT scale, Φ and Φ̄ are the 16 and 16 representations that break the theory
to the MSSM, respectively, H is the 10 representation whose SU(2)L doublet components

– 4 –
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mix with Φ and Φ̄ to yield the MSSM Higgs fields Hu and Hd, ψi (i = 1, 2, 3) are the MSSM
matter 16 multiplets with i the generation index, and Si (i = 1, 2, 3) denote the SO(10)
singlet 1 superfields, where one of these fields will be identified as inflaton. The R-parity of
each field is defined as usual: R ≡ (−1)3(B−L)+2s [104], where B, L, and s denote the baryon
number, lepton number, and spin of the field, respectively. Since the B − L symmetry is a
subgroup of SO(10), the R-parity of each SO(10) representation is uniquely determined.

The field content is similar to the SO(10) GUT in ref. [92–94], which uses a 16 rather
than the more common 126 to break the intermediate scale [105–116]. A supersymmetric
version of this “minimal” theory was discussed in ref. [117]. In this version of SO(10), the
126 and 126 are replaced by a pair of 16 and 16, and there is one singlet per generation,
one of which is identified as the inflaton. Since the ψψΦ and ψψΦ̄ couplings are forbidden
by gauge symmetry, the vevs of the 16 and 16 fields do not generate Majorana mass terms
for right-handed neutrinos via renormalizable couplings. However, in our model, non-zero
light neutrino masses are induced via the mixing of 1 and 16 fields [92–94], as we see in
section 4. In principle, only one such singlet is needed for inflation, whereas two are needed
for leptogenesis and the non-zero neutrino mass differences, and three for non-zero neutrino
masses for all three neutrinos.

We consider the following generic form for the superpotential of the theory:2

W =
m

2
S2 − λ

3
S3 + yHψψ + (M + bS)Φ̄ψ +mΦΦ̄Φ +

η

4!
Φ̄ΦΣ +

mΣ

4!
Σ2 +

Λ

4!
Σ3 (2.9)

+mHH
2 + λSHSH

2 +H(αΦΦ + ᾱΦ̄Φ̄ + α′Φψ) + cSΦ̄Φ +
b′

4!
Φ̄ψΣ +

γ

4!
SΣ2 + κ ,

where for simplicity we have omitted the tensor structure of each term and suppressed the
generation indices. We assume that there is no mixing among the singlet superfields Si.
The first two terms are the S-dependent Wess-Zumino superpotential terms that reproduce
the predictions of Starobinsky inflation in no-scale supergravity [41, 42]. The third term
determines the SM Yukawa couplings. The fourth and tenth terms include couplings between
the inflaton S and SM fields: the magnitude of these couplings determines the neutrino masses
and the decay rate of the inflaton. The SM singlet components of Φ, Φ̄, and Σ can acquire non-
vanishing vevs through the couplings included in the fifth through eighth terms. After these
fields develop vevs, the αHΦΦ and ᾱH̄Φ̄Φ̄ terms induce mixing among the SU(2)L doublet
components inside H, Φ, and Φ̄, and by appropriately choosing these couplings we can make
two linear combinations of these fields, denoted by Hu and Hd, much lighter than the GUT
and intermediate scales [117], thereby realizing the desirable doublet-triplet splitting. The
vevs of these fields then break the SM gauge group at the electroweak symmetry breaking
scale as in the MSSM. In addition, after Φ acquires a vev, the α′HΦψ term induces an R-
parity-violating term HuL, where L is the SU(2)L doublet lepton field. This is because Φ is
odd under R-parity and thus its vev spontaneously breaks R-parity. On the other hand, the
other R-parity-violating operators in the MSSM, i.e., LLē, LQd̄, and ūd̄d̄, where ē, Q, ū, and
d̄ are the SU(2)L singlet charged lepton, doublet quark, singlet up-type quark, and singlet
down-type quark fields, respectively, are not generated at renormalizable level. The constant
κ is tuned to yield a weak-scale gravitino mass through the relation m3/2 = 〈eK/2W 〉: it may
be generated by the presence of a separate supersymmetry-breaking sector such as a Polonyi

2To obtain the Starobinsky inflationary potential, we drop a possible term linear in the singlet field S.

– 5 –
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sector [118]. The SO(10) no-scale Kähler potential is then taken to be [74]

K = −3 ln

[
T + T ∗ − 1

3

(
S∗S +H†H + ψ†ψ + Φ†Φ + Φ̄†Φ̄ +

1

4!
Σ†Σ

)]
, (2.10)

which mimics the two-field prototype (2.2).
The superpotential in eq. (2.9) contains several terms that are additional to those in

the minimal model in ref. [117], notably those with the couplings λ, λSH , M , α′, c, b′,
and γ. In ref. [117], there is an extra Z2 symmetry (besides the SO(10) gauge symmetry)
that forbids these couplings, which is obtained by modifying the definition of R-parity as
R = (−1)3(B−L)+2s+χ, where χ is a new quantum number: 1 for S, Φ, and Φ̄, and 0 for the
other fields. However, for Starobinsky-type inflation, we must have a term that is cubic in
the singlet inflaton, thus we do not introduce such an extra Z2 symmetry. Thus we are, in
principle, allowed (even obliged) to write down the additional couplings in eq. (2.9). In this
case, R-parity is spontaneously broken when Φ and Φ̄ develop vevs, as we mentioned above.
For the most part, we will assume these terms to be absent or small, but will comment on
their possible effects on our results. This assumption is stable against radiative corrections
thanks to the non-renormalization property of the superpotential terms. We also comment
in the following discussion on the effect of R-parity violation in this theory.

2.2.2 Vacuum conditions

The SO(10) and intermediate gauge symmetries are spontaneously broken by SM singlet
components of the above fields without breaking the SM gauge group. Such components are
contained in Σ, Φ, Φ̄, and ψ (as well as S), and we denote these vevs by

p = 〈Σ(1,1,1)〉 , a = 〈Σ(15,1,1)〉 , ω = 〈Σ(15,1,3)〉 ,
φR = 〈Φ(4,1,2)〉 , φ̄R = 〈Φ̄(4,1,2)〉 , ν̃R = 〈ψ(4,1,2)〉 , (2.11)

where we express the component fields in terms of the SU(4)C ⊗ SU(2)L ⊗ SU(2)R quantum
numbers. We assume that all of the vevs of Si vanish after inflation; one of them which is
regarded as inflaton is automatically driven into zero after inflation as we see in the next
section, while the other two can also be stabilized at the origin by the quadratic coupling
m. In addition, we will consider the cases where ν̃R = 0; otherwise, a non-zero vev of ν̃R
gives rise to a large R-parity violating term HuL via the Yukawa coupling yHψψ. We will
see below that the ν̃R = 0 minimum is in fact stable with a positive mass-squared if either
b or b′ is non-zero. Depending on the values of p, a, ω, φR, and φ̄R, we obtain different
symmetry-breaking patterns. If all of these values are of the same order, then the SO(10)
gauge group is broken directly into the SM gauge group at the GUT scale. On the other
hand, if φR, φ̄R � p, a, ω, SO(10) is first broken into an intermediate gauge symmetry Gint

by vevs of p, a, and ω at the GUT scale, and it is then subsequently broken by φR and φ̄R
into GSM, as shown in eq. (2.8). We will discuss possible values of these vevs as well as the
corresponding intermediate gauge symmetries in what follows.

In the supersymmetric limit, all of the other components have vanishing vevs. After the
supersymmetry-breaking effects are transmitted to the visible sector, certain linear combina-
tions of the doublet components H, Φ, and Φ̄ develop vevs of the order of the electroweak
scale to break the SM gauge symmetry spontaneously to SU(3) ⊗ U(1)EM, just as in the
MSSM. The rest of the components in S, H, Φ, Φ̄, and Σ are stabilized at the origin with
GUT- or intermediate-scale masses.

– 6 –
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In no-scale supergravity with a T -independent superpotential, the F -term part of the
scalar potential has the simple form [74, 77]

V = e2K/3|W i|2 . (2.12)

To study the scalar potential, we write the superpotential (2.9) in terms of the SM singlet
fields, with the rest of the fields set to zero:

W =
m

2
S2 − λ

3
S3 − (M + bS)φ̄RνR + (ηφR + b′νR)φ̄R(p+ 3a+ 6ω) (2.13)

− (mΦ + cS)φ̄RφR + (mΣ + γS)(p2 + 3a2 + 6ω2) + 2Λ(a3 + 3pω2 + 6aω2) + κ .

As we discussed above, we study vacua where S = ν̃R = 0. We also require that the non-zero
vevs of p, a, ω, φR, and φ̄R do not break supersymmetry. Therefore, the F -terms of these
fields should vanish, leading to the following set of algebraic equations:

2mΣp+ 6Λω2 + ηφRφ̄R = 0 , (2.14)

2mΣa+ 2Λ(a2 + 2ω2) + ηφRφ̄R = 0 , (2.15)

2mΣω + 2Λ(p+ 2a)ω + ηφRφ̄R = 0 , (2.16)

φ̄R [−mΦ + η(p+ 3a+ 6ω)] = 0 , (2.17)

φR [−mΦ + η(p+ 3a+ 6ω)] = 0 , (2.18)

−cφRφ̄R + γ(p2 + 3a2 + 6ω2) = 0 , (2.19)

φ̄R
[
−M + b′(p+ 3a+ 6ω)

]
= 0 , (2.20)

for p, a, ω, φR, φ̄R, S, and ν̃R, respectively. As discussed in refs. [115, 116], these equations
possess a variety of solutions that lead to different, degenerate symmetry-breaking vacua,
along with the SO(10)-preserving vacuum p = a = ω = φR = φ̄R = 0. This solution can be
parametrized in the form

p = −mΣ

Λ

x(1− 5x2)

(1− x)2
, a = −mΣ

Λ

1− 2x− x2

1− x
,

ω =
mΣ

Λ
x , φRφ̄R =

2m2
Σ

ηΛ

x(1− 3x)(1 + x2)

(1− x2)
, (2.21)

where the parameter x is a solution of the cubic equation

8x3 − 15x2 + 14x− 3 = (x− 1)2 ΛmΦ

ηmΣ
, (2.22)

and where |φR| = |φ̄R| ≡ φ in order to ensure the vanishing of the D-terms. This solution is
identical to that found in SO(10) models using a 126 [115, 116] rather than a 16, with the
change in sign for ω in eq. (2.21) and a sign change in the right-hand side of eq. (2.22). The
solutions in eq. (2.21) satisfy eqs. (2.14)–(2.18). The conditions (2.19) and (2.20) then restrict
the parameters c, γ, M , and b′. From these equations we find that φ � p, a, ω is realized
when x ' 0, 1/3, or ±i [116]. For x ' 0, eq. (2.21) is satisfied for ΛmΦ/ηmΣ ' −3. In this
case, p ' ω ' φ ' 0 and a = −mΣ/Λ, and we obtain Gint = SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗
U(1)B−L⊗D, where D denotes D-parity [119–123]. For x ' 1/3, we need ΛmΦ/ηmΣ ' 2/3,
which leads to p ' a ' −ω ' −mΣ/3Λ and Gint = SU(5) ⊗ U(1). In this case, the vevs
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of φR and φ̄R cannot break SU(5), and thus the intermediate gauge symmetry is broken by
the difference among p, a, and −ω, whose sizes are O(Mint); i.e., p − a, p + ω = O(Mint).
This intermediate gauge symmetry looks phenomenologically implausible, however, since the
SU(5) gauge bosons whose masses are O(Mint) cause rapid proton decay. The x ' ±i case is
realized for ΛmΦ/ηmΣ ' −3±6i, where we obtain p ' 3mΣ/Λ, a ' −2mΣ/Λ, ω ' ±imΣ/Λ,
and Gint = SU(3)C ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L. Among the possibilities which lead to
φ� p, a, ω, we consider here only the case with x ' 0.

In the above analysis we have assumed that ν̃R = 0 at the vacua. To check that this is
indeed the case, we consider the scalar potential terms that contain ν̃R:∣∣∣∣∂W∂S

∣∣∣∣2 +

∣∣∣∣ ∂W∂φ̄R
∣∣∣∣2 +

∣∣∣∣∂W∂p
∣∣∣∣2 +

∣∣∣∣∂W∂a
∣∣∣∣2 +

∣∣∣∣∂W∂ω
∣∣∣∣2 → [

|b|2 + 46|b′|2
]
|ν̃R|2 , (2.23)

where we have used the conditions (2.14)–(2.20). We see immediately that ν̃R has a posi-
tive mass term unless b = b′ = 0, and thus is indeed stabilized at the origin in the vacua
considered above.

Generically, the non-zero vevs of these fields lead to an O(MGUT) contribution to su-
persymmetry breaking, which may be fine-tuned with κ of O(MGUT) to be of the order of
supersymmetry-breaking scale, MSUSY. We note, however, that one particular solution is ob-
tained if we further require that the GUT sector does not require a fine-tuning of κ to ensure
a weak-scale gravitino mass, i.e., if we impose κ � MGUT. This minimum with vanishing
superpotential is found for [71] x ' −0.3471 and ΛmΦ/ηmΣ ' −5.5115, in which case we
have (p, a, ω) ' (−0.0138, 0.2120, 0.0630)mΦ/η with φ ' 0.3985

√
mΦmΣ/η in units of MP .

However, we do not consider this particular solution here.

2.2.3 Doublet-triplet splitting

After the above fields acquire vevs, we obtain the MSSM as an effective theory. To realize
electroweak symmetry breaking correctly, we need the µ-term in the MSSM to be of the order
of the soft mass scale, which is assumed to be much lower than the GUT scale. This is the so-
called doublet-triplet splitting, and in this model we can realize this by fine-tuning the α and
ᾱ couplings in eq. (2.9). To see this, let us first write down the relevant superpotential terms:

W 3 mHHLH̄L − αHLφLφR − ᾱH̄Lφ̄Lφ̄R + [mΦ + η(p− 3a)] φ̄LφL , (2.24)

where HL and H̄L are the SU(2)L doublet components of H with Y = +1/2 and −1/2,
respectively, and φL (φ̄L) is the SU(2)L doublet component in Φ (Φ̄) with Y = −1/2 (1/2).
After φR and φ̄R develop a vev, φ, eq. (2.24) leads to

Wµ = (H̄L, φL)

(
mH −ᾱφ
−αφ mΦ + η(p− 3a)

)(
HL

φ̄L

)
. (2.25)

We note that mΦ +η(p−3a) = 2η(p+3ω) when the conditions (2.17) and (2.18) are applied.
The mass matrix in eq. (2.25) may be diagonalized using two unitary matrices U and D:

DT
(
mH −ᾱφ
−αφ 2η(p+ 3ω)

)
U =

(
µ1 0
0 µ2

)
, (2.26)

with

µ1,2 =
1

2

[
mH + 2η(p+ 3ω)∓

√
[mH + 2η(p+ 3ω)]2 − 4∆

]
, (2.27)
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and
∆ = 2ηmH(p+ 3ω)− αᾱφ2 . (2.28)

Thus, to obtain a µ-term of order of the soft mass scale, we need to fine-tune ∆ to be much
smaller than O(M2

GUT). This can be realized by cancelling the first and second terms in
eq. (2.28). If φ = O(MGUT), p, ω, and mH can also be O(MGUT) to achieve the fine-tuning.
If φ ' Mint � MGUT, on the other hand, we need ηmH ' M2

int/MGUT unless p ' −3ω,
i.e., x ' (3 ± i

√
7)/8. In this case, mH and/or mΦ are much smaller than the GUT scale

(notice that there is a relation between mΦ and η via the conditions (2.17) and (2.18)),
which may be phenomenologically dangerous as we discuss below. For this reason, we will
concentrate on models in which the intermediate scale is close to the GUT scale, which as
we will see is beneficial for proton decay and the evolution the Higgs fields during inflation.
This case is also favored in terms of gauge coupling unification, as the gauge couplings in the
MSSM meet each other around 2× 1016 GeV with great accuracy, which implies the absence
of an intermediate scale below the GUT scale. In any case, all of the components in the
mass matrix should be of the same order in order for the cancellation to occur, and thus the
mixing angles in U and D are O(1).

The eigenstates of the matrix in eq. (2.25) are related to the doublet fields via(
Hu

H ′u

)
= U†

(
HL

φ̄L

)
,

(
Hd

H ′d

)
= D†

(
H̄L

φL

)
, (2.29)

where Hu and Hd are to be regarded as the MSSM Higgs fields with a µ-term of µ1 �
O(MGUT), while the heavier states H ′u and H ′d have

µ2 ' mH + 2η(p+ 3ω) . (2.30)

After supersymmetry is broken, Hu and Hd develop vevs to break electroweak symmetry,
while H ′u and H ′d remain at the origin.

Finally we note that the fine tuning discussed above could potentially be avoided if
instead of SO(10), the GUT gauge group were flipped SU(5)⊗ U(1) [124, 125]. In this case
the doublet-triplet separation is solved by a missing partner mechanism [126]. As we will
note below, several of the wanted features discussed below could be carried over to a flipped
model, though we do not work out such a model in any detail here.

2.2.4 Proton decay

The α and ᾱ couplings in eq. (2.9) also induce mixing between the color-triplet components
in H with those in Φ and Φ̄. Due to the 210 vevs, the vector-like mass term for the color-
triplets in Φ and Φ̄ is different from that for φL and φ̄L. Therefore, even though we have
fine-tuned ∆ to obtain µ1 of O(MSUSY), this does not result in an O(MSUSY) µ-term for the
color-triplet multiplets. In particular, for O(MGUT) values of mH , mΦ, φ, we have O(MGUT)
µ-terms for the color-triplet components. On the other hand, if (some of) these values are
much smaller than O(MGUT), then the color-triplet Higgs masses may also be much lighter
than the GUT scale.

The exchange of the color-triplet Higgs multiplets leads to proton decay, e.g., via
p → K+ν̄, and in many supersymmetric GUTs this turns out to be the dominant con-
tribution [127–129]. If supersymmetry breaking is TeV-scale, the resultant proton decay
lifetime tends to be too short [130, 131], and thus some additional mechanism is required
to suppress this contribution. A simple way to evade the proton decay bound is to take
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MSUSY in the multi-TeV region [86, 132–139]; for instance, in the CMSSM, the current limit
τp(p→ K+ν̄) > 6.6× 1033 yrs [140, 141] is satisfied for m0 = 10 TeV, m1/2 = 8 TeV, A0 = 0,
tanβ = 5 [86]. In the present scenario, however, the proton decay bound may become
more severe. First, in SO(10) GUT models, a large tanβ ' mt/mb is favored to realize the
SO(10) relation for the Yukawa couplings. Since the wino (higgsino) exchange contribution
to the p → K+ν̄ decay amplitude is proportional to 1/ sin 2β ' (tanβ)/2, such a large
tanβ enhances the proton decay rate by orders of magnitude. Secondly, as we see above, if
Mint ' φ � MGUT, the color-triplet Higgs masses tend to be as light as the intermediate
scale. Since the proton decay rate is inversely proportional to the square of the color-triplet
Higgs mass, this again reduces the proton lifetime by orders of magnitude. We do not dis-
cuss these issues further in this paper, simply assuming that the proton decay limit is evaded
because of a very high supersymmetry-breaking scale and/or some additional mechanism to
suppress the color-triplet Higgs exchange contribution. As noted earlier, these issues are
automatically solved in a flipped SU(5) model, but here we will concentrate on models in
which the intermediate scale is close to or at the GUT scale to minimize the latter effect on
proton decay.

Of course, the exchange of the GUT-scale gauge bosons also induces proton decay,
where p→ e+π0 is the dominant decay channel. The lifetime of the decay channel is approx-
imated by

τ(p→ e+π0) ' 5× 1034 ×
(

1/25

αGUT

)4( MX

1016 GeV

)4( 3

AR

)2

years , (2.31)

where αGUT = g2
GUT/(4π) is the unified gauge coupling, MX denotes collectively the GUT-

scale gauge boson masses, and AR is a renormalization factor.3 The GUT-scale gauge boson
masses can be expressed in terms of p, a, ω, and φ as well as the unified gauge coupling;
for instance, the (3,2,−5

6) ⊕ (3,2, 5
6) components (in terms of the SM quantum numbers)

of the SO(10) gauge boson has a mass gGUT

√
4|a+ ω|2 + 2|p+ ω|2 [148], which shows that

the current experimental bound p → e+π0 > 1.7 × 1034 yrs [140] is evaded if these vevs are
& 1016 GeV.

3 Realization of inflation

As was explained in the previous section, in our model the singlet S plays the role of the
inflaton. The shape of its effective potential is dependent on the couplings of S to itself
and to the Higgs sector. Strictly speaking, the Starobinsky potential is realized via the first
two terms in eq. (2.13) whereas the other terms in the superpotential involving S, namely
those proportional to couplings b, c, and γ, all break the scale symmetry associated with the
potential. Therefore in order to realize suitable inflation, we must require these couplings to
be small. For now, we take c = γ = 0 and comment later on the effects if they are non-zero,
while noting that b should be non-zero as it also enters into the neutrino mass matrix, as we
discuss in the following section.

3The one-loop renormalization factors of the Kähler type proton-decay operators for each intermediate
gauge symmetry in supersymmetric theories are given in ref. [142]. For a two-loop-level computation, see
ref. [143]. Below the supersymmetry-breaking scale, renormalization factors are given at one-loop level in
ref. [144, 145]. Below the electroweak scale, we use the QCD renormalization factors computed at two-loop
level in ref. [146]. The relevant hadron matrix elements are evaluated in ref. [147].
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Sufficient inflation would require at least N∗ ' 50 e-folds of expansion, where

N∗ = −
∫ 0

s∗

1√
2ε

: ε =
1

2
(Vs/V )2 (3.1)

for a potential V (s), where s is the canonically normalized inflaton. For the Starobinsky
potential, a total number of e-folds N > N∗ = 50(60) is found for an initial value of s,
si > s∗ = 5.24(5.45). Thus, to realize Starobinsky-like inflation, we must ensure that any
significant deviation from the Starobinsky potential occurs at values of s > 5.24.

During inflation, the GUT-breaking Higgs fields are displaced from their vacuum val-
ues (2.21). These displacements would be exponentially small for b = 0: the potential
derivatives with respect to p, a, ω, φ all vanish in the limit S →

√
3 if the corresponding

values of the Higgs singlet components are given by (2.21). For a finite, but large, value of
the canonically normalized inflaton s, defined along the real direction as

S ≡
√

3 tanh(s/
√

6) , (3.2)

the instantaneous deviation from the vacuum vev is proportional to m2e−2
√

2/3 s.
For a non-vanishing but small value of b, the instantaneous minima of the singlets during

inflation are perturbed relative to (2.21) by an O(b2) factor; for example,

δφ ' b2 f(x;mΣ,mΦ, η) . (3.3)

where f is a (somewhat complicated and long) function of x and the superpotential param-
eters. This function is divergent for x = 0, 1/3 and ±i, the values that give rise naturally
to the hierarchy MGUT � Mint. We have checked numerically that, for x sufficiently close
to these singular points, any finite value of b will drive φ to zero during and after inflation,
preventing the spontaneous breaking of the intermediate gauge group.

Let us for now assume that the Higgs fields are displaced a negligible amount from
their vacuum values during inflation, {p, a, ω, φ} ' {p0, a0, ω0, φ0}. In this case, the scalar
potential during inflation takes the simple form

V ' V̂[
1− 1

3(|S|2 + |p|2 + 3|a|2 + 6|ω|2 + 2|φ|2)
]2 , (3.4)

where

V̂ = |mS − λS2|2 + |S|2
[
|bφ|2 + 2|cφ|2 + |2γp|2 + |6γa|2 + |12γω|2

]
. (3.5)

This shows that, in order to recover the predictions of no-scale Starobinsky-like inflation, we
need to constrain independently the values of the squared moduli inside the brackets. For
c = γ = 0, we find in terms of the canonically-normalized field s that for λ = m/

√
3 the

scalar potential takes the form

V =
(

1− tanh2(s/
√

6)− 1
3(|p|2 + 3|a|2 + 6|ω|2 + 2|φ|2)

)−2

× 3 tanh2(s/
√

6)

[
m2
(

tanh(s/
√

6)− 1
)2

+ |bφ|2
]

(3.6)

' 3

4
m2
(

1− e−
√

2/3 s
)2

+ ∆V , (3.7)
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where

∆V =

[
3

4
|bφ|2 +

1

2
m2e−

√
2/3 s

(
|p|2 + 3|a|2 + 6|ω|2 + 2|φ|2

)]
sinh2(

√
2/3 s) . (3.8)

We show in figures 1 and 2 the effects of the coupling b and the quantity ∆K ≡ |p|2 + 3|a|2 +
6|ω|2 + 2|φ|2 in ∆V . In each figure, we plot the slope of the perturbation spectrum, ns and
the tensor-to-scalar ratio, r given by (the quantity η ≡ Vss/V here is not to be confused with
the superpotential coupling):

ns ' 1− 6ε+ 2η , r ' 12ε . (3.9)

The orange (purple) shaded regions correspond to the 68 (95) % CL limits from Planck [1, 2].
In the limit where bφ,∆K � 1, the inflationary parameters can be approximated analyti-
cally by

ns ' −
2

N∗
+

8

3

(
bφ

m

)2

N2
∗ +

32

81
∆KN∗ , (3.10)

r ' 12

N2
∗

+
32

3

(
bφ

m

)2

N∗ +
64

27
∆K . (3.11)

We see in figure 1 the effect of a non-zero value of b. The solid curves show the positions
in the (ns, r) plane for N∗ = 50 and 60,4 as bφ is increased from 0 to 10−7.8 using the
analytical approximation for the potential given by eqs. (3.7) and (3.8). Here we have taken
∆K = 0, and recall that bφ = 0 corresponds to the exact Starobinsky result. The dashed
lines are derived from a full numerical evolution. For these solutions, ∆K ≈ 10−3.7 as
would be obtained for x = −1. This is the cause of the offset when bφ = 0. In order to
obtain values of (ns, r) consistent with Planck, we must require that the product bφ < 10−7.8

(10−8) for N∗ ' 50 (60) e-folds of inflation. Since the vev of Φ is no larger than the GUT
scale, φ <∼ 10−2.3, the most severe constraint we have on the coupling b is b < 10−5.7. The
scalar potential for several choices of bφ is shown in figure 3. As one can see, so long as
bφ <∼ 10−2.5m ∼ 10−7.5, the potential is indistinguishable from the Starobinsky potential out
to the value s ∼ 5.5 needed for 60 e-folds of inflation.

We see in figure 2 the corresponding effect of varying ∆K for bφ = 0. As we have fixed
the value of ∆K, we show here only the analytic result. In this case, in order to obtain values
of (ns, r) consistent with Planck, we must require that the quantity ∆K < 10−3.1 (10−3.4)
for N∗ ' 50 (60) e-folds of inflation. If the largest vevs associated with p, a and/or ω are of
order 1016 GeV, ∆K <∼ 10−3.7 and the bounds from Planck are always satisfied. The scalar
potential for this case is shown by the dashed curve in figure 4, and is Starobinsky-like out
to s ≈ 8. Figure 4 also shows the potential for other choices of ∆K for b = 0.

For generic values of b and ∆K, we can approximate numerically the limits on ∆K and
bφ by

∆K + (2× 106 bφ)2 ≤

{
0.00078, N∗ = 50 ,

0.00043, N∗ = 60 .
(3.12)

4The dotted lines simply interpolate between N∗ = 50 and 60.
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Figure 1. Parametric (ns, r) curves as functions of bφ for N∗ = 50, 60, with the 68 and 95% CL
Planck constraints shown in the background. The solid curves illustrate the parametric dependence
using the analytical approximation (3.7) and (3.8) assuming ∆K = 0. The dashed curves show the
power spectrum parameters calculated numerically with x = −1, for the same range of bφ. The dotted
curves illustrate particular values of bφ, quantified in units of MP , and we indicate the corresponding
left-handed neutrino masses in units of 10−4 eV assuming fν sinβ = 10−5 and m = 10−5MP . See
section 4 for more details of the relation between the light neutrino masses and bφ.

So far we have relied on the assumption that the Higgs fields track the instantaneous
minimum during inflation. We have verified this behavior by integrating numerically the
classical equations of motion, given by

Ψ̈a + 3HΨ̇a + ΓabcΨ̇
bΨ̇c +Kab̄ ∂V

∂Ψ̄b̄
= 0 . (3.13)

Here the indices run over all field components, with Ψa ≡ {T, S, p, a, ω, φR, · · · }, Kab̄ denotes
the inverse Kähler metric, and the connection coefficients are given by

Γabc = Kad̄∂bKcd̄ . (3.14)

We consider two types of solutions: 1) x = −1 and φ = p = a = ω = MGUT; 2) x ' 0
and φ < p, a, ω, i.e., Mint < MGUT. As was discussed previously, for case 1) the differences
between the instantaneous values of the Higgs fields during inflation and their vacuum vevs
are negligibly small, and inflation can be realized for a wide range of values of b� 1. Figure 5
displays the numerical solutions for the SM singlets s, φ, p, a, ω during inflation, for the
following set of parameters:

m = 10−5 , mΦ = 3.3× 10−2 , mΣ = 8.2× 10−4 , Λ = −0.2 , η = 0.8 , b = 10−6 ,
(3.15)
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Figure 2. As in figure 1, but for different values of ∆K ≡ |p|2 + 3|a|2 + 6|ω|2 + 2|φ|2, assuming
bφ = 0.

2 4 6 8 10
s

0.2

0.4

0.6

0.8

1.0

1.2
V/m2

bϕ = 10-1m 10-2m 10-3m

10-4m

0

Figure 3. The inflationary potential for different values of bφ, in units of the inflaton mass m '
10−5MP . The curve labeled bφ = 0 is the Starobinsky potential. We assume ∆K = 0 here.

with c = γ = 0. These parameter values are chosen to obtain vevs for the singlet components
of the 210 and 16 (16) equal to 1016 GeV. The resulting inflationary parameters are illus-
trated in figure 1 in the range 0 ≤ b ≤ 3.8× 10−6. As one can see the evolution of all fields
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Figure 4. The inflationary potential for different values of ∆K ≡ |p|2 + 3|a|2 + 6|ω|2 + 2|φ|2, for
b = 0. The black dashed line corresponds to φ = p = a = ω = 1016 GeV.

track very smoothly their local minimum as s evolves over the last ∼ 60 e-folds of inflation.
At the end of inflation, all fields begin oscillations about the low energy vacuum.

As an example of case 2), we consider x = 0.0004. In this case, as discussed at the begin-
ning of this section, we find that the instantaneous minimum during inflation is displaced rel-

ative to its position at S = 0 by δ(p, a, ω) ∝ 10−2b2/xηmΦ and δφ ∝ 10−2m
1/2
Σ b2/η(xmΦ)3/2.

If x is too small, this deviation can no longer be considered a perturbation, and it can be
shown numerically that the Higgs fields are driven towards φ = 0, p = a = ω, thus eventually
rolling into a SU(5)⊗U(1)-preserving minimum [116]. Figure 6 illustrates a particular real-
ization of the hierarchy 〈Φ〉 � 〈Σ〉 that leads successfully to the SM vacuum. In this case,
the parameters used correspond to η = Λ = 0, mΣ = 4×10−4, mΦ = 10−3 and b = 10−6. The
vevs in turn correspond to a ' −1016 GeV, φ ' 3 × 1014 GeV and ω ' −p ' 4 × 1012 GeV.
In this particular case, the Higgs excursions during inflation are not negligible, which implies
that the inflationary potential does not have the simple form (3.4), and a numerical approach
must be followed to constrain the value of |bφ| that would lead to Planck-compatible infla-
tion. Nevertheless, as figure 6 demonstrates, the bound on |bφ| does not differ significantly
from the analytical approximation based on eq. (3.8). A smaller value of x would in principle
drive the intermediate scale vev lower, but it can be shown numerically that in this case the
Higgs fields fail to lead to a SM minimum if we choose a smaller x for any b & 10−6. We
also note in passing that solutions with small x may be problematic for proton decay as we
discussed above.

The initial conditions for the Higgs fields chosen for the numerical solution shown in
figures 5 and 6 coincide with the position of the instantaneous minimum, but we have checked
that inflation and the successive evolution towards the GUT-breaking vacuum are stable if
the initial conditions are perturbed by up to ∆φ/φ0 . few × 10−1. This is illustrated in
figure 7 for an initial deviation ∆φ/φ0 = 0.2 for case 1 with x = −1. We note that the initial
uphill rolling of the inflaton is seeded by the kinetic energy of the oscillations of the Higgs
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Figure 5. Evolution of the canonically-normalized inflaton s and the SM singlets φ, p, a, ω during
inflation, for the parameters (3.15) and x = −1. The Higgs vevs {p0, ao, ω0, φ0} are all equal to
1016 GeV. For simplicity we display values in Planck units with MP = 1.
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Figure 6. Evolution of the canonically-normalized inflaton s and the SM singlets φ, p, a, ω during
inflation, for x = 0.0004. The Higgs vevs are given by a ' −4× 10−3, φ ' 1.1× 10−4 and ω ' −p '
1.6× 10−6 in units with MP = 1.
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fields through the connection-dependent terms in (3.13), namely:

ΓSbcΨ̇
bΨ̇c ' − 1

2
√

3
sinh(

√
2/3 s)

(
ṗ2 + 2ȧ2 + 6ω̇2 + 2φ̇2

)
+ · · · . (3.16)

As the value of s increases, the oscillations of φ are rapidly damped, and the subsequent
evolution resembles that shown in figure 5. Note the difference in timescale in this figure. The
transient growth in s implies an increased total number of e-folds compared to an unperturbed
initial condition. Similarly, for case 2 we are not required to fine-tune the initial positions
of the fields with respect to their minima. However, if these perturbations are initially too
large, the subsequent evolution may well take the theory to an SO(10)-symmetric vacuum.

So far we have neglected the effects of the couplings c and γ, which are not independent
as they satisfy the relation (2.19). Let us for simplicity assume that c� 1 and b = 0. In this
case, for s� 1, the Higgs singlet components are displaced from their vevs during inflation
by corrections that depend linearly on c; for example,

δφ ' c

η

(
mΣ

mΦ

)1/2

g(x) , (3.17)

where g(x) is another (somewhat complicated and long) function of x. Similarly to the b 6= 0,
c = 0 case, the function g(x) is divergent for x = 0, 1/3 and ±i, implying that φ will be always
driven to zero for x close to these points. For any x, with a sufficiently large c, the corrections
will be large due to the induced mass-squared ∼ (cS)2, and all Higgs singlets will be driven
to zero during inflation, leaving the universe in an SO(10)-symmetric state. In the particular
case with x = −1 and φ = p = a = ω = 1016 GeV, this occurs for c & 3× 10−3.

As the analytic approximation (3.5) is valid for very small c, one would be tempted to
relate directly the Planck constraint on |bφ| with a constraint on the combination 2|cφ|2 +
|2γp|2 + |6γa|2 + |12γω|2. However, it can be verified numerically that values of c larger
than the value that one would naively have expected to be the maximum compatible with
Planck data can still lead to Planck-compatible results; the deviations of the fields with
respect to their vevs compensate the expected deformation of the inflaton potential. For
example, in the previously-discussed x = −1 case, the naive expectation would result in the
bound c . 5 × 10−7, whereas a numerical calculation shows that 95% Planck compatibility
is retained for c . 7× 10−4, only a factor of four below the maximum value of c allowed by
symmetry breaking.

The specific limits on b and c when both are non-vanishing must be checked numerically
on a case-by-case basis. Nevertheless, it is clear that the allowed values of b and c are reduced
due to the simultaneous effect of both couplings.

4 Yukawa couplings and neutrino masses

4.1 Yukawa unification and its violation

As discussed in section 2.2.3, the MSSM Higgs fields Hu and Hd in our model are given
by linear combinations of the SU(2)L doublet components in the fields Φ, Φ̄, and H. The
Yukawa coupling terms in the low-energy effective theory are then written as

WYukawa = fuHuQū+ fνHuLν
c
R − fdHdQd̄− feHdLē , (4.1)
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Figure 7. Evolution of the canonically-normalized inflaton s and the SM singlets φ, p, a, ω during
inflation, for the set of parameters defined by x = −1. Here we consider a perturbed initial condition
∆φ/φ0 = 0.2. Here {p0, ao, ω0, φ0} are as in figure 6.
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where the Yukawa couplings are related to the corresponding GUT Yukawa couplings through
the following GUT-scale matching conditions:

fu = fν = y U11 , fd = fe = yD11 . (4.2)

These equations show that we expect the unification of down-type quark and charged-lepton
Yukawa couplings at the GUT scale, as in SU(5) GUTs, and the up-type quark and neutrino
Yukawa couplings are also unified. These two classes of the Yukawa couplings may, however,
be different from each other if α 6= ᾱ, since U11 6= D11 in this case. This feature distinguishes
our model from other SO(10) GUT models, where one usually has fu = fd = fe = fν at the
GUT scale.

These GUT relations are modified if there exist higher-dimensional operators suppressed
by the Planck scale [149–151]. Among such operators, the following dimension-five operator
is expected to give the leading contribution:

Weff =
c∆f

MP
HΣψψ . (4.3)

After Σ develops a vev, this operator leads to the Yukawa couplings in eq. (4.1). The matching
conditions in this case are given by

fu = (y + ∆f)U11 , fν = (y − 3∆f)U11 ,

fd = (y + ∆f)D11 , fe = (y − 3∆f)D11 , (4.4)

with

∆f =
c∆f

MP
(a+ ω) . (4.5)

Since ∆f = O(10−3) for c∆f = O(1), the GUT relations for the first- and second-generation
Yukawa couplings may be modified significantly in the presence of the dimension-five op-
erator. For the third-generation Yukawa couplings, on the other hand, its effects are less
significant. Intriguingly, this is consistent with the observed quark and lepton mass spec-
trum; experimentally, bottom and tau Yukawa unification is realized at the O(10)% level in
most of the parameter space in the MSSM,5 while the deviations in s-µ and d-e unification
are as large as O(100)%.

4.2 Neutrino masses

We now investigate the mass matrix for neutrinos. If we take M, b′, α′ → 0, then Φ and Φ̄
have no mixing with neutrinos; we consider this limit for simplicity. Note that this limit
suppresses the R-parity violating operators, and thus is phenomenologically desirable as we
discuss below. A non-zero value of the coupling b induces mixing between right-handed
neutrinos and the singlinos S̃i, which are the fermionic component of the singlet superfields
Si. We also suppress the couplings c, γ, and λSH in order to prevent S from mixing with
Φ, Φ̄, Σ, and H. As we have seen above, for the inflaton field, the smallness of c and γ is
required by successful inflation, while λSH should be small in order to avoid over-production
of gravitinos as we will see in the next section. In this case, mixing occurs only among the

5The corresponding relation in non-supersymmetric SU(5) GUT actually led to a successful prediction of
the b quark mass before its discovery: see the third paper in [89–91].
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right- and left-handed neutrinos and the singlinos. Disregarding Planck-suppressed factors,
the neutrino-singlino fermion mass matrix takes the form [92–94]

Lmass = −
(
νL ν

c
R S̃

) 0 −fν v sinβ 0
−fν v sinβ 0 −bφ

0 −bφ m


νLνcR
S̃

 , (4.6)

where v ' 174 GeV is the Standard Model Higgs vev and tanβ ≡ 〈Hu〉/〈Hd〉. A similar form
for the mass matrix is found in flipped SU(5) [126, 152].

For the first-generation neutrinos, the requirement of successful inflation restricts the
coupling b as we have seen in the previous section. In this case, the couplings satisfy
the hierarchy

fν v sinβ � bφ� m, (4.7)

and thus the diagonal mass matrix has a double-seesaw form given approximately by

Lmass = −
(
νML νMR S̃

M
)

m
(
fν v sinβ

bφ

)2
0 0

0 − (bφ)2

m −m
(
fν v sinβ

bφ

)2
0

0 0 m+ (bφ)2

m



νML

νMR

S̃M

 ,

(4.8)
and the corresponding mass eigenstates are approximately

νML ' νL −
mfνv sinβ

(bφ)2
νcR −

fνv sinβ

bφ
S̃ , (4.9)

νMR ' νcR +
bφ

m
S̃ +

mfνv sinβ

(bφ)2
νL , (4.10)

S̃M ' S̃ − bφ

m
νcR +

bφ fνv sinβ

m2
νL . (4.11)

For the second and third generations, on the other hand, the coupling b (recall we have
suppressed all generation indices) can be arbitrary, but the masses for light neutrinos are
still given by

mν ' m
(
fν v sinβ

bφ

)2

. (4.12)

Values of the mass eigenvalues calculated numerically for m ' 10−5MP are shown
in figure 8. If bφ ∼ 10−8.5MP , a left-handed neutrino mass mL . 0.1 eV is obtained if
fν sinβ . 9× 10−5.6 Currently, the Planck 2015 data [1, 2] imposes a constraint on the sum
of the neutrino masses:

∑
mν < 0.23 eV, and an even stronger bound of

∑
mν < 0.12 eV

comes from the Lyman α forest power spectrum obtained by BOSS in combination with CMB
data [154]. Since the parameters b and m for the second and third generations are almost
arbitrary, we may explain the current neutrino oscillation data [155, 156] by appropriately
choosing these parameters (as well as flavor-changing couplings corresponding to b and m).
For fν sinβ = mu/v and m = 10−5, the normal hierarchical neutrino mass spectrum is
obtained if bφ � 10−9, making the neutrino mass shown in figure 1 correspond to the

6We note that the up-quark mass mu = 2.3 MeV [153] and the GUT relation (4.2) implies fν ' 10−5,
which is consistent with the above limit.
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Figure 8. The neutrino mass spectrum in the double-seesaw scenario arising from (4.6), assuming
m = 10−5MP and fν sinβ = 2 × 10−5, as a function of bφ. For these parameters, the allowed range
for bφ and correspondingly the neutrino masses, is located in the upper left region, bounded to the
left by the vertical dashed line showing the 95% CL Planck upper limit bφ = 10−7.8MP , and below
by the horizontal dashed line corresponding to mL ' 2× 10−13 GeV.

lightest active neutrino (similarly for bφ > 109 GeV in figure 8). On the other hand, the
neutrino mass spectrum is inverted if bφ ' 7× 10−10. A smaller value of bφ leads to a quasi-
degenerate mass spectrum. The latter two types of mass spectrum are constrained by both
neutrino oscillation data [155, 156] and the CMB observations [1, 2, 154], and will be tested
in future experiments. It has not escaped our attention that there is a strong correlation
between the CMB observations, as quantified in the values of ns and r, and the light neutrino
masses, that becomes apparent if we write (3.10) and (3.11) as

ns ' −
2

N∗
+

8

3

(
m

mν

)(
fν v sinβ

m

)2

N2
∗ +

32

81
∆KN∗ , (4.13)

r ' 12

N2
∗

+
32

3

(
m

mν

)(
fν v sinβ

m

)2

N∗ +
64

27
∆K . (4.14)

When the couplings M and b′ are different from zero (and related by the minimiza-
tion condition (2.20)), the fermion mass matrix for the SM singlets and uncharged doublets
ceases to be block-diagonal, and potentially large terms such as MνLφ̄L = M + b′(p − 3a)
or MνR p = b′φ will in general result in significantly mixed mass eigenstates. As a crude
approximation, if one assumes that only the ‘left-handed’ fields mix, i.e., the fermionic com-
ponents of HL, H̄L, φL, φ̄L together with νL, one can compute, e.g., the contribution of the
φ̃L gauge eigenstate to the lightest state, which in the b′ → 0 limit would correspond to a
pure νL state. This contribution has the form

ψ
(φL)
lightest '

mH

∆
(M + b′(p− 3a)) , (4.15)
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where ∆ � M2
GUT has been defined in (2.28), and is related to the weak-scale µ-term via

∆ ' µ [mH +2η(p+3ω)]. This implies that sizable mixing can occur for b′ & µ/MGUT. For a
larger b′ (and thus M), the fine-tuning condition for the doublet-triplet splitting is modified,
and it turns out that ∆ should also grow (∆ ∝ b′ for b′ � µ/MGUT) to keep µ at the soft
mass scale. In any case, as we see in the subsequent section, we need to b′,M to be small in
order to ensure a good dark matter candidate (the lightest neutralino with a lifetime longer
than the age of the Universe), and thus we do not consider further in this paper the case of
large b′,M .

As discussed previously, non-vanishing values of c and γ would mix the Higgs sector
and the inflatino S̃. However, we have verified that, in the Planck-allowed range for c, the
mass spectrum, and in particular the left-handed neutrino state, are negligibly affected.

5 Reheating and leptogenesis

In the absence of a direct coupling between the inflaton and matter, reheating in supergravity
models almost always proceeds through the minimal gravitational couplings [157], leading
to a minimal reheat temperature of order 106 GeV [158]. However, these couplings vanish
in no-scale supergravity [78] and reheating must proceed either though a direct coupling to
matter or a coupling to gauge fields through the gauge kinetic term. For this reason, the
identification of the inflaton with the right-handed sneutrino has appeared to be very promis-
ing, as reheating takes place naturally through the decays of the inflaton to sneutrino/Higgs
or neutrino/Higgsino pairs [43, 68]. In fact, to avoid excessive reheating and gravitino pro-
duction, it was necessary to set a limit on Yukawa coupling of the inflaton (right-handed
sneutrino) of order 10−5, comparable to the electron Yukawa coupling.

In the present context, the inflaton is once again a singlet, and the coupling b yields the
direct coupling of the inflaton to Standard Model matter fields through the Φ̄-H and neutrino-
singlino mixings. For the former, the bSΦ̄ψ term leads to bU21SHuL via the mixing (2.29).
For the latter, the neutrino Yukawa coupling fν induces an inflaton-Higgs-neutrino coupling
through the scalar mixing

ν̃R ' ν̃MR −
bφ

m
SM , (5.1)

S ' SM +
bφ

m
ν̃MR , (5.2)

where we have disregarded weak-scale terms, cf., eqs. (4.9)–(4.11). As a result, we obtain an
interaction

Lint = −CSHL SMHuL , (5.3)

with

CSHL = b

(
U21 −

fνφ

m

)
. (5.4)

This results in the inflaton decay rate

Γ(S → HuL̃) + Γ(S → H̃uL) =
m

4π
|CSHL|2 , (5.5)

which leads to a reheat temperature

TR ' 1015 GeV × |CSHL|
(

g∗
915/4

)−1/4( m

10−5MP

)1/2

, (5.6)

where g∗ denotes the effective number of degrees of freedom, and g∗ = 915/4 for the MSSM.
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The abundance of gravitinos is determined by the reheat temperature [98–101, 159–164]:

n3/2

s
' 2.4× 10−12

(
TR

1010 GeV

)
, (5.7)

where s is the entropy density and we have assumed that the gravitino is much heavier than
the gluino. In order to satisfy the upper limit on the abundance of neutralinos: Ωχh

2 < 0.12,
we must ensure that [165]

n3/2

s
. 4.4× 10−13

(
1TeV

mχ

)
, (5.8)

which leads to an upper limit on the coupling CSHL:

|CSHL| . 10−5 . (5.9)

Since we expect U21 = O(1), fν = O(10−5), and m/φ = O(10−3) in our setup, this bound
implies |CSHL| ∼ |b| . 10−5. For a more detailed discussion of reheating, see [166].

If λSH 6= 0, the inflaton can decay into a pair of higgsinos as well. Similarly to the
above case, to evade over-production of gravitinos, we need to suppress this coupling such
that |λSH | . 10−5.

As noted earlier, R-parity is violated in this model though, as described in [43], the
violation via the coupling b is weak enough to ensure that the lifetime of the lightest su-
persymmetric particle is much longer than the age of the Universe. To stabilize the lightest
supersymmetric particle, we need to take α′, M and b′ to be zero since they make it decay
at tree level. The form of the coupling of S in eq. (5.3) is clearly an L-violating decay, so the
reheating process may well lead to a lepton asymmetry given by [157, 167]

nL
s
∼ εnS

T 3
R

∼ εTR
m

, (5.10)

where nS is the number density of inflatons at the time of their decay. This lepton (or
B − L) asymmetry then generates a baryon asymmetry [168, 169] through sphaleron inter-
actions [170–173]. The factor ε is a measure of the C and CP violation in the decay, which is
determined by loops in which one or both of the remaining singlet states is exchanged, and
is given by [174–176]

ε ' − 3

8π

1(
CSHLC

†
SHL

)
11

∑
i=2,3

Im

[(
CSHLC

†
SHL

)2

1i

]
M1

Mi
, (5.11)

where M1 = m�M2,M3 are the masses of the singlets, where the lightest is assumed to be
the inflaton.7 In order to obtain the correct baryon asymmetry, we should place additional
constraints on the couplings and masses of the heavier singlets, which we do not discuss
further here.

6 Summary

It has been shown previously that no-scale supergravity with bilinear and trilinear self-
couplings of a singlet inflaton field provides an economical way to realize a model of in-
flation whose predictions for the inflationary observables (ns, r) are similar to those of the

7See ref. [152] for a related discussion in the context of flipped SU(5).
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Starobinsky model. In this paper we have studied how this scenario may be embedded in a
supersymmetric GUT that is able to address other interesting phenomenological issues such
as fermion (particularly neutrino) masses, proton decay, leptogenesis, gravitino production
and the nature of dark matter.

In this paper we have addressed these issues in a supersymmetric SO(10) GUT model. In
general, sneutrino inflation is an attractive scenario, but this cannot be realized in an SO(10)
GUT, because sneutrinos are embedded in matter 16 representations of SO(10), but there
are no 162 or 163 couplings in SO(10). We therefore consider an SO(10) GUT model with a
singlet inflaton field, in which there is an intermediate stage of symmetry breaking provided
by a Higgs 16 multiplet. This model has the Kähler potential shown in (2.10) and the
superpotential shown in (2.9). As discussed in section 2, we consider various possible patterns
of symmetry breaking, paying careful attention to the vacuum conditions in each case.

We have shown that inflation can be realized in such a framework, studying numerically
the behaviours of the scalar fields during the inflationary epoch. In particular, we tracked the
evolution of the the three Standard Model singlets in the 210 responsible for breaking SO(10),
the single in the Higgs 16 simultaneously with the inflaton. One of the important phenomeno-
logical issues in constructing such a GUT model is doublet-triplet mass splitting. As we have
discussed, the proton stability constraint requires either a very high supersymmetry-braking
scale and/or some additional mechanism to suppress the color-triplet Higgs exchange con-
tribution. These issues may be more easily resolved in a flipped SU(5) ⊗ U(1) model [126]
where the Higgs structure is greatly simplified (only a 10, 10, 5, 5̄ of Higgses are needed
instead of the 210, 16, and 16 considered here).

We have discussed the fermion masses in this model, point out that it predicts the
(phenomenologically successful) unification of the b and τ Yukawa couplings, and similar
unification between the Yukawa couplings in the up-type quark and neutrino sectors. The
neutrino masses have a double-seesaw structure involving the left- and right-handed neutrinos
and the singlino partner of the inflaton field. We have explored the constraints that neutrino
masses impose on this structure, and shown that it can lead to successful leptogenesis.

Two specifically supersymmetric issues are gravitino production during reheating at the
end of inflation and the nature of dark matter. Avoiding the overproduction of gravitinos
imposes a reasonable constraint on the inflaton Yukawa coupling, which should be at most
comparable to that of the electron. In this model R parity is not conserved, so one might
fear for the stability of supersymmetric dark matter. However, the lifetime of the lightest
supersymmetric particle is typically much longer than the age of the Universe, so this is still
a plausible candidate for dark matter.

The no-scale SO(10) GUT scenario for inflation described here has many attractive
features, since it combines Starobinsky-like predictions for the inflationary perturbations
with many phenomenological desiderata. We therefore consider it a significant step forward in
inflationary model-building, while admitting that it has some issues, notably proton stability.
Thus there is still significant scope for further improvement.
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[57] J. Ellis, M.A.G. Garćıa, D.V. Nanopoulos and K.A. Olive, Resurrecting quadratic inflation in
no-scale supergravity in light of BICEP2, JCAP 05 (2014) 037 [arXiv:1403.7518] [INSPIRE].

[58] J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, A No-Scale Inflationary Model to
Fit Them All, JCAP 08 (2014) 044 [arXiv:1405.0271] [INSPIRE].
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