Search for $\gamma\gamma$ and $Z\gamma$ Resonances with the ATLAS detector

Fuquan Wang

University of Wisconsin-Madison On behalf of ATLAS collaboration

> June 14, 2016 BEACH 2016

George Mason University, Virginia

- Many models of physics beyond the Standard Model (SM) introduce new bosons through either an extension of the Higgs sector or through additional gauge fields.
 - Suggest interesting searches for new massive bosons
- Attractive decays from an experimental perspective are to $\gamma\gamma$, $Z\gamma$ or ZZ final states, since both Z bosons and photons can be well measured with good γ /jet separation
- The following searches will be presented
 - $\gamma\gamma$ final state (arXiv:1606.03833)
 - $Z\gamma$ final state (<u>ATLAS-CONF-2016-010</u>)
 - Both uses dataset: 3.2 fb⁻¹ \sqrt{s} =13 TeV data collected in year 2015

Di-photon analysis

- Trigger:
 - At least 2 γ 's, with p_T larger than 35 and 25 GeV
 - Loose shower shape criteria in electromagnetic (EM) calorimeter
- Photon selection:
 - In the EM calorimeter acceptance, tight shower shape criteria
 - Calo isolation E_T^{iso} (sum of the E_T of energy clusters deposited in a $\Delta R < 0.4$ cone) less than $0.022 \times E_T^{\gamma} + 2.45$ GeV
 - Track isolation p_T^{iso} (sum of track p_T originating from the di-photon primary vertex) less than $0.05 \times E_T^{\gamma}$
- Event selection:
 - Primary vertex selected with neural-network estimation using photon pointing and associated tracks
 - The E_T^{γ} leading two photons are used to reconstruct $\gamma\gamma$ pair
 - Spin-0 analysis: E_T^{γ} >0.4(0.3) $m_{\gamma\gamma}$, $m_{\gamma\gamma}$ >150 GeV
 - Spin-2 analysis: E_T^{γ} >55 GeV for both photons, $m_{\gamma\gamma}$ >200 GeV

Signals to be interpreted in $\gamma\gamma$ analysis

- Spin-0 resonances predicted with an extended Higgs sector
 - For both narrow width approximation (4 MeV width) and large width
- Spin-2 resonances use the Randall-Sundrum (RS) model graviton as a benchmark
 - Dimensionless coupling from 0.01 to 0.3
- Detector resolution of the signals are parameterized using the double-sided crystal-ball function
 - A Gaussian function with power-law tails on both sides

Background estimation for spin-2 interpretation

- $\gamma\gamma$ background (irreducible) samples are simulated with Sherpa generator and reweighted to Diphox NLO calculation
 - Include PDF, scale and isolation systematic uncertainties
- γjet background (reducible) component from data control region with photon(s) failing the tight identification
 - Fitted with a wide choice of functions
 - Difference of fitted functions are taken as systematic uncertainty
- Mixed with data-driven fractions of $\gamma\gamma$, γ jet and di-jet
- Use 200-500 GeV mass range to normalize to data
 - Search for resonances above 500 GeV with S+B fits

Background estimation for spin-0 interpretation

- The background is estimated by fitting the γγ invariant mass distribution to an analytical function, searching for an excess
- The function form is validated with large statistical background MC samples
 - Perform an S+B fit on the background only sample, and require the fitted signal very small
- Search the mass range above 200 GeV with S+B fits

Results for spin-0 interpretation

- The largest local significance is 3.9 standard deviations (σ)
 - At m_X =750 GeV, Γ_X =45 GeV (6%)
 - Global significance 2.1 σ

Results for spin-2 interpretation

Observed CL limit

Expected CL, limit

ATLAS

 \sqrt{s} = 13 TeV, 3.2 fb⁻¹

- The largest local significance is 3.8 standard deviations (σ)
 - At m_X =750 GeV, $k/M_{\rm Pl}$ =0.23 (Γ_X =57 GeV, 8%)
 - Global significance 2.1 σ

8

Interesting spectra in signal region

- No significant difference is observed in the properties of the events with a di-photon mass near 750 GeV compared to those at higher or lower masses.

Compatibility between two analyses

- The spin-0 and spin-2 selections overlap
- The compatibility is studied with the bootstrap technique:
 - If spin-0 signal assumed, compatible within 0.2 σ
 - If spin-2 signal assumed, compatible within 0.5 σ
- The results of both analyses are consistent assuming either of the two benchmark signal models

One event with $m_{\gamma\gamma}$ near 750 GeV

 $m_{\gamma\gamma}$ = 728 GeV Leading photon E_T, η, φ, E_T^{iso} = 322 GeV, -1.33, -0.27, 0.86 GeV Subleading photon E_T, η, φ, E_T^{iso} = 316 GeV, -2.32, 2.86, -0.21 GeV

Compatibility with 8 TeV data

- The same selections and signal interpretations are also done for 20.3 fb⁻¹ 8 TeV data collected in 2012
 - Redone with the final 8 TeV calibration
- No significant excess around 750 GeV is seen.
- The difference between two datasets is
 - Spin-0 selection: 1.2 σ for gg production and 2.1 σ for $q\overline{q}$ production
 - Spin-2 selection: 2.7 σ for gg production and 3.3 σ for $q\overline{q}$ production

- Lowest-threshold unprescaled single or di-lepton triggers.
- Photon candidates are selected similarly as $\gamma\gamma$ analysis except E_T^γ lowered to 15 GeV and no $p_T^{\rm iso}$ cut
 - E_T^{γ} leading photon is chosen to build the $Z\gamma$ resonance
- Electrons are selected within EM calorimeter, p_T^e >10 GeV, and pass likelihood-based identification criteria.
- Muons are selected with $|\eta| < 2.7$, $p_T^{\mu} > 10$ GeV and pass quality cuts based on Inner Detector and Muon Spectrometer.
- Leptons candidates are required to be isolated.
- Same flavor opposite sign lepton pairs with m_{ll} closest to Z boson mass is kept and required to be $|m_{ll}-m_Z|$ <15 GeV

- Trigger on single photon with E_T^{γ} >120 GeV and pass loose identification requirements
- Same photon selection as leptonic analysis, with E_T^{γ} >250 GeV
 - E_T^{γ} leading photon is chosen to build the $Z\gamma$ resonance
- Use massless topological clusters to reconstruct large-radius jets, based on the anti- k_t algorithm, radius parameter R=1.0
 - p_T^J >200 GeV, $|\eta|$ <2.0, not overlapping with photon candidates
 - Quark- or gluon-like jets are rejected using the jet substructure
 - $80 < m_J < 110$ GeV, isolated from additional hadronic activities
- $Z\gamma$ invariant mass is required to be larger than 640 GeV to be sufficiently far from the kinematic turn-on

Signal model in $Z\gamma$ analyses

- The $m_{ll\gamma}$ distribution is modelled with a double-sided Crystal Ball function
- The $m_{J\gamma}$ distribution is modelled with the sum of a Crystal Ball function and a small, wider Gaussian component.

Results for $Z\gamma$ analyses

- No significant excess with respect to the background
 - Hunt for resonances with S+B fits

Results for $Z\gamma$ analyses

- Observed and expected upper limits on the $pp \rightarrow X$ cross section times $X \rightarrow Z\gamma$ branching ratio
 - m_X 250 to 1500 GeV for leptonic analysis
 - m_X 720 to 2750 GeV for hadronic analysis

Summary

- The searches for high-mass resonances are performed in the $\gamma\gamma$ and $Z\gamma$ final states with the 3.2 fb⁻¹ \sqrt{s} =13 TeV data collected by ATLAS experiment in 2015
- In $\gamma\gamma$ analysis:
 - 3.9 σ in spin-0 selection at m_X =750 GeV and 6% width
 - 3.8 σ in spin-2 selection at m_X =750 GeV and 8% width
 - 2.1 σ in global significance for both analyses
 - Same analysis performed on 8 TeV data collected in 2012 but no significant excess is seen
- In $Z\gamma$ analysis:
 - No significant excess observed in either leptonic or hadronic decays of ${\cal Z}$ bosons
- LHC is generating 13 TeV data quickly, please stay tuned!

ATLAS detector

- The ATLAS detector is a multi-purpose particle detector with approximately forward-backward symmetric cylindrical geometry.
- A two-level trigger system selects events to be recorded for offline analysis.

Statistical approach

- The numbers of signal and background events are obtained from maximum likelihood fits of the $m_{\gamma\gamma}$ distribution of the selected events
- The function used to describe the data can be written as $N_S f_S (m_{\gamma\gamma}) + NB f_B (m_{\gamma\gamma})$
 - f_S and f_B are the mass distributions of the signal and backgrounds
- Uncertainties are included in the fit via nuisance parameters
 - Unconstraint for background function parameters
 - Constraint by a Gaussian or log-normal penalty terms for other nuisance parameters
- The local p-value (p_0) for the compatibility with the backgroundonly hypothesis when testing a given signal hypothesis (m_X , α) is based on scanning the $q_0(m_X, \alpha)$ test statistic

•
$$q_0(m_X, \alpha) = -2 \log \frac{L(0, m_X, \alpha, \hat{\nu})}{L(\hat{\sigma}, m_X, \alpha, \hat{\nu})}$$

LHC parton luminosity ratio between 13/8 TeV

	17
E.	

Uncertainty	Spin-2 search	Spin-0 search
Signal mass resolution	$+(30-60)_{07}$	$+(40-60)_{07}$
(mass dependent)	$-(20-40)^{70}$	$-(30-45)^{70}$
Signal photon identification	$\pm (2-3)\%$	
(mass dependent)		
Signal photon isolation	$\pm (2 - 1)\%$	$\pm (4-1)\%$
(mass dependent)		
Signal production process	N/A	$\pm (3-6)\%$
		depending on Γ
Trigger efficiency	$\pm 0.6\%$	
Luminosity	$\pm 5.0\%$	

$|\cos \theta^*|$ comparison ($\gamma\gamma$ analysis)

- Ŵ
- $|\cos \theta^*|$ is defined as di-photon angle in the pair rest frame
- A key variable to distinguish between spin-0 or spin-2 boson decays.

Photon reconstruction efficiency

Event reconstruction efficiency ($Z\gamma$ analysis)

