
PLCverif: A TOOL TO VERIFY PLC PROGRAMS

BASED ON MODEL CHECKING TECHNIQUES

D. Darvas∗, B. Fernández Adiego, E. Blanco Viñuela, CERN, Geneva, Switzerland

Abstract

Model checking is a promising formal verification method

to complement testing in order to improve the quality of PLC

programs. However, its application typically needs deep ex-

pertise in formal methods. To overcome this problem, we

introduce PLCverif, a tool that builds on our verification

methodology and hides all the formal verification-related dif-

ficulties from the user, including model construction, model

reduction and requirement formalisation. The goal of this

tool is to make model checking accessible to the developers

of the PLC programs. Currently, PLCverif supports the ver-

ification of PLC code written in ST (Structured Text), but it

is open to other languages defined in IEC 61131-3. The tool

can be easily extended by adding new model checkers.

INTRODUCTION AND MOTIVATION

Operating an accelerator complex to provide facilities for

particle physics research involves numerous process con-

trol tasks. Many of them (such as cooling and ventilation,

cryogenics, gas systems) are controlled by Programmable

Logic Controllers (PLCs) at CERN, the European Nuclear

Research Organization. As these systems are critical for the

operation of CERN, the correctness of the executed PLC

applications is a high priority.

Testing is a widely used solution to find potential failures

in software. However, testing is not an universal solution for

the verification of programs, for the following main reasons:

• Testing cannot show the absence of bugs, it can only

show their presence.

• Testing can only check the outputs given by the software

under test for some selected input sequences (test in-

puts). It cannot check efficiently general statements

(e.g. “If output FireAlarm is true, then the output

NoAlarmPresent should always be false.”) or liveness

properties (e.g. “If a request is received, a response will

be sent eventually.”).

Model checking is a good candidate to complement test-

ing in order to reduce these weaknesses [1]. This paper

introduces the high-level concepts of model checking and

our proposed solution to incorporate model checking in the

PLC software development process.

CHALLENGES OF MODEL CHECKING

Model checking is a formal verification technique that

takes (1) a mathematical model of the system to be checked

and (2) a formalized requirement. The model checker algo-

rithms can decide if the given requirement is satisfied for the

∗ E-mail of the corresponding author: daniel.darvas@cern.ch

given model or not. Contrarily to testing, model checking

checks all possible executions of the program and reports

if any of them violates the requirement. Model checking is

also able to generate counterexamples, i.e. input sequences

demonstrating the violation of the given requirements.

However, model checking is not a silver bullet. There are

three main obstacles of using this technique:

1. The model checker tools need a mathematical represen-

tation of the program. Constructing them needs lots of

effort and experience in the formal methods domain.

2. The requirements should also be formalized for model

checking. This is a similarly challenging task.

3. Model checking is computation- and memory-intensive.

The generated models of the programs are often too

large or too complex to be analysed with the available

computation capacity.

These obstacles are difficult to overcome. The available

tools require deep expertise in the formal verification domain.

This could be the main reason why model checking is not

widely used in industry yet, apart from some highly safety-

critical applications in avionics, railway industry, etc.

Our goal is to provide a model checking solution for the

PLC domain by overcoming the mentioned obstacles. All of

them contain both theoretical and technical challenges. In

earlier work [2, 3] we have provided solutions for the theo-

retical obstacles. All these solutions have been incorporated

in a tool called PLCverif1 that makes model checking ac-

cessible for the developers in the PLC domain. This paper

focuses on this tool and on the bridge between the formal

methods and PLC domains.

PLCverif: A BRIDGE BETWEEN FORMAL

VERIFICATION AND PLC DOMAINS

In this section we overview the main features of the

PLCverif tool. We focus on the user’s point of view, there-

fore the structure of this section follows the normal workflow

of a user.

Typical Workflow

The typical user workflow of the PLCverif tool consists

of four steps:

1. Defining (importing or writing) the PLC code to be

checked,

2. Defining the requirement to be verified,

3. Executing the verification,

4. Evaluating the results of the verification.

In the following sections, each step is described in detail.

1 http://cern.ch/plcverif/

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF092

Software Technology Evolution

ISBN 978-3-95450-148-9

911 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Defining the PLC Code. The PLCverif tool provides an

editor for PLC programs. The aim is to support the languages

defined in the standard IEC 61131-3 [4]. Currently the tool

supports SCL (Structured Control Language), which is the

Siemens’ implementation of the standard, high-level lan-

guage ST (Structured Text). Additionally, SFC (Sequential

Function Chart) and STL (Statement List) are partially sup-

ported. The code editor of the PLCverif (Figure 1) provides

the main features required nowadays in modern development

tools, e.g. syntax highlighting, content assist, support for

refactoring. The PLC code to be verified can either be writ-

ten in this PLC code editor, or imported if the program is

already existing.

Figure 1: PLC program editor.

Defining the Requirement. Similarly to the test cases

in testing, a verification case should be defined by the user.

A verification case contains all necessary information for

the verification. The user has to define:

• The general information of the verification case (ID,

name, description),

• The source code to be checked,

• The requirement to be checked,

• The model checker tool to be used.

In addition, the user has the possibility to fine-tune the

verification method by setting some parameters (e.g. the way

the model is simplified by reductions). These parameters are

set automatically using various heuristics. For example, the

user can provide assumptions about the input variables (e.g.

the value of an input variable is always false) to facilitate

the task of the model checker, however this is optional.

The verification case can be edited on a form that can be

seen in Figure 2.

Requirement patterns As previously mentioned, the re-

quirement has to be formalised for the model checker. Typ-

ically, requirements are formalised using CTL (Computa-

tional Tree Logic) or LTL (Linear Temporal Logic). Both

formalisms are difficult to be used for non-experts. Fur-

thermore, even with experience it is easy to make semantic

mistakes in the formalisation of requirements.

To avoid these issues, we have introduced a predefined

set of requirement patterns, similarly to [5, 6], focused on

the PLC domain. In our method, a requirement pattern is:

• A precise English sentence with gaps for logic expres-

sions (e.g. “If . . . 1 (at the end of the PLC cycle), then

. . . 2 is always true (at the end of the same cycle).”); and

• A formalization of the textual representation

in LTL or CTL using the same gaps. (e.g.

“AG

(

(EoC ∧ . . .1) → . . .2
)

”, where EoC stands

for end of cycle).

The task of the user is to choose a requirement pattern that

corresponds to the requirement to be checked, and to fill the

gaps of the pattern. Each gap has to be filled by an expression

containing constants, variables, and logic operators (e.g.

AND, OR).

Figure 2: Verification case definition form.

Verification Process. After loading or writing the PLC

code and providing the verification case, the verification

procedure is fully automated.

In the background PLCverif performs the following steps,

completely hidden from the user:

1. The formal, mathematical requirement (in LTL or CTL)

is produced based on the given information.

2. The PLC code is parsed and translated into an interme-

diate model.

3. The intermediate model is reduced using various tech-

niques [3]. The goal of them is to simplify the model

without modifying its meaning, and to remove any part

of the model that is not necessary for the evaluation

of the current requirement. Consequently, for each

requirement a unique verification model is produced.

4. The reduced intermediate model and the given require-

ment is then converted to the input syntax of the se-

lected model checker tool.

5. When the model and the requirement is produced, the

model checker tool is invoked. All its outputs, including

WEPGF092 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

912C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



the error messages are stored in the PLCverif tool to

provide feedback to the user.

Evaluating the Results. The output of the model

checker tools (the counterexamples) are typically difficult

to understand. For example, the counterexamples can be

huge, they have to be reduced before manual analysis. Also,

the referred variable names can be different from the ones

defined in the PLC code due to the automated generation

process and the various restrictions of the formalisms. These

have to be replaced by the names meaningful for the user.

The result of this phase is the verification report (see Fig-

ure 3 for example) — a self-contained document produced

automatically that includes the details of the verification case,

the result of the verification and the reduced counterexample,

if applicable.

Figure 3: Verification report.

Applied Technologies

The PLCverif tool is implemented as an Eclipse RCP

application. This provides a standalone, multi-platform tool

with an environment (look and feel) familiar to the users with

moderate development effort. The PLC codes are parsed

using Xtext. This framework provides editor, parser and an

object model based on the defined grammar of the input

language, that is SCL in our case.

Parsed programs are then translated to an intermediate

model representation. This is a formalism conceptually close

to the input of many model checking tools. This model

is implemented using Eclipse Modeling Framework. The

intermediate models are then translated into the concrete

input syntax the model checker tools. The translation is

developed using Xtend.

Currently the format of the NuSMV/nuXmv, UPPAAL

and BIP tools are supported, but other, similar model checker

tools can be easily integrated into PLCverif.

PLCverif has a command line interface too. It allowed

us to set up a “continuous verification” workflow, where a

Jenkins job automatically (re-)checks all verification cases

on each SVN commit, then the results are sent in e-mail.

CASE STUDY

To illustrate our method, a simple example for the pre-

viously presented workflow is shown. Listing 1 shows a

code excerpt, extracted from a base object of the UNICOS

framework [7]. The original code is much larger, containing

around 200 variables and 600 lines of code. The follow-

ing steps correspond to the steps of the workflow presented

before.

1. As a first step, the user writes or imports the example

PLC code in Listing 1 to the tool.

2. The next step is the requirement specification. The

example informal requirement is the following: if the

interlock is not acknowledged and restarting the object

is not allowed in presence of an interlock, then the

“restart allowed” output should not be true.

For this informal requirement a pattern should be cho-

sen. The requirement pattern presented before is con-

venient to describe this requirement.

Filling that pattern results in the following:

“If out_InterlockNotAcknowledged=true and

PRestartAllowedDuringInterlock=false (at

the end of the PLC cycle), then out_Restart-

Allowed=false is always true (at the end of the

same cycle).”

3. Once the PLC code and the requirement are defined,

the user should press the “Verify” button, every step

is then automated. The model generation, the model

reductions, invocation of the model checker and gener-

ation of the verification report takes less than a second

in this case2.

4. The verification report (Figure 3) shows that the re-

quirement is not satisfied. A counterexample is also

provided for the user. The counterexample can be

seen in Table 1. Executing the code with the inputs

shown in the table results that at the end of the second

PLC cycle out_InterlockNotAcknowledged=true

and out_RestartAllowed=true is possible, violating

the requirement defined above.

After knowing that the requirement is not satisfied, using

the counterexample, the violation can be reproduced by the

developer. Investigation of the code can show the source of

this problem: a a pair of parentheses is missing from the

condition in lines 19–20 of Listing 1 (see the yellow marks).

After fixing this issue the requirement will be satisfied.

This example highlights the main differences between

testing and model checking:

• It is enough to define the requirement. Using testing,

careful test planning and numerous test cases would

have been necessary to check this requirement.

• After fixing the problem, model checking can even

prove that the given requirement is satisfied. Contrarily,

testing can only show the presence of bugs.

2 The measurement was executed on a PC with Intel Core i7-3770 CPU,

8 GB RAM on Windows 7 x64. The selected model checker tool was

nuXmv 1.0.1.

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF092

Software Technology Evolution

ISBN 978-3-95450-148-9

913 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



1 FUNCTION_BLOCK InterlockHandling
2 VAR_INPUT

3 in_Acknowledge : BOOL;
4 in_Interlock : BOOL;
5 in_Restart : BOOL;
6 PRestartAllowedDuringInterlock : BOOL;
7 END_VAR

8 VAR_OUTPUT

9 out_InterlockNotAcknowledged : BOOL;
10 out_AlarmUnacknowledged : BOOL;
11 out_RestartAllowed : BOOL;
12 END_VAR;
13 IF in_Acknowledge THEN

14 out_InterlockNotAcknowledged := FALSE;
15 out_AlarmUnacknowledged := FALSE;
16 ELSIF in_Interlock THEN

17 out_AlarmUnacknowledged := TRUE;
18 END_IF;
19 IF (in_Restart AND NOT in_Interlock) OR

20 (PRestartAllowedDuringInterlock AND in_Restart AND

in_Interlock)
21 AND NOT out_InterlockNotAcknowledged THEN

22 out_RestartAllowed := TRUE;
23 END_IF;
24 IF in_Interlock THEN

25 out_InterlockNotAcknowledged := TRUE;
26 out_RestartAllowed := FALSE;
27 END_IF;
28 END_FUNCTION_BLOCK

Listing 1: Example PLC code.

Table 1: Counterexample for the Example Requirement

Variable Cycle 1 Cycle 2

in_Acknowledge FALSE FALSE

in_Interlock TRUE FALSE

in_Restart FALSE TRUE

PRestartAllowedDuringInterlock FALSE FALSE

out_InterlockNotAcknowledged TRUE TRUE

out_RestartAllowed FALSE TRUE

Even checking this small PLC code can show some of the

advantages of model checking. The code above is an excerpt

from a real PLC program. We were able to find the same

fault using the same requirement on the whole PLC program,

without knowing its presence a priori. As the number of

inputs in the original program is much higher, it would be

extremely difficult to be checked using testing.

CONCLUSION AND FUTURE WORK

We have presented an automated method for model check-

ing PLC programs. This method is incorporated by the

tool PLCverif that allows users not expert in formal meth-

ods to use model checking without a need for long training.

We have applied this method for many PLC programs at

CERN and we have found several problems in supposedly

well-tested, mature PLC programs, including the example

presented above.

Again, model checking is not a solution for all verification-

related challenges. The models generated from PLC pro-

grams can be huge, even after using reduction techniques.

If a requirement can be checked using a couple of test cases,

then testing can have an advantage. Nevertheless, model

checking can complement testing by providing solutions

for different types of requirements, where testing can be

inefficient or practically impossible.

Related Work. There are only a few of available tools

providing formal verification of PLC code: the most known

is Arcade.PLC [8] that focuses on model checking of PLC

code. While they provide solutions for hiding the difficulties

of building the formal models, the requirements should be

provided directly in CTL or LTL. Many other authors pro-

pose other solutions, but their tools are not available (not

downloadable, nor described in detail in any paper). Another

constraint is the support of the ST language which is not

common in those tools.

Future Work. The future work is twofold. First, the re-

ductions and model checking algorithms could be improved

to increase the set of verifiable problems. The second is com-

ing from the fact that model checking needs unambiguous

requirements to be verified. If there is no formal specifica-

tion for the program, it is difficult to extract these require-

ments. Therefore we are working on the design of formal

specification methods for the PLC domain [9].

REFERENCES

[1] B. Fernández, E. Blanco, and A. Merezhin, “Testing & verifica-

tion of PLC code for process control,” in Proc. of the 14th Int.

Conf. on Accelerator & Large Experimental Physics Control

Systems, 2013, pp. 1258–1261.

[2] B. Fernández, D. Darvas, J.-C. Tournier, E. Blanco, and V. M.

G. Suárez, “Bringing automated model checking to PLC pro-

gram development – A CERN case study,” in Proc. of the 12th

Int. Workshop on Discrete Event Systems. IFAC, 2014, pp.

394–399.

[3] D. Darvas, B. Fernández, A. Vörös, T. Bartha, E. Blanco, and

V. M. G. Suárez, “Formal verification of complex properties on

PLC programs,” in Formal Techniques for Distributed Objects,

Components, and Systems, ser. LNCS. Springer, 2014, vol.

8461, pp. 284–299.

[4] IEC 61131-3:2013 Programmable controllers—Part 3: Pro-

gramming languages, IEC Std., 2013.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in

property specifications for finite-state verification,” in Proc. of

the 21st Int. Conf. on Software Engineering. ACM, 1999, pp.

411–420.

[6] J. C. Campos, J. Machado, and E. Seabra, “Property patterns

for the formal verification of automated production systems,”

in Proc. of the 17th IFAC World Congress. IFAC, 2008, pp.

5107–5112.

[7] E. Blanco et al., “UNICOS evolution: CPC version 6,” in Proc.

of the 13th Int. Conf. on Accelerator & Large Experimental

Physics Control Systems, 2011, pp. 786–789.

[8] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade.PLC: A

verification platform for programmable logic controllers,” in

Proc. of the 27th IEEE/ACM Int. Conf. on Automated Software

Engineering. ACM, 2012, pp. 338–341.

[9] D. Darvas, E. Blanco, and I. Majzik, “A formal specification

method for PLC-based applications,” in Proc. of the 15th Int.

Conf. on Accelerator & Large Experimental Physics Control

Systems, 2015, in press.

WEPGF092 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

914C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


