Charmless two-body b-meson decays at LHCb

María Vieites Díaz Universidade de Santiago de Compostela On behalf of the LHCb collaboration

August 3-10, 2016

$\beta_s^0 \to \pi^+ \pi^- \qquad \qquad \Lambda_b \to \rho \pi^- h^+ h^-$

Charmless *b* **decays**

Suppressed decays in the Standard Model (SM)

- $\bullet \ b \rightarrow u$ transitions are mediated by $tree \ diagrams$
- $\bullet \ b \to d,s$ procceed through diagrams with loops (penguins)
- $\bullet~|V_{ub}|$ makes both amplitudes of similar magnitude
- Relative weak phase difference between these diagrams within the SM framework is $\gamma_{\rm CKM}$

- New particles may contribute in the loops
- $\bullet\,$ Rare modes, sensitive to variations of $\boldsymbol{\mathcal{B}}$ w.r.t. SM predictions
- Similar amplitudes lead to sizeable CP violation effects
- NP could also provide additional sources of CP violation
- Flavor symmetries can be exploited to deal with QCD

The LHCb detector

${\sf B}^0 \to {\sf K}^+ {\sf K}^-$ and ${\sf B}^0_{\rm s} \to \pi^+ \pi^-$

 $^{0} \rightarrow K^{+}K^{-}$ and $B_{c}^{0} \rightarrow \pi^{+}K^{-}$

Introduction to the $B^0 \rightarrow K^+K^-$ Decay

Motivation

- $\bullet~\mbox{The }B^0\to K^+K^-$ decay mode was never observed
- $B^0
 ightarrow K^+ K^-$ and $B^0_s
 ightarrow \pi^+ \pi^-$ are U-spin partners
 - The relation $\frac{\mathcal{B}(B^0 \to K^+ K^-)}{\mathcal{B}(B_s^0 \to \pi^+ \pi^-)}$ may bring information on the U-spin symmetry
 - Both are very suppressed decays (PA, E)
- Final states containing hadrons → complicated QCD phenomenology
 - Huge efforts have been put in this area...
 - $\bullet~$ But several QCD computations remain affected with sizeable uncertainties $\rightarrow~$ experimental input very useful
 - Both decays affected by final state reescattering

Previous knowledge on $\mathcal{B}(B^0 \to K^+ K^-)$ and $\mathcal{B}(B^0_s \to \pi^+ \pi^-)$ $(\mathcal{B} \times 10^6)$:

Decay mode	BaBar	Belle	CLEO	CDF	LHCb	Average
$B^0 \rightarrow K^+ K^-$	< 0.5	$0.10 \pm 0.08 \pm 0.04$	< 0.8	$0.23 \pm 0.10 \pm 0.10$	$0.12^{+0.08}_{-0.07} \pm 0.01$	$0.13^{+0.06}_{-0.05}$
$B^0_s\!\to\pi^+\pi^-$	-	< 12	-	$0.60 \pm 0.17 \pm 0.04$	$0.98^{+0.23}_{-0.19} \pm 0.07$	0.76 ± 0.13
					(References

 $B^0 \to K^+ K^-$ and $B_c^0 \to \pi^+$

Analysis Strategy

LHCb-PAPER-2016-036 in preparation

- Analized data: full LHCb Run 1 data sample, corresponding to an integrated luminosity of $1fb^{-1}$ at $\sqrt{s} = 7\text{TeV}$ and $2fb^{-1}$ at $\sqrt{s} = 8\text{TeV}$
- The regions 5.22 $< m_{KK} < 5.34 [GeV/c^2]$ and 5.33 $< m_{\pi\pi} < 5.45 [GeV/c^2]$ are disregarded during selection optimization \rightarrow blind analysis
- Event selection is performed in several steps:
 - **Pre-selection** (trigger): mainly using track and vertex fit qualities, kinematic information and decay topology
 - Offline selection: boosted decision tree (BDT) multivariate classifier and particle identification (PID) criteria
 - Simultaneous optimization of the BDT and PID requeriments aiming at the best sensitivity on the signal yields → 2 selections (A: B⁰ → KK and B: B⁰ → ππ)
- Signal yields are obtained from a simultaneous 2-body invariant mass fit to several mutually exclusive subsamples (PID requeriments): $K\pi$, pK, $p\pi$, $\pi\pi$ and KK
- PID calibration is done via a data-driven method, using D^{*+} , Λ and Λ_c^+ decays
- $\mathcal{B}(B \to K^+\pi^-)$ is used as normalization for the measurements

$\Lambda_{\rm b} ightarrow { m p} \pi^- { m h}^+ { m h}^- ({ m h} = \pi, { m K})$

- Both tree and penguin diagrams contribute with similar amplitudes
- Measurements of CPV on these decays can be used to **test the SM** and to **place constraints** on SM **extensions**.

Penguin $\propto \sum_{x=u,c,t} V_{bx} V_{xd} \sim \lambda^3$

LHCb-PAPER-2016-030 in preparation

Analysis Strategy

- $\bullet \ \ \, \text{Analized data} \rightarrow \text{full LHCb Run 1}$
- Search for CPV in $\Lambda_b \to p\pi^- h^+ h^- (h = \pi, K)$ using triple product asymmetries
- Look at regions of phase space for increased sensitivity to localised CPV effects (strong phases variations)
- $\Lambda_b^0 \to \Lambda_c^+(pK^-\pi^+)\pi^-$ decay (no CPV is expected) is used as control sample
- Event selection: trigger, BDT, charm vetoes, and PID requeriments
- Signal yields are obtained from a simultaneous fit to $M(p\pi^-h^+h^-)$

Observables construction

Triple products in the Λ_b rest frame:

$$\frac{C_{\hat{T}}}{\overline{C}_{\hat{T}}} = \vec{p}_{p} \cdot (\vec{p}_{h^{-}} \times \vec{p}_{h^{+}}) \propto \sin \Phi$$
$$\overline{C}_{\hat{T}} = \vec{p}_{\overline{p}} \cdot (\vec{p}_{h^{+}} \times \vec{p}_{h^{-}}) \propto \sin \overline{\Phi}$$

T-odd asymmetries:

$$\begin{split} A_{\hat{T}} &= \frac{N_{\Lambda_{b}^{0}}(C_{\hat{T}}>0) - N_{\Lambda_{b}^{0}}(C_{\hat{T}}<0)}{N_{\Lambda_{b}^{0}}(C_{\hat{T}}>0) + N_{\Lambda_{b}^{0}}(C_{\hat{T}}<0)}\\ \overline{A}_{\hat{T}} &= \frac{N_{\Lambda_{b}^{0}}(-\overline{C}_{\hat{T}}>0) - N_{\Lambda_{b}^{0}}(-\overline{C}_{\hat{T}}<0)}{N_{\Lambda_{b}^{0}}(-\overline{C}_{\hat{T}}>0) + N_{\Lambda_{b}^{0}}(-\overline{C}_{\hat{T}}<0)} \end{split}$$

CP-violating observable:

$$a_{\mathsf{CP}}^{\hat{\mathsf{T}}-\mathsf{odd}} = \tfrac{1}{2}(\mathsf{A}_{\hat{\mathsf{T}}} - \overline{\mathsf{A}}_{\hat{\mathsf{T}}})$$

P-violating observable: $a_{P}^{\hat{T}-odd} = \tfrac{1}{2}(A_{\hat{T}} + \overline{A}_{\hat{T}})$

ICHEP2016

Two $a_{CP}^{\hat{T}-odd}$ Measurements

1.- Measurement integrated over the phase space:

 $a_{CP}^{\hat{\tau}-odd}$ obtained from the fits in the previous slide Results are **compatible** with P and CP conservation

Decay	$A_{\widehat{T}}$ (%)	$\bar{A}_{\widehat{T}}$ (%)	$a_{CP}^{\widehat{T}-\mathrm{odd}}$ (%)
$\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$	$-2.56 \pm 2.06 \pm 0.45$	$-4.86 \pm 2.06 \pm 0.44$	$1.15 \pm 1.45 \pm 0.32$
$\Lambda_b^0 \rightarrow p \pi^- K^+ K^-$	$2.68 \pm 6.76 \pm 0.85$	$4.55 \pm 6.07 \pm 0.52$	$-0.93 \pm 4.54 \pm 0.42$

2.- Local measurements:

Limited statistics on the $\Lambda_b^0 \rightarrow p\pi^- K^+ K^-$ allows for 2 divisions only:

- Λ^{*0} dominated interval: $1.0 < m(pK^-) < 2.0 GeV/c^2$
- Its complementary region: $2.0 < m(pK^-) < 5.0 GeV/c^2$
- → results are compatible with P and CP conservation

For the $\Lambda_{\rm b}^0 \rightarrow p \pi^- \pi^+ \pi^-$ two different schemes are studied:

- Scheme A: 12 regions dominated by 2-body resonances $(\rho^0(770), \Delta^{++}, N^*)$
- Scheme B: 10 uniform bins in Φ
- ightarrow 3.3 σ evidence for CPV is found when combining both schemes

LHCb-PAPER-2016-030 in preparation

A closer look on $a_{CP}^{\hat{T}-odd}$ (Preliminary)

LHCb-PAPER-2016-030 in preparation

 $\leftarrow a_P^{\hat{T}-odd} \text{ and } a_{CP}^{\hat{T}-odd} \text{ measurements in } \Phi \text{ bins}$ for the $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decay

◇ CPV patterns have been searched for, and several cross-checks have been studied, but no specific amplitude could be associated to this effect.

↓ Fit projections for the four signal categories for the candidates in the bin where the largest CPV effect is observed $(\frac{3}{10}\pi < \Phi < \frac{4}{10}\pi)$

Two of the latest results by LHCb were presented

• $B^0_{(s)} \rightarrow h^+h^-$ modes:

- First observation of the rarest fully hadronic decay ever seen, the $B^0 \rightarrow K^+K^-$ decay (5.8 σ significance, including systematical uncertainties)
- Most precise measurements of ${\cal B}({\sf B}^0_s\to\pi^+\pi^-)$ and ${\cal B}({\sf B}^0\to{\sf K}^+{\sf K}^-)$
- B(B⁰ → K⁺K⁻) determination provides a very useful reference for a better understanding of the QCD effects involving PA diagrams.

Two of the latest results by LHCb were presented

• $B^0_{(s)} \rightarrow h^+h^-$ modes:

- First observation of the rarest fully hadronic decay ever seen, the $B^0 \rightarrow K^+K^-$ decay (5.8 σ significance, including systematical uncertainties)
- Most precise measurements of ${\cal B}({\sf B}^0_s\to\pi^+\pi^-)$ and ${\cal B}({\sf B}^0\to{\sf K}^+{\sf K}^-)$
- B(B⁰ → K⁺K⁻) determination provides a very useful reference for a better understanding of the QCD effects involving PA diagrams.
- $\Lambda_b \rightarrow p\pi^-h^+h^-$ decays:
 - Search for P and CP violation using triple products asymmetries
 - $\Lambda_b \to p \pi^- {\sf K}^+ {\sf K}^-$ measurements are compatible with P and CP conservation
 - $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ channel shows evidence for localised CP violation, with a significance up to 3.3σ (when combining results from different binning schemes)
 - Both results are in agreement with SM predictions for CPV in charmless Λ_b^0 decays
 - First evidence of CPV in baryon decays!

Two of the latest results by LHCb were presented

• $B^0_{(s)} \rightarrow h^+h^-$ modes:

- First observation of the rarest fully hadronic decay ever seen, the $B^0 \to K^+K^-$ decay (5.8 σ significance, including systematical uncertainties)
- Most precise measurements of ${\cal B}(B^0_s\to\pi^+\pi^-)$ and ${\cal B}(B^0\to{\sf K}^+{\sf K}^-)$
- B(B⁰ → K⁺K⁻) determination provides a very useful reference for a better understanding of the QCD effects involving PA diagrams.
- $\Lambda_b \rightarrow p\pi^-h^+h^-$ decays:
 - Search for P and CP violation using triple products asymmetries
 - $\Lambda_b \to p \pi^- {\sf K}^+ {\sf K}^-$ measurements are compatible with P and CP conservation
 - $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ channel shows evidence for localised CP violation, with a significance up to 3.3σ (when combining results from different binning schemes)
 - Both results are in agreement with SM predictions for CPV in charmless Λ_b^0 decays
 - First evidence of CPV in baryon decays!

Thanks for your attention!

Backup slides

References ($B^0_{(s)} \rightarrow h^+ h^-$)

Decay mode	BaBar	Belle	CLEO	CDF	LHCb	Average
$B^0 \rightarrow K^+ K^-$	< 0.5	$0.10 \pm 0.08 \pm 0.04$	< 0.8	$0.23 \pm 0.10 \pm 0.10^{\dagger}$	$0.12^{+0.08}_{-0.07} \pm 0.01^{\dagger}$	$0.13^{+0.06}_{-0.05}$
$B^0_s \! \to \pi^+\pi^-$	-	< 12	-	$0.60 \pm 0.17 \pm 0.04^{\dagger}$	$0.98^{+0.23}_{-0.19} \pm 0.07^{\dagger}$	0.76 ± 0.13

- BaBar collaboration, B. Aubert et al., Improved Measurements of the Branching Fractions for $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^+\pi^-$, and a search for $B^0 \rightarrow K^+K^-$, Phys. Rev. D75 (2007) 012008
- Belle collaboration, Y. T. Duh et al., Measurements of branching fractions and direct CP asymmetries for $B^0 \rightarrow K^+\pi^-$, $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^+K^-$ decays, Phys. Rev. D87 (2013) 031103
- CLEO collaboration, A. Bornheim et al., Measurements of charmless hadronic two body B meson decays and the ratio $\mathcal{B}(B^0 \to DK)/\mathcal{B}(B^0 \to D\pi)$, Phys. Rev. D68 (2003) 052002
- CDF collaboration, T. Aaltonen et al., Evidence for the charmless annihilation decay mode $B_s^0 \rightarrow \pi^+\pi^-$, Phys. Rev. Lett. 108 (2012) 211803
- LHCb collaboration, R. Aaij et al., Measurement of b-hadron branching frac- tions for two-body decays into charmless charged hadrons, JHEP 10 (2012) 037
- Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014

Systematical uncertaities in the $B^0_{(s)} \rightarrow h^+ h^-$ analyses

- $\bullet~B \to h^+ h^-$ yields: toys are generated with the baseline model and fitted back with alternative models
- PID efficiencies: their systematic is assessed again by running pseudoexperiments, and then fitting the output distributions using PID efficiencies randomly extracted according to their estimated uncertainties

Systematic uncertainty	$N(B^0 \rightarrow K^+ K^-)$	$N(B_s^0 \to \pi^+\pi^-)$
Final state radiation	6.05	5.42
Signal mass shape	10.10	3.16
Comb. back. mass shape	5.48	2.58
Part. reco. back. mass shape	1.33	23.06
Crossfeed back. mass shape	negligible	negligible
PID efficiencies	3.43	2.52
Sum in quadrature	13.50	24.17

(Preliminary results)

ICHEP2016

Binning schemes for the $\Lambda_b^0 \rightarrow p\pi\pi\pi$ measurements

Scheme A	$m_{p\pi^+}$	$m_{p\pi_{slow}}$	$m_{\pi^+\pi^{alow}}, m_{\pi^+\pi^{fact}}$	Φ
Region	(GeV/c^2)	(GeV/c^2)	$(\text{GeV}/c^2, \text{GeV}/c^2)$	
1	(1.00, 1.23)			$(0, \frac{\pi}{2})$
2	(1.00, 1.23)			$\left(\frac{\pi}{2},\pi\right)$
3	(1.23, 1.35)			$(0, \frac{\pi}{2})$
4	(1.23, 1.35)			$\left(\frac{\pi}{2},\pi\right)$
5	(1.35, 5.40)	(0.90, 2.00)	$(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{tast}} < 0.78)$	$(0, \frac{\pi}{2})$
6	(1.35, 5.40)	(0.90, 2.00)	$(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(\frac{\pi}{2},\pi)$
7	(1.35, 5.40)	(0.90, 2.00)	$!(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(0, \frac{\pi}{2})$
8	(1.35, 5.40)	(0.90, 2.00)	$ (m_{\pi^+\pi^{slow}} < 0.78) m_{\pi^+\pi^{fast}} < 0.78) $	$(\frac{\pi}{2},\pi)$
9	(1.35, 5.40)	(2.00, 4.00)	$(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(0, \frac{\pi}{2})$
10	(1.35, 5.40)	(2.00, 4.00)	$(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(\frac{\pi}{2},\pi)$
11	(1.35, 5.40)	(2.00, 4.00)	$ (m_{\pi^+\pi^{slow}} < 0.78) m_{\pi^+\pi^{fast}} < 0.78) $	$(0, \frac{\pi}{2})$
12	(1.35, 5.40)	(2.00, 4.00)	$!(m_{\pi^+\pi^{slow}} < 0.78 m_{\pi^+\pi^{fast}} < 0.78)$	$(\frac{\pi}{2},\pi)$
Scheme B				
Region				
i	(i = 1, 2,, 10)			$(\frac{i-1}{10}\pi, \frac{i}{10}\pi)$