
A FORMAL SPECIFICATION METHOD FOR

PLC-BASED APPLICATIONS

D. Darvas∗, E. Blanco Viñuela, CERN, Geneva, Switzerland

I. Majzik, Budapest University of Technology and Economics, Budapest, Hungary

Abstract

The correctness of the software used in control systems

has been always a high priority, as a failure can cause se-

rious expenses, injuries or loss of reputation. To improve

the quality of these applications, various development and

verification methods exist. All of them necessitate a deep

understanding of the requirements which can be achieved

by a well-adapted formal specification method. In this paper

we introduce a state machine and data-flow-based formal

specification method tailored to PLC modules. This paper

presents the practical benefits and new possibilities of this

method, comprising consistency checking, PLC code gener-

ation, and checking equivalence between the specification

and its previous versions or legacy code. The usage of these

techniques can improve the level of understanding of the

requirements and increase the confidence in the correctness

of the implementation. Furthermore, they can help to ap-

ply formal verification techniques by providing formalised

requirements.

INTRODUCTION AND MOTIVATION

The complexity of process control systems is steadily

increasing, resulting in more and more complex control soft-

ware. Without an appropriate specification it is increasingly

difficult to understand the requirements, hence to develop

and maintain the programs.

The motivation of this work originates from CERN (the

European Organization for Nuclear Research), where numer-

ous control systems are in use to operate the research facili-

ties. Many of these control systems rely on Programmable

Logic Controllers (PLCs). The increasing complexity of

the control systems results implies an increasing complexity

issue. The non-formal, ad-hoc specification methods in use

are less and less able to cope with the complexity of the sys-

tems. Therefore we propose a new specification method that

aims to handle the increasing complexity of PLC program

units.

Obviously, this is not the first work on specification meth-

ods for PLCs. Grafcet is a standardised specification method

[1] based on safe Petri nets. It is convenient to describe finite

state machines, but they are not universal enough to be gen-

erally used in the development of CERN’s control software

as the finite state machines are just one part of the final code

deployed. ProcGraph [2] is one of the recent attempts to

improve specifications of PLC programs, but it is on a low

abstraction level, too close to the real program code. Other

PLC-related specification methods also exist, but none of

∗ Corresponding author. E-mail: ddarvas@cern.ch, darvas@mit.bme.hu

them seemed to be able to cope with the size and complexity

of the PLC programs used at CERN.

Also, there are numerous general-purpose modelling

methods that can be used for specifying PLC programs. One

of them is the widely-known Simulink Stateflow, that has a

complex semantics not adjusted to the needs of the PLC do-

main, making its usage difficult and potentially error-prone.

The structure of the paper is the following. The next

section introduces the main concepts and the structure of the

proposed formal specification method. After, the potential

benefits of the new method are discussed. Finally, the last

section concludes the paper and draws up the future work.

Due to space limitations, the discussion of the syntax and

semantics of the specification method is introductory. The

reader can find more details in our technical report [3].

MAIN SPECIFICATION CONCEPTS

The goal of our work is to provide a specification method

that is a complete, formal behaviour description of specific

functionality which corresponds to one or some PLC compo-

nents. Therefore it can be used to describe individual PLC

components with high precision. Then, these precise de-

scriptions can be naturally composed into complete control

systems in the future.

Previous work [4] discussed the requirements towards

such a formal PLC specification method. The main require-

ments can be summarised as follows: (1) providing multiple

formalisms adapted to the needs and knowledge of the PLC

community, (2) keeping the “core logic” clean by decoupling

the input/output-handling, (3) supporting events with proper

semantics, and (4) limiting the set of possible errors by lim-

iting the expressivity. The domain-specific requirements are

complemented by general requirements, most notably the

need for a formal, precise specification formalism, that is

also lightweight (can be introduced with small effort) and

complete (it describes all required and allowed behaviours).

These requirements resulted in PLCspecif, a complete for-

mal specification method for PLC programs.

Structure of the Specification

The main building block of the specification is the module

that is either a composite module (its behaviour is described

by some submodules) or a leaf module (its behaviour is di-

rectly described). To provide a specification method that is

familiar for the PLC developers, the leaf module descrip-

tions are based on three widely-known formalisms: state

machines, data-flow diagrams, and standard PLC timers.

Each module (both composite and leaf modules) is further

decomposed into three main parts: (1) input definitions, (2)

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF091

Software Technology Evolution

ISBN 978-3-95450-148-9

907 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



core logic, and (3) output definitions. According to the se-

mantics of PLCspecif, these parts are executed sequentially

in a loop, following a structure similar to the cyclic execution

scheme of the PLCs.

In the input definitions part, named expressions can be de-

fined to simplify the specification. For example, if there are

three digital inputs from three buttons (Button1, Button2,

Button3), but the program provides the same response for

pressing any button, writing “Button1 OR Button2 OR

Button3” in the core logic makes the understanding more

difficult. Instead, the user can specify a ButtonPressed

expression that is defined once and used later in the core

logic. This helps to decouple the physical structure (i.e. three

digital inputs) from the concepts to be used in the core logic

(i.e. a button was pressed).

Some special inputs called event inputs can also be defined.

An event input is an expression with Boolean type that has

a priority assigned. We call an event input enabled if its

expression is evaluated to true. In each module only the

enabled event input with the highest priority can trigger.

The input definitions are followed by the core logic de-

scription part. It can be described using various formalisms,

that are introduced later in this paper.

The output definitions part is responsible to assign values

to the output variables, based on the input values and on the

core logic (e.g. the current state of a state machine). This

helps to keep the core logic clean. Including the output vari-

able assignments in a state machine (as entry/exit actions or

as transition actions) might make the state machine difficult

to overview, therefore it is error-prone.

Optionally, the output definitions part can be followed by

invariant properties. These are additional requirements and

assumptions identified during the specification phase that

are not obviously described by the core logic, but have to be

satisfied by the module.

Expression Descriptions

The input or output definitions may contain complex ex-

pressions. While the arithmetic form is suitable to describe

simple expressions (e.g. “a OR b”), it does not scale up well.

PLCspecif supports the usage of other expression description

methods: AND/OR tables and switch-case tables.

AND/OR tables were introduced in the RSML formalism

[5], but not widely used since. In an AND/OR table each

column represents a case, that is true if in all the rows the

value of the expression in the row header equals to the value

in the corresponding cell of the case. The whole expression

is the OR-connection of the defined cases. The symbol “·”

marks that the value of the variable is not taken into account

(“don’t care”). Figure 1(a) shows an example, representing

the a AND NOT b AND (c OR NOT d) expression.

Switch-case tables —as their name suggests— are based

on similar principles as the case constructs of various pro-

gramming languages. Figure 1(b) shows an example, rep-

resenting _Value, limited by lower limit PMin and upper

limit PMax.

Case 1 Case 2

a true true

b false false

c true ·

d · false

(a) AND/OR table

_Value _Value

< PMin > PMax result

Case 1 true · PMin

Case 2 false true PMax

Case 3 false false _Value

(b) Switch-case table

Figure 1: Tabular expression description examples.

Core Logic Descriptions

One single formalism cannot conveniently fit the different

types of modules (with state-based, data-flow-oriented and

time-dependent behaviour). Therefore we introduced three

different types of core logic descriptions.

State Machine. A state machine module is composed

of hierarchical states and transitions. A state can be basic

or composite (grouping several basic states together). A

transition can go from any state to a basic state1. It can have

a Boolean expression as condition: the transition can fire

only if the expression is evaluated to true. There are two

kinds of transitions: event-triggered and non-event-triggered.

A transition is enabled, if its source state is currently active,

the condition of the transition is evaluated to true, and if it

is event-triggered, the connected event triggers. When an

enabled transition fires, the current active state of the state

machine is changed to the target state of the transition. A

transition firing cannot cause any other effects (e.g. it cannot

provoke actions or do variable assignments).

The brief semantics of the state machine is the following.

First, all enabled non-event-triggered transitions are exhaus-

tively fired. Then the triggering event input (i.e. enabled

event input with the highest priority) is selected and if there

is any enabled transition triggered to this event input, this

transition will fire. Finally, all enabled non-event-triggered

transitions are exhaustively fired again. Note that in each

execution cycle at most one event-triggered transition can

fire per state machine module.

In addition, state machines can be extended by deep his-

tory states, similarly to UML State Machines.

Input-output Connection Module. State machines are

suitable for modules that are stateful and the state to be stored

can conveniently represented by a handful of states in the

specification. However, if the state can only be described by

some integers or real numbers (e.g. storing previous measure-

ments or value requests), state machines are inappropriate

and we suggest the usage of input-output connection mod-

ules. The idea of the input-output connection module is

inspired by Function Block Diagrams (FBDs) [6] and sim-

ilar data-flow-like formalisms. It graphically defines how

the outputs of the module should be assigned based on the

current inputs and outputs from the previous cycles.

This module description consists of pins representing

input and output values, and edges representing data con-

1 Transitions going to composite states are not allowed as they could make

the semantics of a state machine more difficult to understand.

WEPGF091 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

908C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution



nections between pins. Furthermore, it can contain blocks,

representing common functions (e.g. logic operations, arith-

metic operations, selection), user-defined functions, and

platform functions.

Figure 2 shows a simple example. Here, ValueOutput

keeps its previous value if the Boolean input Sample is false.

If Sample=true, the new value of ValueOutput will be

−1 × ValueRequest.

New values

ValueOutput

ValueRequest

ValueOutput

Sample

Multiply

(×)

in1

in2

out

Select

(MUX)

on true

on false

?

Old values

-1

Figure 2: Input-output connection core logic example.

PLC Timers. The state machines and input-output con-

nection modules of PLCspecif do not contain timed be-

haviours to keep them simple. However, it is crucial to

be able to define time-related operations. State machines

are often extended by clock variables to describe time, but

this method is error-prone, also it does not fit to the existing

knowledge of the target group. Instead, we propose to use

PLC timers defined in IEC 61131-3 [6] (TP, TON, TOFF).

Their semantics is well-known by the developers and they

can use these timers confidently.

Example. Figure 3 shows the specification of a simple

state machine module. The described component is a com-

bination of a flip-flop and a multiplexer. If the module is

enabled, its Value output is the ValueReq input, limited by

PMin and PMax. The module can be made enabled by having

a true signal in one of the EnableReq inputs. If there is a

rising edge on the DisableReq input, the module will be

disabled, and in this state the Value output will be 0. Dis-

abling the module has priority over enabling it. The module

keeps its state if no enable or disable request is received.

In the example one can observe the structure and general

elements of the specification, the decoupled input/output

handling, and the different ways of specifying expressions.

To help the understanding, each part of the specification can

be annotated by textual descriptions, however we omitted

them in this example to reduce its size.

BENEFITS

This section summarises the different benefits of using

a formal specification method tailored to the PLC domain,

such as PLCspecif.

Improved Understanding

Software of control systems, especially the ones evolving

for long time can become complex. Proper documentation

and specification is primordial to be able to fully understand

such PLC program. This understanding is necessary both

for reusing and maintaining the components.

ExampleModule

Assigned inputs:

• ValueReq : INT16

• EnableReq_fromLogic : BOOL

• EnableReq_fromScada : BOOL

• EnableReq_fromField : BOOL

• DisableReq : BOOL

• PMin : INT16 param

• PMax : INT16 param

Assigned outputs:

• Value : INT16

• Status : BOOL

Input definitions: — (none)

Event definitions:

•@disable⇐ rising_edge(DisableReq) (pri=1)

•@enable⇐ EnableReq_fromLogic OR EnableReq_fromScada

OR EnableReq_fromField (pri=2)

Core logic (state machine)

Disabled Enabled

@enable

@disable

Output definitions:

• _Value = ValueReq ValueReq

< PMin > PMax result

T · PMin

T PMax

F F ValueReq

F

• Value = in_state(Enabled) result

T _Value

F 0

• Status = in_state(Enabled)

Invariant properties:

• ALWAYS PMin ≤ Value ≤ PMax ASSUMING PMin ≤ PMax

Figure 3: Example module specification.

A simple, restricted, domain-specific formal specification

method that matches target platform (PLC) as PLCspecif

can help the users to express their requirements and intents

confidently. Decoupling the input/output handling also helps

to have a clean, easy-to-understand specification, where the

core logic can be simple. PLCspecif provides a simple spec-

ification method with simple semantics, especially suitable

for the needs of the PLC-based process control domain. For

example, handling rising and falling edges is a base feature

of PLCspecif, as it is an often used feature in PLC programs.

Its manual implementation in similar formalisms usually

involves concurrency, that can make the behaviour of the

module less intuitive and less understandable.

Consistency Checking and Formal Verification

A specification with formal semantics may not only im-

prove the understanding of the specifiers and developers, but

it opens the door for formal verification as well. Different re-

quirements can be checked on the specification directly using

formal techniques, such as model checking: general prop-

erties (e.g. the model does not contain deadlock, livelock

or nondeterminism) and application-specific properties (ex-

pressing additional requirements and assumptions). These

properties can be checked in the specification phase on the

formal specification, as well as later on the implementation.

For example, in Figure 3, a safety property expresses the as-

sumption that the Value output will be between the two given

limits: “ALWAYS PMin ≤ Value ≤ PMax” assuming that

the PMin value is not above PMax. However, using formal

verification it can be shown in the specification phase that

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF091

Software Technology Evolution

ISBN 978-3-95450-148-9

909 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



the property is violated if PMin > 0. The given counterex-

ample demonstrates that if the module is in disabled state,

the Value is set to zero, even if this is out of the PMin..PMax

range.

The verification is made possible by the definition of for-

mal semantics for PLCspecif, defined as a transformation to

a lower-level formalism: timed automaton. Timed automa-

ton have a well-defined semantics, also this representation

can be directly the input of a suitable model checker tool.

A formal specification can also be the source of automated

test generation, thus to use a variety of verification methods.

Code Generation

A complete, formal specification contains the behaviour

description that is required to implement the PLC module.

Based on this knowledge, a developer can manually create

the code, or this process can be automated. The basis of the

code generation is the formal semantics of PLCspecif. The

code generation method is constructed as a systematic repre-

sentation of the structures of the timed automata describing

the formal semantics in a PLC programming language. This

way the generated code can be correct by construction.

While the specification contains the behaviour of the mod-

ule, the code generator shall be configurable to select imple-

mentation alternatives in order to provide a code expected by

the user that is easily understandable. In case of PLCspecif,

the user has influence on the structure of the code (which

submodules should be extracted into functions or function

blocks, how to represent state machines, etc.). Based on the

specification and the configuration of the way of implemen-

tation, it is possible to generate code for PLCs. Currently,

our proof-of-concept code generator supports the Siemens

implementation of the IEC 61131-3 standard ST (Structured

Text) language [6], the Structured Control Language (SCL).

A common counterargument against PLC code genera-

tion is the fact that most code generators provide complex,

unmaintainable code, while it is required to have full under-

standing of the generated PLC code. By careful design and

configurable structure PLCspecif allows to generate readable

code, following the structure of the specification.

Equivalence and Conformance Checking

Equivalence and conformance checking is the process of

comparing the behaviour of models with formal semantics.

It allows to compare two models against each other by check-

ing for example if they provide the same outputs for the same

input sequences. This can show the equivalence of two mod-

ules with different internal structure. Besides this use case,

conformance checking can be applied to check implementa-

tion against specification (e.g. if a manual implementation is

conformant to a specification, or if a specification properly

captures the behaviour of a legacy implementation).

Different equivalence and conformance relations have

been defined with different sensitivity. This way the user

can focus on the differences that are relevant from the point

of view of the correctness of the PLC program.

These equivalence/conformance relations can be checked

on the timed automata constructed for the formal semantics

description, or on execution traces. Comparison between

specification and implementation is allowed by previously

designed methods [7] for building models of PLC code.

Examples and Experiences

As an initial validation of the specification method, we

mention our experiment that targeted one of the base objects

used in CERN’s UNICOS framework [8]. The PLCspecif

specification was made on the basis of understanding the

behaviour (by having discussions with the developers) of the

OnOff object, that is the UNICOS representation of a binary

state equipment (e.g. valve, heater, pump). By being able to

capture and clarify the intended behaviour of a PLC code of

600 lines, we demonstrated that PLCspecif can scale up to

the size of real PLC program components. Code generation

was also performed and the produced code was tested in the

test bench used for UNICOS modules.

CONCLUSIONS AND FUTURE WORK

In this paper we have introduced PLCspecif, a formal be-

haviour specification method for PLC programs. Using such

a method can provide benefits in many ways: it improves un-

derstanding, it can be a basis of verification and automated

implementation. Our plans for future work includes the

definition of extensions that address the integration of mod-

ules, to support the specification of the software of complex

control systems.

REFERENCES

[1] IEC 60848:2013 GRAFCET specification language for sequen-

tial function charts, IEC Std., 2013.

[2] T. Lukman, G. Godena, J. Gray, M. Heričko, and S. Strmčnik,

“Model-driven engineering of process control software – be-

yond device-centric abstractions,” Control Engineering Prac-

tice, vol. 21, no. 8, pp. 1078–1096, 2013.

[3] D. Darvas, E. Blanco, and I. Majzik, “Syntax and seman-

tics of PLCspecif,” CERN, Report EDMS 1523877, 2015,

https://edms.cern.ch/file/1523877/.

[4] D. Darvas, I. Majzik, and E. Blanco, “Requirements towards a

formal specification language for PLCs,” in Proc. of the 22th

PhD Mini-Symposium. BUTE DMIS, 2015, pp. 18–21.

[5] N. Leveson, M. Heimdahl, H. Hildreth, J. Reese, and R. Or-

tega, “Experiences using statecharts for a system requirements

specification,” in Proc. of the Sixth Int. Workshop on Software

Specification and Design. IEEE, 1991, pp. 31–41.

[6] IEC 61131-3:2013 Programmable controllers—Part 3: Pro-

gramming languages, IEC Std., 2013.

[7] B. Fernández, D. Darvas, J.-C. Tournier, E. Blanco, and V. M.

González, “Bringing automated model checking to PLC pro-

gram development – A CERN case study,” in 12th Int. Work-

shop on Discrete Event Systems. IFAC, 2014, pp. 394–399.

[8] E. Blanco et al., “UNICOS evolution: CPC version 6,” in Proc.

of the 13th Int. Conf. on Accelerator & Large Experimental

Physics Control Systems, 2011, pp. 786–789.

WEPGF091 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

910C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution


