Searches for rare charm decays at LHCb ICHEP 2016 - Chicago

Andrea Contu on behalf of the LHCb collaboration

CERN

3-10 Aug 2016

Topics

- Introduction
- 2 Search for the $D^0 o \pi^+\pi^-\mu^+\mu^-$ decay
- 3 First observation of the decay $D^0 \to K^-\pi^+\mu^-\mu^+$ in the ρ^0/ω region in the dimuon mass spectrum
- ullet Search for the $D^0 o e^+\mu^-$ decay
- **5** Observation of $\eta_c(2S) o p\bar{p}$ and search for $X(3872) o p\bar{p}$ decays
- 6 Conclusions and Prospects

◆ロト ◆問 → ◆恵 > ◆恵 > ・ 恵 ・ 夕 Q (*)

Reminder of the LHCb detector [JINST 3 (2008) S080005]

LHCb proved itself to be a forward general purpose detector at the LHC:

Performance:

- $\Delta p/p = 0.35\% 0.55\%$
- Mass resolution= $10-25\,\mathrm{MeV/c^2}$
- Impact parameter resolution: $20 \, \mu \mathrm{m}$ for high- p_T tracks
- ECAL $\sigma(E)/E = 10\%(E/\text{GeV})^{-1/2} \oplus 1\%$
- Excellent particle ID thanks with RICH detectors (2-100 GeV/ c^2) • = •

 $\sigma(c\bar{c}, \sqrt{s} = 7\,{\rm TeV}) = 1419 \pm 133\,\mu{\rm b}$ [Nuc Phys B871 (2013), pp. 1-20]

 $\sigma(c\bar{c}, \sqrt{s} = 13 \,\mathrm{TeV}) = 2940 \pm 240 \,\mu\mathrm{b}$ [JHEP03(2016)159]

Charm Rare Decays

 $D^0 \rightarrow \mu^+ e^-$

Wide variety of physics, ranging from forbidden to not-so-rare decays

 $D_{(s)}^+ \to \pi^+ l^+ l^-$

 $D^0 \rightarrow \pi^- \pi^+ V (\rightarrow ll)$

 $D^0 \to K^{*0} \gamma$

[PRD 66 (2002) 014009]

Short distance contributions to effective $c \to u$ transitions are tiny, branching fractions dominated by long distance contributions SM predictions (for non-resonant decays) are normally $BF < 10^{-9}$, not yet there but will get very close after the LHCb upgrade

Search for the $D^0 o \pi^+\pi^-\mu^+\mu^-$ decay [PLB 728 (2014) 234-243]

- First LHCb attempt to set limits for (non-resonant) 4-body rare charm
- Use 2011 data only (1fb $^{-1}$) and $D^{*\pm} \to D^0 \pi^\pm$ decays to suppress combinatorial background
- Normalise to $D^0 \to \pi^+\pi^-\phi(\to \mu^+\mu^-)$ but branching fraction extracted from an amplitude analysis of $D^0 \to \pi^+\pi^-K^+K^-$ performed by CLEO \to large systematic affecting the limit

• $BF(D^0 \to \pi^+\pi^-\mu^+\mu^-) < 5.5 \times 10^{-7}$ at 90% CL (world's best)

First observation of the decay $D^0 \to K^- \pi^+ \rho^0/\omega (\to \mu^- \mu^+)$

- Rare $D^0 \to h^+ h^- l^+ l^-$ decays sensitive to NP in the non-resonant regions of the dilepton spectrum
- FCNCs are the most interesting and $D^0 \to \pi^+ K^- \mu^+ \mu^-$ is not one of them...
- Still its resonant contributions provide an excellent normalisation for all the other 4 body modes

Analysis overview (2012 data, $2fb^{-1}$)

- Focus on $m(\mu\mu)$ in the ρ^0/ω region ([675,875] MeV)
- Normalise to $D^0 o K^- \pi^+ \pi^- \pi^+$ which is also the main background
- Careful estimation of peaking backgrounds

6 / 15

First observation of the decay $D^0 o K^-\pi^+ ho^0/\omega (o \mu^-\mu^+)$

[PLB 757 (2016) 558-567]

- $BF(D^0 \to K^-\pi^+\mu^-\mu^+) = (4.12 \pm 0.12_{stat} \pm 0.38_{syst}) \times 10^{-6}$
- In agreement with SM predictions [JHEP 04 (2013) 135]

→ロト → □ ト → 三 ト → 三 ・ りへ○

Search for the $D^0 o e^+\mu^-$ decay [PLB 754 (2016) 167]

- Predicted to occur in R-parity violating MSSM [PRD 66, 014009, Int. J. Mod. Phys. A 29, 1450169 (2014)]
- \bullet Previous limits from BaBar (3.3 \times 10^{-7} at 90% CL) and Belle (2.6 \times 10^{-7} at 90% CL) <code>[PRD 86, 032001, PRD 81, 091102(R)]</code>

Analysis overview (Run 1 data, $3fb^{-1}$)

- Use $D^{*\pm} o D^0 \pi^\pm$ decays
- Normalised to $D^0 o K^-\pi^+$ mode
- Analysis performed in bins of BDT
- Main issues from bremsstrahlung and shape of misidentified $D^0 \to \pi^+\pi^-$

Search for the $D^0 o e^+\mu^-$ decay [PLB 754 (2016) 167]

No evidence seen

New world best limit

$$BF(D^0 o e\mu) < 1.3(1.6) imes 10^{-8}$$
 at $90(95)\% ext{CL}$

Observation of $\eta_c(2S) \to p\bar{p}$ and search for $X(3872) \to p\bar{p}$ decays arXiv:1607.06446

• Study of $p\bar{p}$ mass spectrum in $B^\pm \to p\bar{p}K^\pm$ decays (Run1 data, $3\,{
m fb}^{-1}$)

- First observation of $\eta(2S) \rightarrow p\bar{p}$ at 6 σ
- No evidence for $\psi(3770) o par{p}$ and $X(3872) o par{p}$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

What is coming

- Short term
 - Updated $D^0 o \mu \mu$ analysis exploiting all Run1 statistics
 - Study of complete set of $D^+_{(s)} \to hll$ and $D^0 \to hhll$ decays with Run1+Run2 data
- What can be possible in Run3 an beyond?
 - Reach SM predictions for some modes
 - Combine constraints for all charm rare decays
 - Measure asymmetries (A_{FB} , A_{CP} , ...), some predictions (assuming the same efficiency and signal-to-background ratio):

Mode	Run II Upgrade	
$D^+ o \pi^+ \mu^+ \mu^-$	0.6%(30K events)	0.2%(300K events)
$D^0 o \pi^+\pi^-\mu^+\mu^-$	3%(1500 events)	1%(15K events)
$D^0 o K^-\pi^+\mu^+\mu^-$	1%(10K events)	0.3%(100K events)
$D^0 ightarrow K^+\pi^-\mu^+\mu^-$	40%(30 events)	12%(300 events)
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	11%(150 events)	4%(1500 events)

Conclusions

- Very active rare charm program at LHCb
- Almost every measurement is a world's best

 Even more interesting in the Run3, when the SM could be reached and more observables can be accessed

Backups

Projections for limits

- LHCb Run II: $8fb^{-1}$, $\sqrt{s} = 13TeV$
- LHCb Upgrade: $50fb^{-1}$, $\sqrt{s} = 14 TeV$

Predictions on branching fractions's upper limits (assuming the same efficiency and S/B)

Mode	Run I	Run II	Upgrade
$D^0 ightarrow h h' \mu^+ \mu^-$	few 10 ⁻⁷	fewer 10^{-7}	10^{-8}
$D^0 o \mu^+ \mu^-$	few 10^{-9}	fewer 10^{-9}	10^{-10}
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	few 10^{-8}	fewer 10^{-8}	10^{-9}
$D_s^+ o K^+ \mu^+ \mu^-$	few 10^{-7}	fewer 10^{-7}	10^{-8}
$\Lambda o p\mu\mu$	few 10 ⁻⁷	fewer 10^{-7}	10^{-8}
$D^0 o e\mu$	few 10^{-8}	fewer 10^{-8}	10^{-9}

Search for the $D^0 o \pi^+\pi^-\mu^+\mu^-$ decay [PLB 728 (2014) 234-243]

