ATLAS SM VH(bb) Run 2 search

Context: Is this really the SM Higgs boson? Goal: Observe H->bb decay and measure H-b coupling.

Task: ATLAS Run 1 and Run 2 data VH(bb) search.

Result Run 1: μ =0.51±0.40 (±0.31 stat. ±0.25 syst.)

Result Run 2: μ =0.21±0.51 (±0.36 stat. ±0.36 syst.) Run 1: JHEP 01 (2015) 069, 1409.6212; Run 2: ATLAS-CONF-2016-091

Overwhelming SM bb background, so need associated VH production.

Top-quark and W+jets processes are the main backgrounds.

Н

1-lepton

To discriminate further we use a multivariate technique ($m_{\rm bb}$ + others).

To improve sensitivity, we divide into many categories.

To validate the analysis we also search for VZ(bb).

	0-lepton	1-lepton	2-lepton
Nr jets	2, 3	2, 3	2, ≥3
Nr b-tags	2	2	2
p_T^V	≥150 GeV	≥150 GeV	≥150 GeV <150 GeV

To improve the measurement of the best discriminant variable ($m_{\rm bb}$), we use four consecutive jet energy corrections.

Eur. Phys. J. C75 (2015) 17 Eur. Phys. J. C73 (2013) 2306

Resolution Muon pT spectrum Muon-in-jet Designed for b jets. For all jets,

For jets that contain a reconstructed muon derived from $p_T>4$ GeV, $dR(\mu,jet)<0.4$ from the p_T spectrum of semileptonic decays H->bb at 125 GeV. (about 12% of b-tagged jets).

To constrain the backgrounds and extract the limit and signal strength, we perform a simultaneous fit over all categories.

Diboson VZ validation: BDTs trained for VZ. $\mu_{VZ} = 0.91 \pm 0.17^{+0.32}_{-0.27}$ stat. syst. Observed significance is 3.0 standard deviations (s.d.), while 3.2 is expected.

Conclusion: Signal strength μ =0.21±0.51 (±0.36 stat. ±0.36 syst.). Stat. and systematic uncertainties have equal impact on analysis.