
DETECTOR CONTROLS MEETS JEE ON THE WEB

F. Glege, M. Janulis, A. Andronidis, O. Chaze, C. Deldicque, M. Dobson,

A. Dupont, D. Gigi, J. Hegeman, R. Jiménez Estupiñán, L. Masetti, F. Meijers,

E. Meschi, S. Morovic, C. Nunez-Barranco-Fernandez, L. Orsini, A. Petrucci, A. Racz,

P. Roberts, H. Sakulin, C. Schwick, B. Stieger, S. Zaza, P. Zejdl (CERN, Geneva, Switzerland),

U. Behrens (DESY, Hamburg, Germany), O. Holme (ETH Zurich, Switzerland),

J. Andre, R. K. Mommsen, V. O’Dell (Fermilab, Batavia, Illinois, USA), G. Darlea,

G. Gomez-Ceballos, C. Paus, K. Sumorok, J. Veverka (MIT, Cambridge, Massachusetts, USA),

S. Erhan (UCLA, Los Angeles, California, USA),

J. Branson, S. Cittolin, A. Holzner, M. Pieri (UCSD, La Jolla, California, USA)

Abstract

Remote monitoring and controls has always been an

important aspect of physics detector controls since it was

available. Due to the complexity of the systems, the 24/7

running requirements and limited human resources, remote

access to perform interventions is essential.

The amount of data to visualize, the required visualization

types and cybersecurity standards demand a professional,

complete solution.

Using the example of the integration of the CMS detector

controls system into our ORACLE WebCenter

infrastructure, the mechanisms and tools available for

integration with controls systems shall be discussed.

Authentication has been delegated to WebCenter and

authorization been shared between web server and control

system. Session handling exists in either system and has to

be matched. Concurrent access by multiple users has to be

handled. The underlying JEE infrastructure is specialized

in visualization and information sharing. On the other

hand, the structure of a JEE system resembles a distributed

controls system. Therefore an outlook shall be given on

tasks which could be covered by the web servers rather

than the controls system.

INTRODUCTION

The Compact Muon Solenoid (CMS) detector is one of

the four experiments of the Large Hadron Collider (LHC)

at CERN. The Detector Controls System (DCS) is needed

to bring the detector in a state to collect physics data. The

scale of the system is illustrated with the following

numbers: • ~3 million parameters • ~700.000 lines of code • ~35000 finite state machine nodes • 34 SCADA systems • 29 redundant PC pairs (Windows) • ~50 DB schemas (ORACLE) • O(TB) of data in database schemas

The system is running in production since several years

with a high efficiency. It is built using the SCADA system

WinCC OA from the Austrian company ETM. At CERN

the Joint Controls Project (JCOP) created a toolkit based

on WinCC OA to facilitate the development of the

experiment controls systems. Today this is used by all LHC

experiments and for several other projects at CERN.

PART1: REMOTE CONTROL VIA WEB

Visualization in WinCC OA

In WinCC OA visualization is done through so-called

panels. Using a graphical editor, graphics objects (buttons,

text, lines, etc.) can be placed on a window. Each element

can be enhanced by scripts, which allow to change the

properties of the element itself. The scripts have access to

the process data and can therefore reflect the process

information through the visualization. The graphical editor

produces a file describing the panel layout and functions.

This file is then used by a WinCC OA process to visualize

these panels. This process uses Qt as a graphics library,

with all graphics elements being drawn using the Qt

graphics API. The Qt Library itself translates the drawing

of the panel into primitive paint commands which are sent

to the device used for visualization.

 Remote Control

Around 4000 members of the CMS collaboration should

be able to access the DCS information remotely in a read

only manner. The data should ideally be live to ensure a

good user experience. Experts should in addition be able to

interact and remotely control their systems. Authorization

and authentication are required to enable interaction.

The means for remote control currently used in CMS are • snapshots taken regularly of selected panels being

served as images vie the web server • HTML/java script pages providing live information

collected

o from the logging database

o through protocols supported and used by the

controls system

A full discussion of the current remote control solution in

CMS DCS can be found in [1].

Live Web Access

Thousands of panels have been created for the detector

controls of the LHC experiments. Reimplementing all of

them at once to provide a pure HTML solution which

Proceedings of ICALEPCS2015, Melbourne, Australia TUA3O01

Experimental Control

ISBN 978-3-95450-148-9

513 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

would offer live data access using standard web tools is not

an option. Giving access to WinCC OA panels directly

through remote access tools like remote desktop, VNC, etc.

would require too many computing resources caused by the

large number of possible clients.

A good compromise represents the usage of the Qt platform

abstraction mechanism [2]. Graphics in applications are

usually created on several layers (see Fig. 1). On the

highest layer a layout manager will position graphics

objects according to the rules the designer has set. Each

graphics object is composed of graphics primitives. Those

primitives are drawn using basic commands to reflect its

geometry.

The Qt platform abstraction mechanism allows to intercept

the basic drawing commands (see Fig. 2). It happens that

those commands are often similar for different

visualization devices. Also the commands used in an

HTML5 [3] canvas are similar to those used in Qt. The

solution is to intercept those commands in Qt and send

them to a web browser, where they are applied to an

HTML5 canvas. Doing so creates an exact image of the Qt

graphics inside the browser. Sending all events of the

HTML5 canvas (mouse movement, clicks, button press,

etc.) back to Qt allows to have exactly the same control

remotely as one would have on the local Qt graphics

display.

Figure 2: Paint command redirection.

Web Server as a Gateway

To make the above mentioned mechanism usable for

many clients in a real environment, a web server offering

JEE (JAVA Enterprise Edition)[4] has been added as a

gateway between Qt and the browser. Doing so provides • authentication and authorization based on standards • multi user access • firewalling using well tested, widely used software • business logic implementation and process modelling

A resource broker is required to handle the graphics

sources (in our case WinCC OA user interface managers)

and steer the data exchange. On request the resource broker

starts a new user interface manager, if the requested panel

is not yet served by another manager, and tells the Web

socket proxy to set up the connection (see Fig. 3). In

response to the initial browser request an HTML client

containing the HTML5 canvas and all necessary Java

Script code will be returned. This client will open a web

socket to the web socket proxy which will then open the

connection to the user interface manager and start proxying

data. The web server infrastructure will ensure that the

client is authenticated and authorized to do this action.

Two modes are possible using this mechanism: • One client per panel, allowing for read write access to

the panel. This is to be used by system experts, who

need to interact with their system • Many clients per panel, allowing only read access. This

is to be used by any authenticated user to gather the

current system status.

In our case the resource broker and the web socket proxy

have been implemented as a proof of concept and run in an

ORACLE portal infrastructure.

Figure 3: Work flow.

Why JEE?

Our web server infrastructure provides JEE. The JEE

concept contains EJBs (enterprise JAVA beans) which have

several features that ease the implementation of the

described remote access mechanism: • EJBs model the business logic of a JEE application • EJBs are not limited to a request • EJBs provide intercommunication • EJBs allow modularity and scalability • EJBs allow for distributed systems

Figure 1: The graphics stack.

TUA3O01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

514C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control

By implementing a resource broker and a web socket proxy

as an EJB, they profit from the inherited infrastructure. The

reception of the initial browser request is very simple in an

EJB as is the communication amongst different EJBs.

These components can be distributed over several web

server instances (e.g. to do load balancing) using the same

communication mechanism.

Thus the use of JEE significantly eased the development

for CMS and allows building complex system architectures

out of the box to fulfil functional requirements.

Performance

The first implementation simply expressed all paint

commands intercepted in Qt as HTML5 canvas paint

commands and sent them to the browser. The bandwidth

required to show a reference panel was ~1.1MB/s. This did

not allow for a good user experience since drawing on the

canvas was lagging behind and even crashing the browser.

Several optimizations have been applied to improve this: • Command indexing:

o The paint commands have been replaced by a

numerical representation. • Command sequence caching:

o All commands are aggregated in a continuous

buffer. If the server identifies a command or

sequence of commands which has already been

sent, it just sends a pointer and the length of the

sequence to be repeated. • Image caching. • Optimized TCP packet usage:

o Commands are sent in chunks to minimize the

network protocol overhead. • Update frequency Reduced to human perceivable rate • Optimized (reduced) event sending:

o A mouse movement on the client side will create a

move event for every pixel it moves. Small

movements are collected, combined and sent as a

single movement.

After applying the previously mentioned optimizations, the

required band width could be reduced to ~20kB/s. This

provides a sufficiently good user experience where the

remote graphics are nearly in sync with the local one.

Next Step

Many panels provide navigation mechanisms: either they

contain tabs or provide access to other panels. Ideally

navigation should be available to all users and not only to

the expert, with rights to interact, since the full information

is only obtained through this mechanism. In the current

mechanism it is not possible to implement this since the

navigation items (tabs, buttons, etc.) are not identifiable on

the client side. (The HTML5 canvas only knows about an

accumulation of geometrical objects)

Furhermore, accepting events on navigation items from all

users would mean that the resulting changes in the panel

would also be shown to all users.

To overcome this problem and allow for basic navigation,

the graphics elements used for navigation could be

replaced by HTML objects. Now the browser would

identify actions on those elements and could request the

underlying action to the server. In case of tabs, the resource

proxy would redirect the connection of this browser to a

panel showing the requested tab.

Since the navigation elements will no longer be transferred

as graphics primitives but as high level HTML code, the

required bandwidth is reduced and performance increased.

Using object based authorization the access to those

elements could be restricted on a per user basis.

Final Goal

The final goal is to replace all panels with pure HTML

panels. The advantages would be maximum performance

through minimal required bandwidth and multi user

read/write access. As mentioned before this will require a

sizable development effort and is therefore not achievable

in short term.

Summary Part1

We implemented a solution for web based remote control

mirroring WinCC OA panels using Qt platform

abstraction. No modification of panels is needed to provide

single user read/write or multi user read only with

sufficient performance. An evolution towards a fully

HTML based remote visualization is possible and foreseen.

PART2: JEE GRAPHICS AND BEYOND?

The simplified architecture of a controls system could be

sketched as shown in Fig 4.

Figure 4: Simple sketch of a controls system

architecture.

Apart from the programming interface, all parts are

logically independent. The separation of processing core

and programming interface might not be as clear as shown

and depends on the implementation. The connection to the

devices is often device specific. Interface concepts like

OPC UA and TCP based bus systems should generalize the

front end connections and remove the need for specific

hardware interfaces.

After some reshuffling and abstraction the JAVA EE

architecture looks like in Fig. 5.

Proceedings of ICALEPCS2015, Melbourne, Australia TUA3O01

Experimental Control

ISBN 978-3-95450-148-9

515 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 5: JEE architecture.

It’s obvious that a web server can be used for visualization.

(The first part of this paper proofs this). The persistent

storage is the same in both cases. Through the Java native

interface (JNI) any device library can be connected to

JAVA. According to their definition the EJBs are meant to

be used to model business logic. That is what the

processing cores in any controls system do. Also here the

borderline between EJBs, servlets and JSP is not a clear

separation. Some tasks might be implemented with either

type. The general concept therefore looks the same.

JEE for Controls?

Seeing that the concept fits, could one use JEE to build a

control system?

A web browser as visualization is certainly very powerful

and provides a large amount of freely available

components. This is certainly more than most SCADA

(Supervisory controls and data acquisition) systems

provide.

The access to persistent storage systems is part of JEE.

Usually different types of storage are supported by the web

server infrastructure. JEE even provides a possibility to

declare data items to be made persistent, which is done

transparently to the user. The achievable performance has

to be tested but the modular nature of the JEE concept

should allow to scale up sufficiently to reach the required

performance.

The connection to front ends is possible by design, since

any library can be connected to JAVA through JNI.

The processing core in JEE, i.e. JSPs (JAVA server pages),

servlets and EJBs provide inbuilt local and distributed

communication means allowing for a distributed design.

Also here a certain performance has to be reached but since

JAVA is a standard programming language, this is not

more or less difficult than with any other language. The

ease of factorization, however, is an advantage over bare

C++ for instance.

Summary Part 2

JEE is not a readily built SCADA software. JEE is a

concept for which different implementations exist and

provides many components and interfaces required to build

a controls system. It is well documented, widely used and

often free of charge.

For those reasons, JEE seems well suited as a basis for the

development of a new controls system.

REFERENCES

[1] Lorenzo Masetti et al., a scalable and homogenous

web-based solution for presenting CMS control

system data, THCOAAB01, proceedings ICALEPCS

2013.

[2] http://wiki.qt.io/Qt_Platform_Abstraction

[3] http://www.w3.org/TR/html5

[=4] http://www.oracle.com/technetwork/java/

 javaee/overview/index.html

TUA3O01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

516C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experimental Control

