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The polarization of photons produced in radiative B0
s decays is studied for the first time. The data are

recorded by the LHCb experiment in pp collisions corresponding to an integrated luminosity of 3 fb−1 at
center-of-mass energies of 7 and 8 TeV. A time-dependent analysis of the B0

s → ϕγ decay rate is conducted
to determine the parameter AΔ, which is related to the ratio of right- over left-handed photon polarization
amplitudes in b → sγ transitions. A value of AΔ ¼ −0.98þ0.46

−0.52
þ0.23
−0.20 is measured. This result is consistent

with the standard model prediction within 2 standard deviations.
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In the standard model (SM), photons emitted in b → sγ
transitions are produced predominantly with a left-handed
polarization, with a small right-handed component propor-
tional to the ratio of the quark masses, ms=mb. In many
extensions of the SM, the right-handed component can be
enhanced, leading to observable effects in mixing-induced
CP asymmetries and time-dependent decay rates of radi-
ative B0 and B0

s decays [1,2]. Measurements of the time-
dependent CP asymmetries in radiative heavy meson
decays have been performed by the BABAR and Belle
Collaborations in the B0 system only [3]. The production of
polarized photons in b → sγ transitions was observed for
the first time at LHCb by studying the up-down asymmetry
in Bþ → Kþπ−πþγ decays [4] (charge conjugation is
implied throughout the text). In addition, angular observ-
ables in the B0 → K�0eþe− channel for dielectron invariant
masses of less than 1 GeV=c2 that are sensitive to the
polarization of the virtual photon have also been measured
at LHCb [5]. All of these measurements are found to be in
agreement with the SM predictions.
This Letter reports the first experimental study of the

photon polarization in radiative B0
s decays, determined

from the time dependence of the rate of B0
s → ϕγ decays.

The rate at which B0
s or B̄0

s mesons decay to a common final
state that contains a photon, such as ϕγ, depends on the
decay time t and is proportional to

e−Γstfcosh ðΔΓst=2Þ −AΔ sinh ðΔΓst=2Þ
þ ζC cos ðΔmstÞ − ζS sin ðΔmstÞg; ð1Þ

where ΔΓs and Δms are the width and mass differences
between the light and heavy B0

s mass eigenstates, Γs is the

mean decay width, and ζ takes the valueþ1 for an initial B0
s

state and −1 for B̄0
s. The coefficients C, S, and AΔ are

functions of the left- and right-handed photon polarization
amplitudes [2]. The terms C and S can be measured only if
the initial flavor is known: for an approximately equal
mixture of B0

s and B̄0
s mesons, as used in this analysis, these

terms cancel and the photon polarization affects only the
parameterAΔ. This approach has the advantage that there is
no need to determine the flavor of the B0

s candidates at
production, which would considerably reduce the effective
size of the data sample. Compared to the B0 system, the B0

s

is unique in that the sizable width difference allows AΔ to
be measured. In the SM it can be parametrized as
AΔ ¼ sin ð2ψÞ, where tanψ ≡ jAðB̄0

s → ϕγRÞj=jAðB̄0
s →

ϕγLÞj is the ratio of right- and left-handed photon ampli-
tudes. The SM prediction is AΔ

SM ¼ 0.047þ0.029
−0.025 [2].

This analysis is based on a data sample corresponding to
3 fb−1 of integrated luminosity, collected by the LHCb
experiment in pp collisions at center-of-mass energies of 7
and 8 TeV in 2011 and 2012, respectively. The LHCb
detector is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, described in detail in
Refs. [6,7]. Different types of charged hadrons are dis-
tinguished using information from two ring-imaging
Cherenkov detectors. The online event selection is per-
formed by a trigger, which consists of a hardware stage,
based on information from the calorimeter and muon
systems, followed by a software stage, which applies a
full event reconstruction. Two trigger selections are defined
with different photon and track momentum thresholds,
depending on whether the hardware stage triggered on one
of the tracks or on the photon. Samples of simulated events,
produced with the software described in Refs. [8–13], are
used to characterize signal and background contributions.
The decay mode B0 → K�0γ, with K�0 → Kþπ−, is used

as a control channel. Since it is a flavor-specific decay,
its decay-time distribution is not sensitive to the
photon polarization. Throughout this Letter, K�0 denotes
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K�ð892Þ0. Candidate B0
s → ϕγ and B0 → K�0γ decays are

reconstructed from a photon, and two oppositely charged
tracks: two kaons to reconstruct ϕ → KþK− decays and a
kaon and a pion to reconstruct K�0 → Kþπ− decays. The
selection is designed to maximize the expected significance
of the signal yield. Photons are reconstructed from energy
deposits in the electromagnetic calorimeter and are required
to have momentum transverse to the beam axis, pT , larger
than 3.0 or 4.2 GeV=c, depending on the trigger selection.
Each charged particle is required to have a minimum pT of
0.5 GeV=c and at least one of them must have pT larger
than 1.7 or 1.2 GeV=c, depending on the trigger selection.
The tracks are required to be inconsistent with originating
from a primary pp interaction vertex. The pion and kaon
candidates are required to be identified by the particle
identification system. The two tracks must meet at a
common vertex and have an invariant mass within
15 MeV=c2 of the known ϕ mass [14] for the signal mode,
or within 100 MeV=c2 of the known K�0 mass for the
control mode. Each B0

s or B0 candidate is required to have
pT larger than 3.0 GeV=c, and a reconstructed momentum
vector consistent with originating from one and only one
primary vertex. Background due to photons from π0 decays
is rejected by a dedicated algorithm [15]. In addition, the
cosine of the helicity angle, defined as the angle between
the positively charged hadron and the B meson in the rest
frame of the ϕ or K�0 meson, is required to be less than 0.8.
A kinematic fit of the full decay chain is performed,

imposing a constraint on the mass of the B candidate. Its
decay time is determined from the fitted four-momentum
and flight distance from the primary vertex. The mass
constraint improves the decay-time resolution and also
ensures that it is not correlated with the reconstructed mass
for the signal. Only candidates with decay times between
0.3 and 10 ps are retained.
The B0

s and B0 signal yields are obtained from separate
extended unbinned maximum likelihood fits to the ϕγ and
K�0γ invariant mass distributions, shown in Fig. 1. The
signal line shapes are described by modified Crystal
Ball functions [16] with tails on both sides of the peak.
The tail parameters are determined from simulation. Three
background categories are considered: peaking, partially
reconstructed, and combinatorial backgrounds. Peaking
backgrounds are due to the misidentification of a final-
state particle. All possible sources of misidentified tracks,
as well as misidentification of a π0 meson as a photon, are
considered for the signal and control channels. Partially
reconstructed backgrounds, in which one or more final-
state particles are not reconstructed, are described with an
ARGUS function [17] convolved with a Gaussian function
to account for the mass resolution of the detector. The
dominant contributions are decays with a missing pion or
kaon, B → Kππ0X, and B0 → K�0η. All shape parameters
for the peaking and partially reconstructed backgrounds are
fixed from simulation. The ratios of the yields of peaking

backgrounds to signal are fixed using previous measure-
ments [14,18]. A first-order polynomial is used to describe
the combinatorial background. The signal yields are
4072� 112 and 24 808� 321 for the B0

s → ϕγ and B0 →
K�0γ decays, where the uncertainties are statistical only.
The mass fits are used to assign each candidate of the

B0
s → ϕγ and B0 → K�0γ samples a signal weight to

subtract the backgrounds [19]. An unbinned maximum
likelihood fit of the weighted decay-time distributions [20]
is then performed simultaneously on the B0

s → ϕγ and
B0 → K�0γ samples. The signal probability density func-
tion (PDF) is defined from the product of the decay-time-
dependent signal rate PðtÞ and the efficiency ϵðtÞ, con-
volved with the resolution.
For B0

s → ϕγ, Eq. (1) reduces to

PðtÞ ∝ e−Γstfcosh ðΔΓst=2Þ −AΔ sinh ðΔΓst=2Þg; ð2Þ

when summing over the initial B0
s and B̄0

s states. The B0
s and

B̄0
s production rates are assumed to be equal, given that

their measured asymmetries [21] are found to have a
negligible effect on the measurement of AΔ. For
B0 → K�0γ, the decay-time-dependent signal rate is a
single exponential function, PðtÞ ∝ e−t=τB0 . The physics
parameters τB0 , Γs, and ΔΓs are constrained to the averages
from Ref. [3]: τB0 ¼ 1.520� 0.004 ps, Γs ¼ 0.6643�
0.0020 ps−1, andΔΓs¼0.083�0.006 ps−1. The correlation
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FIG. 1. Fits to the invariant mass distributions of the B0 (top)
and B0

s (bottom) candidates.
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of −0.239 between the uncertainties on Γs and ΔΓs is taken
into account.
To ensure that the simulation reproduces the decay-time

resolution, additional control samples of B0
s → J=ψϕ and

B0 → J=ψK�0 decays are used, where the J=ψ meson is
reconstructed from a pair of oppositely charged muons.
Selections mimicking those of B0

s → ϕγ and B0 → K�0γ,
treating the J=ψ meson as a photon, are applied. The
distributions of the difference in position between the
reconstructed J=ψ and ϕ or K�0 vertices are measured in
data and simulation and found to be in agreement. The
decay-time-dependent resolution functions are then deter-
mined from the simulation. The decay-time resolution is
small compared to the b-hadron lifetimes, and similar for
B0
s → ϕγ and B0 → K�0γ.
The decay-time-dependent efficiency is parametrized as

ϵðtÞ ¼ e−αt
½aðt − t0Þ�n

1þ ½aðt − t0Þ�n
for t ≥ t0; ð3Þ

where the parameters a and n describe the curvature of the
efficiency function at low decay times, t0 is the decay time
below which the efficiency function is zero, and α describes
the decrease of the efficiency at high decay times. Large
simulated samples of B0

s → ϕγ or B0 → K�0γ decays are
used to validate this parametrization. The signal PDF is
found to describe the reconstructed decay-time distribution
of selected simulated candidates over the full decay-time
range. The B0

s → ϕγ and B0 → K�0γ decay-time-dependent
efficiency parameters are found to be similar. In a simulta-
neous fit of both simulation samples, requiring the param-
eters a and n to be the same for both channels does not
change the quality of the fit. To assess whether the
simulation reproduces the decay-time-dependent effi-
ciency, the B0 → K�0γ data sample alone is used to fit
τB0 , fixing in this case all the efficiency parameters to those
from the simulation. The fitted value of τB0 is
1.524� 0.013 ps, where the uncertainty is statistical only,
in agreement with the world average value [3]. In the
simultaneous fit to the data, the parameters a and n are
required to be the same for both channels and fixed to their
values in the simulation. For t0 and α, a global offset, the
same for both channels, is allowed between data and the
simulation.
Pseudoexperiments are used to validate the overall fit

procedure. For each pseudoexperiment, samples of B0
s →

ϕγ and B0 → K�0γ candidates are generated, including both
signal and background contributions. The expected yields
are taken from the fit to the data, as is the signal mass shape.
Background events are generated according to the mass and
decay-time PDFs determined from fits to samples of events
generated with the full LHCb simulation. For each pseu-
doexperiment, the mass fits to the B0

s → ϕγ and B0 → K�0γ
samples are performed, followed by the decay-time fit to
the background-subtracted samples. The procedure is

tested in samples of pseudoexperiments generated with
different values of AΔ. No bias on the average fitted value
of AΔ is observed. Statistical uncertainties are found to be
underestimated by an amount that depends on AΔ; the
effect is 5.8% for the value seen in data and is accounted for
in the results below.
The B0 → K�0γ and B0

s → ϕγ background-subtracted
decay-time distributions and the corresponding fit projec-
tions, including the ones for the central value of the SM
prediction for AΔ, are shown in Fig. 2. The fitted value of
AΔ is −0.98þ0.46

−0.52 . The statistical uncertainty includes a
contribution due to the uncertainties on the physics
parameters τB0 , Γs, and ΔΓs, which is estimated to account
for þ0.10

−0.17.
In an alternative approach, AΔ is calculated from the

ratio of the yields of B0
s → ϕγ and B0 → K�0γ in bins of

decay time. Based on a study of pseudoexperiments, the
binning scheme is designed to have the same number of
events in each bin, thereby optimizing the overall
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FIG. 2. Background-subtracted decay-time distributions for
B0 → K�0γ (top) and B0

s → ϕγ (bottom) decays with the fit
projections overlaid and normalized residuals shown below. The
projections of a fit with AΔ fixed to the central value of the SM
prediction [2] are also shown. For display purposes, the PDFs are
shown as histograms, integrated across each decay-time interval.
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sensitivity to AΔ. Decay-time-dependent efficiency and
resolution effects are taken into account by calculating
correction factors in each bin before fitting for AΔ.
Pseudoexperiments are used to validate this approach
and to test its sensitivity, which is found to be equivalent
to that of the baseline procedure. The fit to the data is
shown in Fig. 3, along with the expected distribution for the
central value of the SM prediction for AΔ. The fitted value
is AΔ ¼ −0.85þ0.43

−0.46 . The statistical uncertainty is strongly
correlated with that of the baseline approach; the difference
between the two results is well within the range expected
from pseudoexperiments.
The dominant systematic uncertainty comes from the

background subtraction. It is evaluated to be þ0.19
−0.20 and

includes contributions from potential correlations between
the reconstructed mass and decay time for the backgrounds
(�0.15), uncertainties on the peaking background yields
(þ0.02
−0.05), and the models used in the mass fit. The latter is
assessed by the use of alternative models: an asymmetric
Apollonios function [22] for the signal (�0.03), an expo-
nential for the combinatorial background (�0.07), and
several shape variations for the most relevant partially
reconstructed backgrounds (�0.10). The systematic uncer-
tainty due to the limited size of the simulation samples used
to assess the decay-time-dependent efficiency is þ0.13

−0.05. The
uncertainties related to the decay-time resolution are
negligible. The sum in quadrature of these systematic
uncertainties is þ0.23

−0.20.
In summary, the polarization parameter AΔ is measured

in the first time-dependent analysis of a radiative B0
s decay,

using a data sample corresponding to an integrated lumi-
nosity of 3 fb−1 collected by the LHCb experiment. This
parameter is related to the ratio of right- over left-handed
photon polarization amplitudes in b → sγ transitions. More
than 4000 B0

s → ϕγ decays are reconstructed. The decay-
time-dependent efficiency is calibrated with a control
sample of B0 → K�0γ decays that is 6 times larger. From

an unbinned simultaneous fit to the B0
s → ϕγ and B0 →

K�0γ data samples, a value of

AΔ ¼ −0.98þ0.46
−0.52

þ0.23
−0.20

is measured, where the first uncertainty is statistical and
the second systematic. The result is compatible with the
SM expectation, AΔ

SM ¼ 0.047þ0.029
−0.025 [2], within 2 standard

deviations.
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