Status of direct searches for top-quark partners at the LHC

today: vector-like quarks

Johannes Erdmann TU Dortmund

Compact Muon Solenoid

on behalf of the ATLAS and CMS Collaborations

A First Glance Beyond the Energy Frontier Trieste, 08.09.2016

Outline

- Brief introduction
- Status after Run-I
- Overview status Run-2
 - Pair production
 - Single production

incl. remarks on **BOOST** techniques

Conclusions

ElitePartner

VLQ

Vector-like quarks (VLQ)

- LH and RH same SU(2) transformation
 - direct mass term allowed : $m\psi\psi$
- mix with SM quarks
- multiplets w/ SU(3)xSU(2)xU(1) quantum no.

	VLQ	Q [e]	Т3
singlets	(T) (B)	+2/3 -1/3	0
doublets	(X,T) (T,B) (B,Y)	+5/3, +2/3 +2/3, -1/3 -1/3, -4/3	± 1/2
triplets	(X,T,B) (T,B,Y)	+5/3, +2/3, -1/3 +2/3, -1/3, -4/3	+1, 0, -1

Composite H, Little H, ...

Pair Production & VLQ Decay

Single Production

Experimental Challenges

Status Quo after Run-I

95% CL Exclusions (TeV)

- Extensive search program for pairs
- Mass limits from ~700 to ~900 GeV
 - Depend on assumed BRs

ATLAS example : (JHEP 08 (2015) 105) singlet T: m > 765 GeV doublet T: m > 855 GeV

Run-I Strategies

- σ dominated by pair production
- Focus on decay to 3rd gen.
- Exploiting the full **BR triangle**
- ATLAS strategy inclusive ('TT \rightarrow Ht+X')
- CMS strategy more exclusive ('TT→bWbW')
 - combination papers (*PRD 93 (2016) 012003* and *112009*)

Single Production @ Run-I

Single Production @ Run-I

Sensitivity to single production challenging at 8 TeV

<u>low σ for EW</u>

with large coupling

Some Excitement @ Run-I

Same-sign leptons + b-quarks

2

Link to other Run-I excesses? (just one ex. Dobrescu, Liu, JHEP 10 (2015) 118 propose $W' \rightarrow H^+ A^0 / H^0 \rightarrow t \bar{b} t \bar{t}$)

From 8 TeV to 13 TeV

CMS Peak Luminosity Per Day, pp, 2016, $\sqrt{s}=$ 13 TeV

Same-Sign Leptons

Same-Sign Leptons

15

Same-Sign Leptons

 $+ b\overline{b} + X$

25% systematics

• charge mis-ID (only e[±])

• trident electrons :

• from $Z \rightarrow e^+e^-$

 $t\overline{t}$ -

- charge mis-ID
- fake leptons from
 γ conversions
- → fake lepton subtraction to avoid double-counting

Run-l excess not reproduced

ATLAS-CONF-2016-032 (06/16)

Same-Sign Leptons

Same-Sign Leptons & I+jets

- $e^{\pm}e^{\pm} + \mu^{\pm} \mu^{\pm} + e^{\pm}\mu^{\pm}$
- J/ ψ and Z vetos
- high : H_T & p_T(lep) & #(jets+leptons)
- no b-tag requirement
- count in lepton flavor categories !

• e[±] charge mis-ID suppressed by comparing up to 3 charge measurements

- standard track reconstruction (Kalman filter)
- Gaußian sum filter \rightarrow improve bremsstrahlung modeling
- rel. position of cluster and track (for $p_T < 100 \text{ GeV}$)

prompt same-sign

Channel	PSS MC	NonPrompt	ChargeMisID	Total Background	800 GeV X _{5/3}	Observed
Di-electron	2.41 ± 0.29	2.16 ± 1.91	1.90 ± 0.60	6.47 ± 2.02	4.38	7
Electron-Muon	2.98 ± 0.36	5.20 ± 3.21	0.54 ± 0.18	8.72 ± 3.24	9.14	3
Di-muon	0.70 ± 0.12	2.09 ± 1.69	0.00 ± 0.00	2.80 ± 1.70	3.55	1
All	6.09 ± 0.67	9.45 ± 5.49	2.44 ± 0.76	17.98 ± 5.58	17.06	11

Same-Sign Leptons & I+jets

CMS PAS B2G-15-006 (12/15)

Same-Sign Leptons & I+jets

CMS PAS B2G-15-006 (12/15)

ATLAS-CONF-2016-013 (03/16)

ATLAS-CONF-2016-013 (03/16)

Ht+X

Heavy Profiling

top+HF poorly known

- II categories fit with complex top model
 - low to high sig. purity
- profile top+LF/c/b
- systematics:

decorrelate certain top modeling uncertainties for top+LF/c/b

• key to controlling bkg.

24

- m(T|singlet) > 750 GeV (was 765 GeV)
- m(T|doublet) > 800 GeV (was 855 GeV)
- expected limits improved by 60 GeV (singlet), 80 GeV (doublet)

Ht+X

Wb+X

CMS PAS B2G-16-002 (03/16)

Wb+X

Johannes Erdmann

29

• m(T|singlet) > 750 GeV (was 696 GeV)

Wb+X

- T \rightarrow Wb not allowed for doublet
- benchmark interpretation :
 - Wb:Zt:Ht = 50%:25%:25%

Stops and Zt+X

updated with 2016 data in ATLAS-CONF-2016-050 (but w/o VLQ interpretation)

Johannes Erdmann

32

arXiv:1606.03903, submitted to PRD (06/16) Stops and Zt+X

'SUSY-style analysis strategy'

arXiv:1606.03903, submitted to PRD (06/16) Stops and Zt+X

CMS PAS B2G-16-006 (07/16)

Single VLQ \rightarrow Wb

CMS PAS TOP-16-005

Measurement of the top quark pair production cross section using $e\mu$ events in proton-proton collisions at $\sqrt{s} = 13$ TeV with the CMS detector

$\sigma_{t\bar{t}} = 793 \pm 8 (stat) \pm 38 (syst) \pm 21 (lumi) pb$

CMS PAS TOP-16-003

Measurement of the inclusive cross section of single top quark production in the *t* channel at $\sqrt{s} = 13 \text{ TeV}$

 $\sigma_{t-ch.} = 227.8 \pm 9.1 \, (\text{stat.}) \pm 14.0 \, (\text{exp.}) \, {}^{+28.7}_{-27.7} \, (\text{theo.}) \pm 6.2 \, (\text{lumi.}) \, \text{pb}$

	source		W+Jets	tt	Single Top	Signal
	Luminosity	rate	2.7%	2.7 %	2.7 %	2.7 %
	Jet energy scale	shape	5%	6%	5%	3%
	Jet energy resolution	shape	2%	1%	1%	2%
	B-tagging efficiency	shape	3	5%	5%	5%
	Multiple interactions	shape	1%	1%	1%	1%
	Lepton ID/ISO scale factor	rate	2%	2%	2%	2%
	Trigger efficiency	rate	2%	%	2%	2%
	Cross Section	rate 🔇	9.2%	5.6%	14.7%	_
8 TeV differential -	Top P_T reweighting	shape		38%	—	_
linear correction-	W+jets H_T reweighting	shape	5.3%		_	_
	Q^2 Scale	shape	14%	16%	16%	25%
	PDF	shape	5.5%	2.3%	8.5%	6.7%
data/MC difference - Forward jet reweighting		rate	15%	15%	15%	15%
					· · · · · · · · · · · · ·	
CMS F Measurement of inclus	PAS SMP-15-004 sive W and Z boson production cross $x = 12$ TeV		1ain bacl	kgroun	d Xsec unc	<u>ertainties</u>
Sections in pp consists at $\sqrt{s} = 15$ feV		f	rom I37	ГеV me	asurements	s !
production of a W ($\rightarrow \mu\nu$) boson in association with jets at $\sqrt{s} = 13$ TeV		• N	lo need	to cor	relate w/ of	ther systemati
CMS PAS SMP-15-006		a	is scale, f	wd. jet	& top pr r	eweighting do

Johannes Erdmann

data/MC

Single VLQ \rightarrow Wb

CMS PAS B2G-16-006 (07/16)

Single VLQ \rightarrow Wb

- very similar strategy as CMS
- + veto jets close/opposite leading jet
- (suppresses top background)
- simultaneous SR+CRs (top,W+jets) fit
- also here :W+jets needs correction (CR fit)

ATLAS-CONF-2016-072 (08/16)

Single VLQ \rightarrow Wb

Width effects for different coupling values

- non-negligible at truth level
- found to be small after reconstruction

ATLAS-CONF-2016-072 (08/16)

Single VLQ \rightarrow Wb

CMS PAS B2G-15-008 (04/16) Single VLQ → tH (leptonic top)

Tagging Higgs Bosons

ΒΟΟSΤ

NT

CMS PAS B2G-15-008 (04/16) Single VLQ → tH (leptonic top)

CMS PAS B2G-15-008 (04/16) Single VLQ → tH (leptonic top)

CMS PAS B2G-16-005 (06/16) Single VLQ → tH (hadronic top)

- fully hadronic analysis
- sum(jet activity) ≥ 800 GeV @ trigger
- \geq I Higgs-tag & \geq I top-tag with $\Delta R > 2.0$
 - → construct T candidate

BOOST

Tagging Top Quarks

CMS PAS B2G-16-005 (06/16) Single VLQ → tH (hadronic top)

CMS PAS B2G-16-005 (06/16) Single VLQ → tH (hadronic top)

Single VLQ \rightarrow Zt / Zb

CMS PAS B2G-16-001 (07/16)

Single VLQ \rightarrow Zt / Zb

closure test in data CR (!) w/ 2 jets

Johannes Erdmann

2e+1b-jet

17-40%

3-60%

6-16%

4-11%

CMS PAS B2G-16-001 (07/16)

Single VLQ \rightarrow Zt / Zb

54

CMS PAS B2G-16-001 (07/16) Reinterpretation : $Z' \rightarrow Tt \rightarrow Ztt$

Challenges for Interpretation

- Experimental assumptions
 - VLQ width effects on exp. observables ?
 - LH/RH differences in exp. observables ?
 - basis for 'BR reweighting'
 - pair <u>and</u> single production ?
 - additional production mechanisms ? (for ex. via heavy $G \rightarrow VLQ + q$ or heavy $G \rightarrow 2VLQ$)
- Interpretation
 - BRs : small coupling approximation ?
 - additional production mechanisms ?
 - Coupling to Ist/2nd generation ?
 - More than one VLQ multiplet ?
 - Extended scalar sector ?
 - \rightarrow allow recasting via HEPData info ?
 - \rightarrow publish σ limits for full BR triangle ?

BR vs. V_{Tb} SU(2) singlet T @ m_T = 400, 800 GeV

Conclusions

- Broad search program for VLQ
- Focus shifted towards single production
 - But pair production not forgotten !
 - Limits approaching I TeV
- Experimental methods
 - Variety of background methods reassuring
 - Time for boosted strategies has come
- Interpretation
 - More tricky with growing interest in single production

VLQ @ I.X TeV ?

(2016-09-06 11:37 including fill 5279; scripts by C. Barschel)

Impact of couplings on kinematics

Aguilar-Saavedra, JHEP 11 (2009) 030

Figure 9: Left: Charged lepton distribution in the top quark rest frame for $T \to Zt$ and $B \to W^-t$ decays. Right: distribution for the T singlet and (TB) doublet after simulation.

JHEP 10 (2015) 150

Same-sign leptons + b-quarks

Run-I : Expected Limits

T quark mass limit (GeV)

Expected 95% CL 1

Expected exclusion limit [GeV]

T(tH)

CMS

0.9

ATLAS-CONF-2016-032

	SR0	SR1	SR2	SR3	SR4
Fake/Non-prompt	16.3 ± 9.5	$6 4.2 \ \pm 3.$	$3 1.0 \pm 0.9$	1.8 ± 1.4	7.1 ± 4.5
Charge mis-ID	18.1 ± 4.1	$14.9\pm3.$	5 1.2 ± 0.3	1.5 ± 0.4	$2.1 {\pm} 0.5$
$t\bar{t}W/Z/W^+W^-$	10.1 ± 1.4	9.2 ± 1 .	$3 1.0 \pm 0.3$	2.2 ± 0.3	$3.1 {\pm} 0.5$
Dibosons	5.8 ± 1.0	0.5 ± 0.5	$2 0.03 \pm 0.07$	1.6 ± 0.4	$1.8 {\pm} 0.4$
Other bkg.	2.0 ± 1.0) $1.7 \pm 0.$	9 0.3 ± 0.2	0.3 ± 0.2	0.5 ± 0.3
Total bkg.	52 ± 11	$31 \pm$	$5 3.6 \pm 1.0$	7.4 ± 1.5	15 ± 5
$t\bar{t}t\bar{t}$ (SM)	0.5 ± 0.1	$0.8 \pm 0.$	$1 0.9 \pm 0.1$	0.2 ± 0.1	0.5 ± 0.1
$t\bar{t}t\bar{t}$ (CI)	0.26 ± 0.04	0.6 ± 0.6	$1 0.6 \ \pm \ 0.1$	$0.24{\pm}0.05$	$0.9 {\pm} 0.1$
UED 1.2 TeV	< 0.01	< 0.01	< 0.01	$0.3~\pm~0.1$	$3.8{\pm}0.8$
$T\bar{T}$ 0.75 TeV	0.2 ± 0.1	$0.31 \pm 0.$	1 0.04 ± 0.04	$0.9~\pm~0.2$	$3.7 {\pm} 0.4$
Data	51	37	3	4	11
mis-ID fraction	35%	48%	33%	20%	14%
	SR5	SR6	SR7		
Fake/Non-prompt	$1.4{\pm}0.9$	2.6 ± 1.8	0.0 ± 0.6		
Charge mis-ID	1.4 ± 0.4	$1.6 {\pm} 0.5$	0.6 ± 0.2		
$t\bar{t}W/Z/W^+W^-$	$2.3 {\pm} 0.6$	$3.0{\pm}0.7$	0.8 ± 0.4		
Dibosons	0.3 ± 0.1	0.2 ± 0.1	0.0 ± 0.1		
Other bkg.	$0.4 {\pm} 0.2$	$0.7 {\pm} 0.4$	0.5 ± 0.3		
Total bkg.	5.8 ± 1.2	8.1 ± 2.0	1.9 ± 0.8		
$t\bar{t}t\bar{t}$ (SM)	0.7 ± 0.1	1.8 ± 0.2	3.6 ± 0.4		
$t\bar{t}t\bar{t}$ (CI)	$0.6 {\pm} 0.1$	$2.2{\pm}0.2$	5.2 ± 0.4	CMS 13.6	% total n
UED 1.2 TeV	$0.6 {\pm} 0.1$	$6.6{\pm}0.7$	10.1 ± 0.8		
$T\bar{T}$ 0.75 TeV	$1.3 {\pm} 0.2$	5.0 ± 0.5	3.2 ± 0.4		
Data	6	3	2		
	24%	20%	32%		

CMS PAS BTV-15-002

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T},k} \min\{\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k}\}$$

Grooming Techniques

ATL-PHYS-PUB-2015-033

CMS PAS JME-14-002

Rank	Ζ	Pairs of variables		
1.	38.5 ± 1.6	M _{Prune}	τ_2/τ_1	
2.	37.9 ± 1.6	$M_{ m Filt}$	τ_2/τ_1	
3.	37.8 ± 1.6	$M_{ m Trim}$	τ_2/τ_1	
4.	37.7 ± 1.6	$M_{ m Trim}$	QGL Combo	
5.	37.2 ± 1.6	M_{Prune}	QGL Combo	
6.	36.7 ± 1.5	$M_{\rm SD} \ \beta = -1$	τ_2/τ_1	
7.	36.3 ± 1.5	$M_{ m SD} \ \beta = 0$	τ_2/τ_1	
8.	35.8 ± 1.5	$M_{\rm SD} \ \beta = 2$	τ_2/τ_1	
9.	35.3 ± 1.4	$M_{\rm SD} \ \beta = 1$	τ_2/τ_1	
10.	35.0 ± 1.4	$M_{\rm SD} \ \beta = -1$	QGL Combo	

illustrations from JHEP 09 (2013) 076

Soft Drop Condition:

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\rm cut} \left(\frac{\Delta R_{12}}{R_0}\right)$$

Larkoski, Marzani, Soyez, Thaler, JHEP 05 (2014) 146

1606.03903

Variable	SR1		SR2
\geq 4 jets with $p_{\rm T} > [{\rm GeV}]$	(80 50 40 40)	\geq 4 jets with $p_{\rm T} > [{\rm GeV}]$	(120 80 50 25)
$E_{\rm T}^{\rm miss}$ [GeV]	> 260	$E_{\rm T}^{\rm miss}$ [GeV]	> 350
H ^{miss} H ^{miss}	> 14	$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 20
$m_{\rm T}$ [GeV]	> 170	$m_{\rm T}$ [GeV]	> 200
am_{T2} [GeV]	> 175	am_{T2} [GeV]	> 175
	> 65	$\Delta R(b, \ell)$	< 2.5
<i>iopness</i>	> 0.5	$\Delta R(b_1, b_2)$	_
m_{top}^{r} [GeV]	< 270	Number of <i>b</i> -tags	≥ 1
$\Delta R(b,\ell)$	< 3.0	Leading large-R jet p_T [GeV]	> 200
$\Delta R(b_1, b_2)$	-	Leading large-R jet mass [GeV]	> 140
Number of <i>b</i> -tags	≥ 1	$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, 2^{\rm nd} {\rm large-R jet})$	> 1.0

	SR3
\geq 4 jets with $p_{\rm T} > [{\rm GeV}]$	(120 80 50 25)
$E_{\rm T}^{\rm miss}$ [GeV]	> 480
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14
$m_{\rm T}$ [GeV]	> 190
am _{T2} [GeV]	> 175
topness	> 9.5
$\Delta R(b, \ell)$	< 2.8
$\Delta R(b_1, b_2)$	_
Number of <i>b</i> -tags	≥ 1
Leading large-R jet p _T [GeV]	> 280
Leading large-R jet mass [GeV]	> 70

1606.03903

ATLAS-CONF-2016-013

CMS PAS B2G-15-008

Jo

68

CMS PAS B2G-16-005

Stop Summary ATLAS

Johannes Er

70

Stop Summary CMS

Johannes Erdi

```
71
```

m₇ [GeV]

ATLAS-CONF-2016-050

Common event selection										
Trigger	$E_{\rm T}^{\rm miss}$ trigger									
Lepton	exactly one signal lepton (e, μ) , no additional baseline leptons									
Jets	at least two signal jets, and $ \Delta \phi(\text{jet}_i, \vec{p}_T^{\text{miss}}) > 0.4$ for $i \in \{1, 2\}$									
Hadronic τ veto*	veto events with a hadronic τ decay and $m_{T2}^{\tau} < 80 \text{ GeV}$									
Variable	SR1 $t_1 \rightarrow t + \chi_1^*$ tN_high									
Number of (jets, <i>b</i> -tags)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$								
Jet $p_{\rm T} > [{\rm GeV}]$	(80 50 40 40)	(120 80 50 25)								
$E_{\rm T}^{\rm miss}$ [GeV]	> 260	> 450								
$E_{T,\perp}^{\text{miss}}$ [GeV]	_	> 180								
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 22								
$m_{\rm T}$ [GeV]	> 170	> 210								
am_{T2} [GeV]	> 175	> 175								
topness	> 6.5	_								
$m_{\rm top}^{\chi}$ [GeV]	< 270	_								
$\Delta R(b, \ell)$	< 3.0	< 2.4								
Leading large-R jet p_T [GeV]	_	> 290								
Leading large-R jet mass [GeV]	_	> 70								
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, 2^{\rm nd} {\rm large-R jet})$	_	> 0.6								
ATLAS-CONF-2016-050										
---	---------------------------	--	--	--	--	--	--	--	--	--
	$\tilde{t}_1 \rightarrow$	$\rightarrow b + \tilde{\chi}_1^{\pm}$	$\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^{\pm}$							
Variable	bC2x_diag	bC2x_med	bCbv							
Number of (jets, <i>b</i> -tags)	$(\geq 4, \geq 2)$	$(\geq 4, \geq 2)$	$(\geq 2, = 0)$							
Jet $p_{\rm T} > [{\rm GeV}]$	(70 60 55 25)	(170 110 25 25)	(120 80)							
<i>b</i> -tagged jet $p_{\rm T} > [{\rm GeV}]$	(25 25)	$(105\ 100)$								
$E_{\rm T}^{\rm miss}$ [GeV]	> 230	> 210	> 360							
$H_{\rm T,sig}^{\rm miss}$	> 14	> 7	> 16							
$m_{\rm T}$ [GeV]	> 170	> 140	> 200							
am_{T2} [GeV]	> 170	> 210	_							
$ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{miss}}) (i=1)$	> 1.2	> 1.0	> 2.0							
$ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{miss}}) (i=2)$	> 0.8	> 0.8	> 0.8							
Leading large-R jet mass [GeV]	_	_	[70, 100]							
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	_	_	> 1.2							
Variable	DM_low	DM_high								
Number of (jets, <i>b</i> -tags)	(≥ 4, ≥ 1)	$(\geq 4, \geq 1)$								
Jet $p_{\rm T} > [{\rm GeV}]$	(60 60 40 25)	(50 50 50 25)	$g = \overline{t}(\overline{b})$							
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 330	<u><u><u></u></u></u>							
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 9.5	ϕ/a $\bar{\chi}$							
$m_{\rm T}$ [GeV]	> 120	> 220	<u>}-</u> -<							
am_{T2} [GeV]	> 140	> 170	χ							
$\min(\Delta \phi(\vec{p}_{T}^{\text{miss}}, \text{jet}_{i}))(i \in \{1 - 4\})$	> 1.4	> 0.8	0000000							
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	> 0.8	_	<i>s t</i> (<i>b</i>)							

Johannes Erdmann

Signal region	SR1	${ m tN_high}$	$bC2x_diag$	$bC2x_med$	bCbv	DM_low	DM_high
Observed	37	5	37	14	7	35	21
Total background	24 ± 3	3.8 ± 0.8	22 ± 3	13 ± 2	7.4 ± 1.8	17 ± 2	15 ± 2
$t\bar{t}$	8.4 ± 1.9	0.60 ± 0.27	6.5 ± 1.5	4.3 ± 1.0	0.26 ± 0.18	4.2 ± 1.3	3.3 ± 0.8
$W{+}\mathrm{jets}$	2.5 ± 1.1	0.15 ± 0.38	1.2 ± 0.5	0.63 ± 0.29	5.4 ± 1.8	3.1 ± 1.5	3.4 ± 1.4
Single top	3.1 ± 1.5	0.57 ± 0.44	5.3 ± 1.8	5.1 ± 1.6	0.24 ± 0.23	1.9 ± 0.9	1.3 ± 0.8
$t\bar{t} + V$	7.9 ± 1.6	1.6 ± 0.4	8.3 ± 1.7	2.7 ± 0.7	0.12 ± 0.03	6.4 ± 1.4	5.5 ± 1.1
Diboson	1.2 ± 0.4	0.61 ± 0.26	0.45 ± 0.17	0.42 ± 0.20	1.1 ± 0.4	1.5 ± 0.6	1.4 ± 0.5
$Z{+}\mathrm{jets}$	0.59 ± 0.54	0.03 ± 0.03	0.32 ± 0.29	0.08 ± 0.08	0.22 ± 0.20	0.16 ± 0.14	0.47 ± 0.44
$tar{t}$ NF	1.03 ± 0.07	1.06 ± 0.15	0.89 ± 0.10	0.95 ± 0.12	0.73 ± 0.22	0.90 ± 0.17	1.01 ± 0.13
W+jets NF	0.76 ± 0.08	0.78 ± 0.08	0.87 ± 0.07	0.85 ± 0.06	0.97 ± 0.12	0.94 ± 0.13	0.91 ± 0.07
Single top NF	1.07 ± 0.30	1.30 ± 0.45	1.26 ± 0.31	0.97 ± 0.28	—	1.36 ± 0.36	1.02 ± 0.32
$t\bar{t} + W/Z$ NF	1.43 ± 0.21	1.39 ± 0.22	1.40 ± 0.21	1.30 ± 0.23	—	1.47 ± 0.22	1.42 ± 0.21
$p_0 (\sigma)$	0.012(2.2)	$0.26 \ (0.6)$	0.004(2.6)	0.40(0.3)	0.50(0)	0.0004(3.3)	0.09(1.3)
$N_{\rm non-SM}^{\rm limit}$ exp. (95% CL)	$12.9^{+5.5}_{-3.8}$	$5.5^{+2.8}_{-1.1}$	$12.4^{+5.4}_{-3.7}$	$9.0^{+4.2}_{-2.7}$	$7.3^{+3.5}_{-2.2}$	$11.5^{+5.0}_{-3.4}$	$9.9^{+4.6}_{-2.9}$
$N_{\rm non-SM}^{\rm limit}$ obs. (95% CL)	26.0	7.2	27.5	9.9	7.2	28.3	15.6

17

Jc