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Abstract 

Accelerator control systems process thousands of 

concurrent events per second, which adds complexity to 

their implementation. The Disruptor library provides an 

innovative single-threaded approach, which combines high 

performance event processing with a simplified software 

design, implementation and maintenance. This open-

source library was originally developed by a financial 

company to build a low latency trading exchange. In 2014 

the high-level control system for CERN experimental areas 

(CESAR) was renovated. CESAR calculates the states of 

thousands of devices by processing more than 2500 

asynchronous event streams. The Disruptor was used as an 

event-processing engine. This allowed the code to be 

greatly simplified by removing the concurrency concerns. 

This paper discusses the benefits of the programming 

model encouraged by the Disruptor (simplification of the 

code base, performance, determinism), the design 

challenges faced while integrating the Disruptor into 

CESAR as well as the limitations it implies on the 

architecture. 

INTRODUCTION 

CESAR is the high level software used to control CERN 

experimental areas. The experimental areas are composed 

of eleven beam lines used by experimental physicists for 

fixed target research and detectors tests. Four beam lines 

are located in the East Area, using a beam extracted from 

the PS ring, and seven are in the North Area, using a beam 

extracted from the SPS ring. The core of CESAR is 

responsible for the data acquisition of all the devices 

controlling these beam lines. While refactoring this data 

acquisition part of Cesar, we decided to use the Disruptor 

library in order to simplify the design of the code handling 

the 2500 asynchronous event streams coming from these 

devices.  

In the last decade, the actors of the world of finance and 

high frequency trading have been involved in an arms race 

to build exchanges and trading robots that can operate at 

the nanosecond scale.  From time to time, some 

technologies created by the massive investments in this 

field are shared with the community [1].The Disruptor 

library was created by LMAX [2] -a London-based 

financial company- in order to develop a low-latency forex 

[3] trading venue [4]. In the early design phase, they tried 

different approaches: functional programming, Actors, 

SEDA [5], and noticed that they could not achieve the 

required latency because the cost of queuing was higher 

than the time spent executing the business logic. They 

finally settled on an innovative design and decided to open 

source it. 

THEORETICAL BACKGROUND 

The base idea around the Disruptor is to make the most 

of the available CPU resources, following a concept that its 

creators call ‘mechanical sympathy’. This term coming 

from the car racing world is used to describe software 

working in harmony with the hardware design, similar to a 

driver understanding how a car works in order to achieve 

the best performance. Since the appearance of multicore 

CPUs, we have heard expressions like “the free lunch is 

over” [6] and there is a general belief that CPUs are not 

getting any faster. Although their clock speed is not getting 

higher, modern CPUs have brought significant 

performance improvements. Regrettably, the progresses 

made in hardware are often lost by software designs that 

do not consider how modern processors work. 

Feeding the Core 

The most important aspect to consider in order to use a 

processor efficiently is to feed it correctly. Processors are 

very fast, but this speed is of little use if they spend most 

of their time waiting for the data they need to process. 

Looking at a simplified view of the memory architecture of 

a modern CPU such as Intel’s Sandy Bridge (Fig. 1), we 

see that the cores read data from several cache layers (L1, 

L2, and L3). 

 

Core 1

L1 Cache – 64 KB – 1 ns

L2 Cache – 256 KB – 3 ns

L3 Cache – 1 to 20 MB – 12 ns

Core 2

L1 Cache

L2 Cache

QPI – 40 ns

Socket 1

Quick Path Interconnect 

to other sockets

RAM – 65 ns

 

Figure 1: Memory Hierarchy 
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When a core needs to process data, it looks down the 

chain in the L1, L2 and L3 caches. If the data is not found 

in any cache, it is fetched from the main memory. As we 

physically move away from the core, each memory layer 

has an increased capacity, but is also several orders of 

magnitude slower than the previous one. In order to use the 

core at its maximum throughput, a program should work 

on data that is available within the caches.  

Developers do not have to do this manually, because the 

processor is able to automatically prefetch the data in its 

caches. However, the prefetcher has a limitation: it only 

works if the memory is accessed with a predictable pattern: 

this means that the program has to walk through memory 

in a predictable stride (either forward or backward) [7]. 

This works very well while iterating on data structures that 

use memory allocated contiguously, such as arrays, but 

cannot be used with linked lists or trees because the 

prefetcher is unable to recognize an access pattern on these 

complex structures. This mechanism is not limited to one 

thread; on modern Intel processors, up to 32 streams of data 

can be prefetched concurrently. 

Padding Cache Lines 

Caches are composed of cache lines: these are memory 

blocks of fixed size (64 bytes on modern x86).  Cache lines 

are the atomic units of memory used in caches: the 

prefetcher always loads full cache lines, and when a 

variable is written in a cache line, the full cache line is 

considered as being modified. The phenomenon known as 

‘false sharing’ happens when two unrelated variables share 

the same cache line, and are written concurrently by two 

threads running on two different cores (Fig. 2). These 

threads constantly fight for the ownership of the cache line. 

Since each write of a variable results in the invalidation of 

the same cache line on the other core, the data needs to be 

reloaded. If the two cores are on the same socket, it can be 

reloaded from the L3 cache. If they are on different sockets, 

this battle is fought through the QPI bus (Fig. 1), adding 

even more latency.  
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Figure 2: Top: variables X and Y sharing the same cache 

line. Bottom: cache lines padded (represented as P) to 

avoid false sharing. 

Although false sharing is often overlooked, it can 

significantly and silently degrade the performance of 

concurrent code. The simplest example is a thread 

incrementing a long variable in a loop. Running two of 

these threads in parallel on a multi-core system should in 

theory yield the same performance figures as running a 

single thread, since each one should run on its own core 

and increment its own independent variable. In reality, 

when both variables share the same cache line, the threads 

will need more than twice the time to complete, and this 

ratio will increase as we add more threads [8]. In order to 

solve this issue, the variables which are the most 

susceptible to write contention can be padded in order to 

fill the full cache line (Fig. 2). The padding forces the 

variables to be placed in different cache lines. 

DISRUPTOR ARCHITECTURE 

At the heart of the Disruptor is the ring buffer (Fig. 3). 

This data structure is used to pass messages between 

producers and consumers. It has a bounded size, in order to 

apply backpressure if the consumers are not able to keep 

up with the producers.  

It is backed by an array, which is initialised up front in 

order to be fully allocated in contiguous blocks of memory. 

The array structure and the contiguous memory make it 

cache friendly because the CPU will be able to detect that 

a consumer is walking through the memory in a predictable 

pattern and will prefetch the memory into its caches. 
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Figure 3: Ring Buffer 

 

 The elements in the ring buffer are mutable. When the 

producers reach the end of the buffer and wrap to the start, 

they reuse existing entries and overwrite them. This means 

that this data structure does not generate any work for the 

garbage collector.  
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The progress of producers and consumers on the ring 

buffer is tracked by sequence numbers. A sequence number 

is a 64 bit long number, which is padded to fill a full cache 

line. Since these variables are frequently read and updated 

from concurrent threads, they could be a source of 

contention. The padding removes the risk of false sharing. 

Memory Visibility 

The memory visibility of the data exchanged between 

producers and consumers relies on the sequence numbers. 

Updating a sequence number is similar to writing a Java 

AtomicLong: it is translated into a compareAndSwap CPU 

instruction. The CPU memory model guarantees that the 

memory modified before a compareAndSwap will be 

visible by other threads (this is true for the most common 

CPU architectures, in the other case the compiler will add 

an additional synchronization) [9]. This allows the 

Disruptor framework to be lock-free, thus eliminating the 

main contention point that comes with traditional 

implementations of queues. 

Batching 

In most producer/consumer architectures, the producers 

regularly outperform the consumers. The Disruptor 

framework offers a smart way to catch up for consumers: 

if several items are waiting on the queue, consumers can 

process the full batch of available items at once instead of 

processing one item at a time. Batching is usually more 

efficient, especially when it involves I/O. 

Consumer Dependencies 

For a simple usage, the Disruptor can be used as a queue 

between producers and consumers. In addition, the API 

allows to declare a dependency graph between consumers 

(Fig. 4). 

 

Consumer 1:

Message parsing

Consumer 2:

Journaling

Consumer 3:

Replication

Consumer 4:

Business Logic
 

Figure 4: Example of consumer dependency 

 

Real world applications often have several processing 

layers connected by queues. With this feature, the 

Disruptor can replace multiple layers of queues. The data 

will be exchanged between the dependant consumers over 

the ring buffer, eliminating the contention and delays 

brought by the traditional queuing approach. 

All these concurrent programming concepts are complex 

and very error prone. They are a common source of errors 

in real world applications and often difficult to 

troubleshoot. 

 The Disruptor architecture actually encourages code 

simplification by writing the business logic in a single 

thread. Since the framework takes care of the 

synchronization, the business logic can be uncluttered of 

the concurrency concerns. As a result, it is easier to reason 

about it, as well as to test and maintain it. 

DISRUPTOR USAGE IN CESAR 

The 1300 devices controlling the beam lines generate 

multiple streams of data. The CESAR server is in charge 

of acquiring this data in order to compute an overall state 

for each device. The first implementation was using 

manual locking on the data structures in order to 

synchronize the concurrent data streams. The main reason 

to use the Disruptor is to simplify the overall device state 

calculation. 

In the new design, the messages coming from the 

devices are stored on the ring buffer. Then a single 

Disruptor thread updates simple buffers dedicated to keep 

the last value for each data stream, and based on these last 

values computes the overall device state that is published 

to clients (Fig. 5). 

Devices

Update buffers with last acquired values

Calculate device states with updated values

Publish device states to clients
 

Figure 5: State computation in CESAR 

Benefits 

This architecture has many benefits. The threads 

delivering messages from devices never encounter a lock 

and are released very quickly. If multiple messages are 
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available on the ring buffer, they are processed as a batch. 

This is a good fit for the experimental areas, where most 

detectors publish their state simultaneously after being 

triggered by a timing event. The batching mechanism 

allows CESAR to process such bursts of messages more 

efficiently.  

The state computations are completely deterministic: 

since a single thread processes messages in a known FIFO 

order, we can easily understand why a given state was 

calculated by looking at the message log. When a race 

condition causes a bug in concurrent code, developers are 

often left wondering why something that seemed 

impossible actually happened. This usually occurs at the 

worst possible times, when the system is heavily loaded 

and when the applications logs offer little help to 

understand in which order things really happened. The 

single threaded design eliminates this class of problems 

while keeping an excellent throughput.  

Since we can rely on the fact that the business logic code 

runs on a single thread, we can write lock-free code that is 

more efficient and simpler. This also reduces the overall 

cost of maintenance, because the business logic code has a 

high chance of being modified during the software’s 

lifetime.  

The main concern when moving to a single thread is to 

know if it will be fast enough. Considering that the 

Disruptor was designed for high performance, we 

speculated that it would easily cover our needs. We indeed 

measured that our code, without any optimization effort, 

was able to process around 1 million messages per second. 

This is more than enough for our current needs and gives 

us some room to grow, as other Disruptor users reach more 

than 10 million messages per second with optimized code. 

Limitations 

During our refactoring we found that integrating the 

Disruptor in an existing architecture is reasonably simple, 

and less invasive than other approaches like actor 

frameworks. There are nonetheless some aspects to 

consider carefully before using this model. 

The ring buffer is designed to apply backpressure. This 

is usually a good design choice to fail gracefully under 

load, but one should evaluate if the other parts of the 

application are compatible with that approach. For instance 

it might be a business choice to define if messages can be 

lost when the buffer is full. 

As the computations run on a single thread, developers 

must make sure that this thread is never blocked. Any kind 

of blocking I/O such as an interaction with a traditional 

database should be avoided. The most common logging 

frameworks also make use of locks, which could add 

contention to this thread and reduce the performance 

dramatically [10]. After executing the business logic, a 

common use case is to publish the result of the 

computation. If this publication is using potentially 

blocking I/O, such as a remote message broker, the design 

should handle a network or broker failure without blocking 

the processing. In our case, we publish the calculated 

device states over a JMS broker, and decided to add an 

additional layer of buffering that keeps only the latest 

device states if the publication cannot keep up. This is 

acceptable because our GUI only needs the latest updates. 

The Disruptor architecture is inherently asynchronous. 

This is a natural design choice for control applications that 

handle streams of data. At the same time, an extra effort is 

necessary if it is required to support synchronous 

operations as well. In our case, CESAR is required to 

support a synchronous refresh for the overall device states, 

based on the current hardware information. In order to 

create a synchronous functionality based on asynchronous 

services, we had to carefully analyse the different scenarios 

that could happen in the asynchronous world (timeouts, 

concurrent requests, etc.). 

 

CONCLUSION AND OUTLOOK 

The new CESAR architecture based on the Disruptor has 

been used operationally for over a year and proved to be 

very stable. The simplification brought by the separation of 

concerns between the concurrency aspects and the business 

logic allows for easy maintenance and extension of the 

code base. We believe that a similar architecture can be 

used for other control systems and can be particularly 

beneficial for the ones that need to handle large amounts of 

events with low latency.  

A possible area of improvement for CESAR would be to 

follow the design adopted by the creator of the library [11]: 

journal and replicate all messages and base the server state 

on these messages only. This would bring hot-swappable 

servers and an easy way to reproduce operational scenarios 

on a developer’s machine. 
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