
Controls and Machine Protection Systems

E. Carrone
SLAC National Accelerator Laboratory, Menlo Park, CA, USA

Abstract
Machine protection, as part of accelerator control systems, can be managed
with a ‘functional safety’ approach, which takes into account product life
cycle, processes, quality, industrial standards and cybersafety. This paper will
discuss strategies to manage such complexity and the related risks, with
particular attention to fail-safe design and safety integrity levels, software and
hardware standards, testing, and verification philosophy. It will also discuss
an implementation of a machine protection system at the SLAC National
Accelerator Laboratory’s Linac Coherent Light Source (LCLS).

Keywords
MPS; Functional Safety; PLC; SIL; Control Systems; Cyber Security.

1 A software problem
On 4 June 1996, the maiden flight of the Ariane 5 launcher ended in a failure. Only 39 s after initiation
of the flight sequence, at an altitude of about 3700 m, the launcher veered off its flight path, broke up,
and exploded.

During those first 39 s, the software generated a number too large for the system to handle: the
computer shut down and passed control to its redundant twin, which, being identical to the first, came
to the same conclusion and shut down a few milliseconds later. The rocket, now without guidance,
changed direction to compensate for an imagined error and collapsed in its own turbulence.

In general terms, the flight control system of the Ariane 5 is of a standard design. The attitude of
the launcher and its movements in space are measured by an inertial reference system. It has its own
internal computer, in which angles and velocities are calculated on the basis of information from an
inertial platform, with laser gyroscopes and accelerometers. The data from the inertial reference system
are transmitted through the databus to the onboard computer, which executes the flight program and
controls the nozzles of the solid boosters and the Vulcain cryogenic engine, via servo valves and
hydraulic actuators.

To improve the reliability of such a system, there is considerable redundancy at the equipment
level: two inertial reference systems operate in parallel, with identical hardware and software. One
inertial reference system is active and one is in ‘hot’ standby; if the onboard computer detects that the
active inertial reference system has failed, it immediately switches to the other one, provided that this
unit is functioning properly. Likewise, there are two onboard computers, and a number of other units in
the flight control system are also duplicated.

The launcher started to disintegrate at about 39 s into operation because of high aerodynamic
loads due to an angle of attack of more than 20° that led to separation of the boosters from the main
stage, in turn triggering the self-destruct system of the launcher. This angle of attack was caused by full
nozzle deflections of the solid boosters and the main engine.

These nozzle deflections were commanded by the onboard computer software on the basis of data
transmitted by the active inertial reference system. Part of these data at that time did not contain proper

flight data, but showed a diagnostic bit pattern of the computer of the inertial reference system 2, which
was interpreted as flight data. The reason that the active inertial reference system 2 did not send correct
attitude data was that the unit had declared a failure due to a software exception.

The onboard computer could not switch to the back-up inertial reference system 1 because that
unit had already ceased to function during the previous data cycle (72 ms) for the same reason as inertial
reference system 2.

The internal inertial reference system software exception was caused during execution of a data
conversion from 64-bit floating point to 16-bit signed integer value. The floating point number that was
converted had a value greater than could be represented by a 16-bit signed integer. This resulted in an
operand error.

Among the causes:

— software reused from the Ariane 4 series (a rocket with different requirements);

— an error while converting a 64-bit floating point number to a 16-bit integer caused an overflow, a
custom floating point format for which the processor could have generated an exception error;

— some operations (in Ada code) on the computers are protected from bad conversions, but one was
disabled;

— the primary inertial sub-computer and its back-up both shut down because of this, and the primary
sub-computer started a memory dump;

— the main computer looked at the data dump and interpreted it as flight data. The nozzles swivelled
to their extreme position to try to ‘right’ the rocket, causing it to break apart.

The investigation committee issued many recommendations.

— No software function should run during flight unless it is needed.

— Prepare a test facility including as much real equipment as technically feasible, inject realistic
input data, and perform complete, closed-loop, system testing. Complete simulations must take
place before any mission.

— Organize, for each item of equipment incorporating software, a specific software qualification
review. Make all critical software a configuration controlled item.

— Review all flight software (including embedded software) and, in particular, identify all implicit
assumptions made by the code and its justification documents on the values of quantities provided
by the equipment. Check these assumptions against the restrictions on use of the equipment.

— Include participants external to the project when reviewing specifications, code, and justification
documents. Make sure that these reviews consider the substance of arguments, rather than
checking that verifications have been made.

— Give justification documents the same attention as code.

Many of these recommendations are applicable to accelerators. In this paper, we will discuss
procedures, systems, and techniques to handle and mitigate the risks related to designing, deploying and
operating machine protection systems.

1.1 Accelerator controls are complex systems

Control systems comprise many parts, and opportunities for malfunctioning are everywhere, e.g.:

— software fails unsafe;

— hardware fails unsafe;

— changes made on the wrong version of a program;

— wrong data received from sensors (but interpreted as true);

— a system was changed and cannot be brought back to a previous state;

— a system needs to be upgraded or changed, but there is not enough documentation to do it;

— system compromised by a malicious piece of code, which may go unnoticed for a long time;

— system hacked into.

Given this scenario, some risk mitigation strategies are:

— redundancy;

— life cycle management;

— fail-safe design;

— configuration control;

— quality assurance and quality control;

— standards;

— tests;

— documentation;

— cybersafety.

The concept of ‘functional safety’ is the corpus of concepts, processes, and guidelines that will
enable us to mitigate those risks.

2 Functional safety

2.1 Introduction

For classic electrical and electronics based systems, there are three ways to improve safety: reduce
component failure rate, increase diagnostics, and employ redundancy. Modern electronics, such as
programmable logic controllers, microcontrollers, field programmable gate arrays and application-
specific integrated circuits are powerful enough to be used to implement complex diagnostic schemes
and control strategy reconfiguration on fault detection; in many cases, redundancy can be implemented
with little cost increase. However, these features come at the cost of increased hardware complexity and
introduction of software, which is more difficult to verify and validate for safety applications.

2.2 Life cycle management

A good life cycle management strategy is imperative for traceability and control. The standard V-model,
shown in Fig. 1, represents a verification and validation model. Just like the waterfall model, the V-
shaped life cycle is a sequential path of execution of processes: each phase must be completed before
the next phase begins. Product testing is planned in parallel with a corresponding phase of development.

The model is advantageous in that it is simple to use, and such activities as planning and test
design happen well before coding, saving time and increasing the chance of success (also, since defects
are found at an early stage, they do not propagate quickly). Conversely, this approach might prove rigid,
and requires software and hardware to be developed during the implementation phase. Moreover, if any
changes happen mid-testing, then the test documents, along with requirement documents, must be
updated.

Fig. 1: V-model

2.3 Redundancy

Redundancy has different types and can be implemented at different levels. Sometimes it is two
capacitors on a circuit-board, in case one fails; other times it is the duplication of a whole system, such
as in some programmes of the 1950s, where redundancy was built into each and every component of an
entire missile. The most common redundancy employed is parallel redundancy, where redundant parts,
channels, or systems are active all the time. With a proper designed sensing and switching scheme,
standby redundancy can also be employed.

The standards ISO 14118 Safety of Machinery—Prevention of Unexpected Start-Up [1] and IEC
60204-1 Safety of Machinery, Electrical Equipment of Machines [2] both state that reliance on a single-
channel programmable electronic system is not recommended for safety. The IEC 60204-1
recommendation in particular is interpreted by many as an absolute ban on safety functions being
implemented by programmable electronic systems in the sector.

IEC 61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related
Systems [3] has been published in recognition of the increasing use of this technology throughout a wide
range of industrial uses.

Failures can be divided into two categories: common cause and common mode. Common cause
failure is defined as one or more event causing concurrent failures of two or more separate channels in
a multiple channel system, leading to system failure. Common mode failures are failures of two or more
channels in the same way, causing the same erroneous result. Hardware redundancy is very effective in
improving reliability: in systems employing redundancy, common cause or common mode failures
usually dominate system-level failures. Compared with systems with identical duplicating components
and circuits, systems with diversity redundancy (non-identical components) are less vulnerable to
common cause and common mode failures.

To get the most out of redundancy, a managerial system is also required to determine, indicate,
mediate, and isolate failures such that both safety and availability can be achieved (e.g. four engines on
aircrafts).

2.4 Choosing components

Components from manufacturers with good quality-control systems and better manufacturing quality
are preferred. It is expected that components with manufacturing defects, which contribute to early
failure, have been identified and blocked by the quality-control system. Moreover, a better
manufacturing quality will make the device less likely to fail during the normal working life, i.e., it will
have a lower failure rate.

There are other approaches to improving component’s reliability. Control of operating
environment is the most important. The working environment, temperature, humidity, vibration, etc.,
should be controlled so that it matches the required working conditions for the electronics component.
Thermal stress is another important factor that affects electronics reliability. Reducing electrical stress
by lowering voltage or current also helps. When the hardware design is complete and ready for reliability
predication, these factors will be required as inputs for evaluation.

2.5 Diagnostics and fail-safe design principle

If the detection of certain failures is feasible, the fail-safe design principle should be applied. This is
particular useful if there is no way to tolerate fault consequence: ‘fail-safe’ design makes provisions for
loss of energy source or control signal. Therefore, a ‘de-energize-to-trip’ philosophy is adopted in safety
system design, so that system safety will not be jeopardized during power loss or absence of circuit
integrity.

For complex systems where multiple failure modes exist, implementation of the fail-safe principle
involves diagnostics: the system’s integrity will depend on the information provided by the diagnostics
to determine the nature of the failure and take corresponding action. With the aid of diagnostics, the
failure of a component or a system can be classified as ‘detected’ or ‘undetected’. For ‘detected’ failures
with mild or safe implication, the user should be alerted, while for a ‘detected dangerous’ failure mode,
the system should be brought to a safe state to ensure safety performance.

A fail-safe device or system is expected to fail eventually but, when it does, it will be in a safe way
(for example, a ratchet mechanisms is used in lifts and elevators so that they cannot drop if the cable
breaks). A fail-safe physical device may also define what occurs when a user error causes the system to
behave in an undesired manner. In the case of software, there is no physical strain on systems, so the
concept of mean time between failures is arguably inapplicable. However, software systems can and do
fail all the time; for example, the following may happen:

— underlying hardware failure (e.g., networks and servers);

— external system failure (e.g., timing system failure);

— user error.

It is tempting to try to correct a failure situation and keep on running but this can lead to a system
moving into an unknown state and creating more issues, as in these examples.

— The network is not responding but the system keeps on processing inputs and queuing outputs,
expecting the network to respond later. Caches and disks fill up, affecting other systems, so, even
when the network functionalities are restored, the system has to process hours’ worth of data.

— A sensor seems to be showing the wrong data, but the system keeps running.

The solution is to institute limits on actions for recovery situations, e.g., by retrying only three
times, setting a time limit on caches, etc. It is equally dangerous to make generic assumptions about
correcting data across a system. If an input seems wrong, it is better to fail it, since one has no idea why
the data do not seem to make sense, and the error is being hidden.

It is important not to simply put the system into a safe state, but also to inform those who can
resolve the situation: error reporting and monitoring services should be designed upfront, and should
define how operators should be kept informed.

2.6 Functional safety and safety integrity level

With the adoption of complex electronics into safety system applications, software must coordinate with
hardware, such as microcontrollers. Although field programmable gate arrays can be purely hardware-
only, with no run time software, the development process is very software-intensive, using complex
software to design and verify the application. Therefore, verifying software is becoming a new challenge
in safety system design, and the approach is that of ‘functional safety’.

Another factor that contributes to the wide acceptance of functional safety comes with the
adoption of a risk-based approach. Traditional descriptive standards and regulations list requirements
for bottom-line protection; with a wide spectrum of applications, such an effort is increasingly difficult
and requirements may be too conservative for some cases. A risk-based approach allows each
application to carry out a risk assessment to determine the safety function and associated safety integrity
level, such that there is no over-design or under-design.

The safety integrity level is the probability of a safety-related system performing the required
safety function under all the stated conditions within a stated period of time (or put differently, the
probability of failure on demand). ‘Functional safety’ standards originated from the IEC 61508 standard,
and have spread to multiple applications, including process, machinery safeguarding, nuclear, and
radiological industries.

The standard is sector independent in seven parts, the first four of which have been assigned basic
safety publication status. This is the first international standard to quantify the safety performance of an
electrical control system that can be expected by conforming to specified requirements, not only for the
design concept but also for the management of the design process, operation, and maintenance of the
system throughout its life cycle, from concept to decommissioning. These requirements, therefore,
safely control failure to function resulting from both random hardware failure and systematic faults.
Consequently, the standard represents a bold step, as a proactive approach to quantified, objective safety
by design.

To categorize the safety integrity of a safety function, the probability of failure is considered—in
effect, the inverse of the safety integrity level definition, looking at failure to perform rather than
success. This is because it is easier to identify and quantify possible conditions and causes leading to
failure of a safety function than it is to guarantee the desired action of a safety function when called
upon.

The safety integrity level concept has emerged from the considerable effort invested in the safety
of systems over the past two decades. Two factors have stood out as principal influences.

1) A move from the belief that a system can be either safe or unsafe, i.e., that safety is a binary
attribute, to the acceptance that there is a continuum between absolute safety and certain
catastrophe, and that this continuum is a scale of risk. This has led to an emphasis on risk analysis
as an essential feature in the development of safety-related systems.

2) A huge increase in the use of software (and complex hardware, such as microprocessors) in the
field of safety. This has led to a change in the balance between random and systematic faults.
Previously, it was normal to assume (often implicitly) that safety could be achieved through
reliability, and to deduce a value for the reliability of a system by aggregating, often through a
fault tree, the random failure rates of its components. In some cases, failure rates were derived
from historic use of the components and in others they were estimated, so the accuracy of the
result was never beyond question. In fact, the greatest accuracy that could be achieved was that

derivable from considering only random failures, for probabilistic methods are not valid for the
analysis of systematic faults (those introduced, for example, through specification and design
errors). With software, which does not wear out and in which all faults are systematic, there is no
possibility of deducing system reliability by a method that is restricted to the consideration of
random failures.

Another feature of software is its inherent complexity. Not only is it impossible to prove the
absence of faults, but it would require an impracticably long time to derive high confidence in reliability
from testing. So a number of problems arise for the developer, who needs not only to achieve but also
to demonstrate safety.

The first consideration is that safety requirements may result from a risk analysis that may be
quantitative or qualitative. However, as software failures result from systematic and not random faults,
direct measurement of the probability of failure, or the probability of a dangerous failure, is not feasible,
so qualitative risk analysis must be employed. While the reduction of a given risk may be defined as the
specification of a software safety function, the tolerable failure rate of that function may be defined in
terms of a safety integrity level. Depending on the standard in use, the safety integrity level may or may
not be equated to numerical ranges of failure rates. Once risk analysis has led to a safety integrity level,
this is used to define the rigour of the development process. The higher the safety integrity level, the
greater the rigour, and tables are used in the standards to identify the methods, techniques, and
management processes appropriate to the various safety integrity levels.

When a safety integrity level has been used to define the level of safety to be achieved, it follows
that that safety integrity level should be the criterion against which a claim for the achieved safety is
made (and judged). But if numerical values for the expected failure rate of software cannot be derived
with confidence, it may not be possible to adduce proof of such a claim.

The IEC standard is based on a model relying on two entities: the equipment under control, which
is used to provide some form of benefit or utility, and a complementary control system.

The standard recommends that the hazards posed by the equipment under control and its control
system be identified and analysed and that a risk assessment be carried out. Each risk is then tested
against tolerability criteria to determine whether it should be reduced. If risks are reduced by redesign
of the equipment under control, we return to the starting point and hazard identification and analysis
and risk assessment should again be carried out.

When it is decided that risk-reduction facilities should be provided in addition to the equipment
under control and its control system, and that these should take the form of one or more electrical,
electronic, or programmable electronic systems, then the terms of the standard apply to it or them.

The risks posed by the equipment under control and its control system may be contributed to by
many hazards, and each must be mitigated until its risk is considered tolerable. The reduction of the risk
associated with each hazard is specified as a ‘safety requirement’ and, according to the standard, each
safety requirement must have two components: the functional requirement and the safety integrity
requirement. The latter takes the form of a safety integrity level.

In Part 4 of IEC 61508, safety integrity is defined as “the likelihood of a safety-related system
satisfactorily performing the required safety functions under all the stated conditions, within a stated
period of time” and a safety integrity level as “a discrete level (one of 4) for specifying the safety
integrity requirements of safety functions”. Thus, a safety integrity level is a target probability of
dangerous failure of a defined safety function.

The totality of the safety requirements for all hazards forms the safety requirements specification.
Safety requirements are satisfied by the provision of safety functions, and in design these are
implemented in ‘safety-related systems’. The safety integrity levels of the safety requirements become
those of the safety functions that will provide them, and then of the safety-related systems on which the

safety functions are to be implemented. The separation of safety-related systems from the equipment
under control and its control system (as by the provision of a protection system) is preferred. However,
safety functions may also be incorporated into the control system and, when this is done, certain rules
apply, to ensure that higher safety integrity level functions are not affected by the failures of lower safety
integrity level functions.

Two classes of safety integrity level are identified, depending on the service provided by the
safety function (Table 1):

— for safety functions that are activated when required (on demand mode), the probability of failure
to perform correctly is given;

— for safety functions that are in place continuously (continuous mode), the probability of a
dangerous failure is expressed in terms of a given period of time (per hour).

Table 1: Probability of failure

Safety integrity
level

Mode of operation: on demand
(average probability of failure to perform

design function on demand)

Mode of operation: continuous:
(probability of dangerous failure per

hour)
4 ≥10−5 to <10−4 ≥10−9 to <10−8
3 ≥10−4 to <10−3 ≥10−8 to <10−7
2 ≥10−3 to <10−2 ≥10−7 to <10−6
1 ≥10−2 to <10−1 ≥10−6 to <10−5

The standard defines a low-demand mode of operation as ‘no greater than one [demand] per year’.
Since, in approximate terms, a year is taken to consist of 104 hours, assuming a failure rate of once per
year, the safety integrity level 4 requirement for the low-demand mode of operation is no more than one
failure in 10 000 years. If there is to be no more than one demand per year made on a protection system,
the equipment under control and its control system must have a dangerous failure rate of no more than
once per year, or 10−4. However, arriving at this conclusion can be problematic because doing so is at
the very limit of practical testability.

The failure rates attached to safety integrity levels for continuous operation are even more
demanding (by a factor of 104) and are intended to provide targets for developers. Because a system—
certainly not a software-based system—cannot be shown to have met them, they are intended to define
the rigour to be used in the development processes. Safety integrity level 1 demands basic sound
engineering practices, such as adherence to a standard quality system, repeatable and systematically
documented development processes, thorough verification and validation, documentation of all
decisions, activities and results, and independent assessment. Higher safety integrity levels, in turn,
demand this foundation plus further rigour.

The value of the safety integrity level lies in providing a target failure rate for the safety function
or safety-related system. It places constraints on the processes used in system development, such that
the higher the safety integrity level, the greater the rigour that must be applied. The processes defined
as being appropriate to the various safety integrity levels are the result of value judgements regarding
what needs to be done in support of a reasonable claim to have met a particular safety integrity level.
However, the development processes used, however good, appropriate, and carefully adhered to, do not
necessarily lead to the achievement of the defined safety integrity level. Even if, in a particular case,
they did, the achievement could not be proved. But, even if evidence is insufficient to show that the
safety integrity level requirement has been met, it does increase confidence in the system and its
software.

Although the safety performance is the primary design objective, availability should also be
considered. Large physics facilities are expensive investments; their productivity is critical financially
and matters for the sake of science. Hence, there are always system-availability requirements for the

project or the facility, and the availability of the indispensable safety system sets an upper bound for the
whole facility’s availability.

2.7 Standards and guidance

Standards are documents that establish uniform engineering and technical requirements for processes,
procedures, practices, and methods. As this definition implies, some standards contain industry best
practices, some provide description of interfaces such that interoperability can be achieved, while other
standards simply describe methods for development and testing.

There are other, less formal, guidance documents that provide equally important information.
They contain standard procedural, technical, engineering, or design information about the material,
processes, practices, and methods covered or required by standards.

The definition of the term ‘standard’ includes the following:

— common and repeated use of rules, conditions, guidelines, or characteristics for products or
related processes and production methods, and related management systems practices;

— definitions of terms; classifications of components; delineations of procedures; specification of
dimensions, materials, performance, designs, or operations; measurements of quality and quantity
in describing materials, processes, products, systems, services, or practices; test methods and
sampling procedures; or descriptions of fit and measurements of size or strength.

We need standards to build our systems efficiently:

— deliverable products must be designed and built—they make use of procured items and must
themselves be procured;

— each of these phases—procurement, especially—requires specification;

— effective specification requires standards.

An additional differentiation can be based on purpose:

— a basic standard has a wide-ranging effect in a particular field, such as a standard for metal, which
affects a range of products from cars down to screws;

— terminology standards (or standardized nomenclature) define words, permitting representatives
of an industry or parties to a transaction to use a common, clearly understood, language;

— test and measurement standards define the methods to be used to assess the performance or other
characteristics of a product or process;

— product standards establish qualities or requirements for a product (or related group of products),
to assure that it will serve its purpose effectively;

— process standards specify requirements to be met by a process, such as an assembly line operation,
to function effectively;

— service standards, such as for repairing a car, establish requirements to be met in order to achieve
the designated purpose effectively;

— interface standards, such as the point of connection between a telephone and a computer terminal,
are concerned with the compatibility of products;

— standards on data to be provided contain lists of characteristics for which values or other data are
to be stated for specifying the product, process or service.

International standards have been developed through a process that is open to participation by
representatives of all interested countries, and that is transparent, consensus-based, and subject to due
process.

Standards may also be classified by the intended user group, for example:

— organization standards are meant for use by a single industrial organization and are usually
developed internally;

— industry standards are developed and promulgated by an industry for materials and products
related to that industry;

— government standards are developed and promulgated by federal, state, and local agencies to
address needs or applications peculiar to their missions and functions;

— international standards are developed and promulgated by international governmental and non-
governmental organizations, such as the International Organization for Standardization (ISO);

— harmonized standards can be either an attempt by a country to make its standard compatible with
an international, regional, or other standard, or it can be an agreement by two or more nations on
the content and application of a standard, the latter of which tends to be mandatory.

2.7.1 Software standards

The ISO/IEC 12207 standard provides a common framework for developing and managing software.
The IEEE/EIA 12207.0 standard consists of the clarifications, additions, and changes accepted by the
Institute of Electrical and Electronics Engineers (IEEE) and the Electronic Industries Alliance (EIA), as
formulated by a joint project of the two organizations. The IEEE/EIA 12207.0 standard outlines
concepts and guidelines to foster better understanding and application of the standard. Thus, this
standard provides industry with a basis for software practices that would be useable for both national
and international business.

2.7.1.1 IEEE 12207—Software Life Cycle Processes

This standard establishes a common framework for software life cycle processes, with well-defined
terminology, that can be referenced by the software industry. It contains processes, activities, and tasks
that are to be applied during the acquisition of a system that contains software, a stand-alone software
product, or software service, as well as during the supply, development, operation, and maintenance of
software products. Software includes the software portion of firmware. This standard also provides a
process that can be employed for defining, controlling, and improving software life cycle processes.

The standard applies to the acquisition of systems and software products and services, to the
supply, development, operation, and maintenance of software products, and to the software portion of
firmware, whether performed internally or externally to an organization.

The standard groups the activities that may be performed during the life cycle of software into
five primary processes, eight supporting processes, and four organizational processes. Each life cycle
process is divided into a set of activities; each activity is further divided into a set of tasks.

In addition to IEEE12207, standard IEC61508, parts 3 and 7, focuses on safety functions with the
following recommendations:

— use of structured and modular design;

— restricted use of asynchronous constructs;

— design for testability;

— restrictive use of ambiguous constructs;

— transparent and easy to use code;

— defensive code and range checking (to pick up faults or anomalies and respond in a pre-
determined way);

— use of comments and annotations;

— limits on module sizes and number of ports to increase readability;

— avoidance of multi-dimensional arrays and go-to type commands;

— avoidance of redundant logic and feedback loops;

— avoidance of latches, asynchronous reset.

2.7.2 Hardware standards

2.7.2.1 Computer Automated Measurement and Control (CAMAC)

This is a standard bus and modular crate electronics standard for data acquisition and controls, defined
in 1972:

— solved the low-channel density problem of nuclear instrumentation methods;

— up to 24 modules in a crate, interfaced to a personal computer;

— not hot-swappable because of backplane design;

— data way management: module power, address bus, control bus, and data bus;

— 24-bit communication between controller and selected module.

2.7.2.2 Versa Module Europa (VME)

This standard backplane bus was defined in 1981:

— architecture not scalable for high speeds (single-ended parallel bus, not for gigabits per second);

— electromagnetic shielding not specified;

— developed for Motorola 68000 line of CPUs (the bus is equivalent to the pin of 68000 run out
onto a backplane);

— faster bus (from 16 to 64 bit), up to 40 MHz (VME64).

2.7.2.3 xTCA (Telecommunications Computing Architecture

ATCA (Advanced Telecommunications Computing Architecture) and µTCA are platforms that provide:

— all-serial communications (multigigabits per second backplane);

— both complex experiment controls and large, high bandwidth and throughput data acquisition
systems;

— the highest possible system performance, availability, and interoperability.

To achieve high availability in a complex physics system, three main features are required:

1. modular architecture;

2. N + 1 or N + M redundancy of single-point-of-failure modules (whose malfunction could stop
operation of the machine or experiment);

3. intelligent platform management interface for quick isolation of faults and hot-swap.

In addition, physics modules need a few extended features:

— intelligent platform manager interface for cooling and thermal management, control and monitor;

— built-in hot-swap;

— designed for high-reliability;

— intelligent platform manager interface for cooling and thermal management, control, and monitor;

— built-in crate and component status monitoring and remote management and diagnostics;

— independent monitoring channel within the crate.

Specifically, µTCA is a modular, open standard for building high-performance switched-fabric
computer systems in a small form-factor. At its core are standard advanced mezzanine cards, which
provide processing and input–output functions. The µTCA standard was originally intended for smaller
telecom systems at the edge of the network but has moved into many non-telecom applications, with
standardized rugged versions becoming popular in mobile, military, telemetry, data acquisition, and
avionics applications. The core specification, MTCA.0, defines the basic system, including backplane,
card cage, cooling, power, and management. A variety of differently sized advanced mezzanine card
modules are supported, allowing the system designer to use as much or as little computing and input–
output as necessary. Subsidiary specifications (MTCA.1 to MTCA.4) define more rugged versions,
specifically suited for military, aeronautic, and other demanding physical environments.

Modules (for a µTCA):

— cooling units;

— power modules;

— advanced mezzanine card for electronics, CPU, hard drives;

— rear transition module;

— µTCA central hub.

2.8 Tests

Testing is a process rather than a single activity, and starts as early as the system requirements
specification. The choice of testing frequency definitely affects system reliability; the system design
should accommodate such requirements, including setting up the test mode to facilitate testing. It is easy
to see from the V-model that testing activities are a necessary step in completing every activity.
Activities within the fundamental test process fall into the following basic steps (we will focus more on
software tests, but the same principles apply to hardware tests):

1. planning and control;

2. analysis and design;

3. implementation and execution;

4. evaluating exit criteria and reporting;

5. test closure activities.

2.8.1 Planning and control

Test planning is intended to:

— determine the scope and risks and identify the objectives of testing;

— determine the test approach;

— implement the test policy or test strategy;

— determine the required test personnel and resources; test environments, hardware, etc.;

— schedule test analysis and design tasks, test implementation, execution, and evaluation;

— determine exit criteria.

A test strategy is created to inform project managers, testers, and developers of key issues of the
testing process. This includes the testing objectives, method of testing, total time, and resources required
for the project and the testing environments.

Test control is intended to:

— measure and analyse the results of reviews and testing;

— monitor and document progress, test coverage, and exit criteria;

— provide information on testing;

— initiate corrective actions;

— enable decision making.

2.8.2 Analysis and design

Test analysis and design should:

— review the test basis;

— identify test conditions;

— design the tests;

— evaluate testability of the requirements and system;

— design the test environment set-up and identify and required infrastructure and tools.

The test basis is the information needed to start the test analysis and create test cases. It is a
documentation on which test cases are based, such as requirements, design specifications, product risk
analysis, architecture, and interfaces. Test basis documents help understand what the system should do
once built.

2.8.3 Implementation and execution

During test implementation and execution, test conditions are translated into test cases and procedures
and scripts for automation, the test environment, and any other test infrastructure. (Test cases are a set
of conditions under which a tester will determine whether an application is working correctly or not.)

Test implementation should:

— develop and prioritize test cases and create test data for those tests (to test a software application,
for example, the tester needs to enter some data for testing most of the features: any such
specifically identified data used in tests are known as test data);

— create test suites (a collection of test cases that are used to test a software program to show that it
has some specified set of behaviours) from the test cases for efficient test execution;

— implement and verify the environment.

Test execution should:

— execute test suites and individual test cases, according to test procedures;

— re-execute tests that previously failed, to confirm a fix;

— log the outcome of test execution and record the identities and versions of the software under
tests;

— compare actual results with expected results;

— report discrepancies between actual and expected results.

The test log is used for the audit trial. A test log records the test cases that were executed, in what
order, who executed that test cases and the status of the test case (pass or fail).

2.8.4 Evaluating exit criteria and reporting

Based on the risk assessment of the project, criteria are set or each test level against which one can
determine that ‘enough testing’ has been done. These criteria vary from project to project and are known
as exit criteria.

Exit criteria are satisfied when:

— a maximum number of test cases are executed with a certain pass percentage;

— the software bug rate falls below a certain level.

2.8.5 Test closure activities

Test closure activities are performed when hardware or software is delivered, and include the following
major tasks:

— check which planned deliverables are actually delivered and ensure that all incident reports have
been resolved;

— finalize and archive test procedures, such as scripts or test environments, for later reuse;

— deliver test procedures to the maintenance organization;

— evaluate the testing process, to provide lessons for future releases and projects.

2.8.6 Proof tests

Safety system standards also require proof tests, to include verification of the following conditions:

— operation logic sequence given by cause and effect diagrams;

— operation of all input devices, including field sensors and single-instance storage input modules;

— logic associated with each input device;

— logic associated with combined inputs;

— trip set-point of all inputs;

— alarm functions;

— response time of the system (when applicable);

— functioning of manual actions bringing the process to its safe state, e.g., emergency stop;

— functioning of user-initiated diagnostics;

— safety system is operational after testing;

— all paths through redundant architectures should be tested.

Proof tests can identify ‘hidden’ device failures, although they cannot prevent failures from
happening. The proof test interval should be large enough to catch failures, but too frequent testing also
increases the likelihood of human errors in the system.

General considerations for proof testing are as follows:

— failure modes of the device and their effects on functionality; if a device failure is either self-
revealed or can be detected by diagnostics, there is no need to include this device into proof
testing;

— if a device has dominant age-related failure modes, preventive maintenance should be applied, in
accordance with a reliability centred maintenance analysis;

— only safety-critical functions should be tested; non-safety-related functions should be included in
another maintenance test or should simply be tested during an initial acceptance test and then
again after a much longer interval;

— instruments and field devices that have no direct impact on safety, and are run under ‘continuous
mode’ (continuous comparison among redundant devices), can either ‘run to fail’ or be tested
with a much longer period (for example, signage);

— logic solvers that lack integrated diagnostic functions should still be tested annually, since they
have no diagnostics and their functionalities can easily be changed;

— safety programmable logic controller-based logic solvers with strict management of change
procedures have no need for a strict programmable logic controller-dedicated assurance test,
however, the whole system should go through a full functional testing every 8–12 years
(according to Shell standard DEP 32.80.10.10-Gen, July 2008);

— ease of testing should be considered during the system design stage, e.g., the process industry
uses a ‘maintenance override service’ to facilitate online testing without tripping the process.

2.8.7 Test examples

As an example, these test methodologies can be followed for an accelerator safety system.

2.8.7.1 Programmable logic controller or field programmable gate array bench test

This is part of the programmable logic controller or field programmable gate array software quality
assurance activity; it demonstrates that the programmable logic controller field programmable gate array
logic satisfies the specification.

2.8.7.2 Interlock checks

These checks test field components subject to accidental damage or harsh environmental conditions,
especially those of an electromechanical nature or which have moving parts; they are conducted at least
every 6 months.

2.8.7.3 Initial acceptance test

This is intended to test physical hardware, installations, all functions of a new safety installation (the
installation includes hardware, programmable logic controller or field programmable gate array logic),
including unintended functions and common mode failures, which could arise from design or
implementation errors, or component malfunction. This test is carried out for a new installation or after
major modifications. New safety software code downloads are currently considered a major
modification.

2.8.7.4 System features to be tested by initial acceptance test

These include:

— interaction between system and human–machine interfaces;

— each safety function, either loop-oriented or a complex functionality as a whole;

— degraded mode of operation if there are any requirements defined in operations requirements;

— recovery from failure;

— redundancy;

— different operation mode of the system;

— reasonable foreseeable abnormal conditions and misuse of the system.

2.8.7.5 Safety assurance test

This is intended to perform a maintenance function, to verify continuing operation of safety features;
this test is carried out annually.

2.8.7.6 Other tests

Different industries and industrial standards use different terms for these test activities. For Safety
Instrumented Systems, ANSI/ISA 84 (IEC 61511 Mod) contains requirements for factory acceptance
testing, site acceptance tests, and proof testing. For complex process automation projects, IEC 62381
defines the scope and activities for factory acceptance testing, site acceptance tests, and site integration
tests. Broadly speaking, the programmable logic controller bench test falls under the scope of factory
acceptance testing; and the initial acceptance test is equivalent to a site acceptance test.

2.9 Configuration control

Configuration management is the unique identification, controlled storage, change control, and status
reporting of selected intermediate components during the life of a system. Configuration control is the
activity of managing the system and related document throughout the product’s life cycle.

Configuration control ensures that:

— the latest approved version of the system and its components are used at all times;

— no change is made to the product baselines without authorization;

— there is a clear audit trail of all proposed, approved, or implemented changes.

When applied to software, there are additional challenges: on the one hand, individual developers
need the flexibility to do creative work, to modify code to try out what-if scenarios, and to make
mistakes, learn from them, and evolve better software solutions; on the other hand, teams need stability
to allow code to be shared with confidence, to create builds and perform testing in a consistent
environment, and to ship high-quality products with confidence. This requires an intricate balance to be
maintained. Too much flexibility can result in problems, including unauthorized or unwanted changes,
the inability to integrate software components, uncertainty about what needs to be tested and working
programs that suddenly stop working. Conversely, enforcing too much stability can result in costly
bureaucratic overhead and delays in delivery, and may even require developers to ignore the process in
order to get their work done.

How is it possible to maintain the necessary balance between flexibility and stability, as software
moves through the life cycle?

Some techniques include:

— selecting the appropriate type and level of control for each software artefact;

— selecting the right acquisition point for each configuration item;

— utilizing multiple-levels of formal control authority.

2.10 Quality assurance and quality control

Quality assurance is process oriented; quality control is product oriented: this might be one’s starting
point when considering how to assure quality to products and systems, as quality assurance makes sure
that one is doing the right things, the right way, while quality control makes sure the results of what one
has done are what one expected.

Assuring quality means more than making sure that quality exists also means stepping in wherever
there are opportunities to add or ensure quality; for instance, clarifying requirements, documenting new
requirements, facilitating communication among teams and, of course, testing. Testing should not be
limited to hardware or software, but should extend to requirements, understanding of requirements, etc.

Typical quality assurance activities are: quality audit, defining process, selection of tools, and
training.

Typical quality-control activities are: testing, walkthrough, inspection, and checkpoint review.

Any project should begin with a clear definition of requirements and deliverables. Performance
requirements are defined in a ‘black box’ manner: the ‘how’ is not defined; the size, location, number
of entry points, number and location of devices, entry requirements, desired access states, and
operational modes must all be defined. Any interfaces to other systems should be highlighted and
described in their own sections, for clarity.

The requirements document is carefully reviewed, since many future quality assurance tests
reference these requirements; ideally, requirements documents should be maintained as ‘living’
documents.

A formal specification document is developed to define, specifically, how the system is to be built
and operate. Specific parts are identified, system architectures of technology may be selected, input and
output signal lists are defined. The systems specification should describe how to meet the requirements
set forth in the requirements document. Any interfaces to other systems shall be highlighted and
described in their own sections for clarity.

The specification document is carefully reviewed, since engineering and design work, as well as
many future quality assurance tests, is performed against it.

2.10.1 Technical reviews

Technical reviews are conducted to evaluate design and engineering work for accuracy and performance
against the requirements, specification, and other best-practice standards.

Informal peer reviews should be utilized periodically, to assess engineering work or testing
procedures.

Formal reviews are conducted to evaluate project design and engineering work for accuracy and
performance against the requirements, specification, and other best-practice standards. Formal reviews
are typically specified in a project quality assurance plan. Large projects will typically have an early
preliminary or system architecture review, followed by a detailed or final design review. At a minimum,
there will always be at least one final technical review for a project. The membership of formal reviews
follows a graded approach (Table 2). The number of external reviewers, the overall number of reviewers,
and the organizational distance of reviewers from the overseeing organization is dependent on the scope,
complexity, and technological familiarity of the proposed design compared to common practice.

Table 2: Minimum recommended reviewer complement

Minor modification, familiar methods 1 external reviewer
Minor modification, new methods 2 external reviewers
Medium change, familiar methods 2 external reviewers
Medium change, new methods 2 or more external reviewers,

1 external to control department
Large change, familiar methods 3 external reviewers,

1 external to control department
Large change, new methods 3 or more external reviewers,

1 or more external to control department,
1 external to laboratory

2.11 Documentation

Document management is the process of applying policies and rules to how documents are created,
maintained, and archived within an organization. Document collaboration is merely the process of
checking out, checking in, and versioning a document before it is published. Records management
encompasses all of the functions of document management, but applies them to a broader set of content
elements—not just documents.

The main aspects of managing a document through its life cycle include the following.

— Creation: Methods for envisioning, initiating, and collaborating on a new document’s
development.

— Location: There must be a physical location where documents will be stored and accessed.
Usually, most documentation management systems require single-instance storage of a document
so that there is only one version of the truth.

— Authentication and approval: Methods of ensuring that a document is fully vetted and approved
before it is considered to be official compliant communication from the organization.

— Workflow: This describes the series of steps needed to pass documents from one person to another
for various purposes, such as to gain approval to publish the document or to collect signatures on
a document.

— Filing: For electronic systems, a document is filed by placing it in a physical location and then
attaching metadata to the document. The metadata files the document logically by allowing the
document to be found based on the metadata values assigned to the document.

— Distribution: Methods of getting the document into the hands of the intended readers.

— Retrieval: Methods used to find the documents, such as querying the index for keywords or using
search alerts to find new content that meets the query keywords.

— Security: Methods used to ensure the document’s integrity and security during its life cycle.

— Retention: Organization’s policies and practices that inform everyone how long different
document types are retained by the organization.

— Archiving: Similar in concept to retention, the differing characteristic is that archiving is a subset
of retention policies. Archiving focuses on the long-term retention of documents in a readable
format after the document’s active life has ended. Subsumed in this category is the expiration of
documents after they no longer need to be retained.

2.12 Cybersafety

Traditional network security risk management techniques are often inadequate to meet the specialized
needs of control systems, whose security represents a unique challenge. Generally speaking, control
systems are designed for accuracy, extreme environmental conditions, and real-time response in ways
that are often incompatible with the latest cybersecurity technologies, inconsistent with consumer-grade
hardware and software, and in conflict with common network protocols. As a result of these performance
factors and limitations, engineers (rather than IT managers) have traditionally been responsible for the
design, operation, and maintenance of control systems. Yet, despite their uniqueness, control systems
are increasingly reliant on common network protocols, and connectivity often exists between control
systems and enterprise networks, to include the Internet (Fig. 2).

Fig. 2: Pathways into control systems

How does an organization ensure that its supervisory control and data acquisition system is
secure? One of the answers is in standard ISA-99.02.01 (Security for Industrial Automation and Control
Systems: Establishing an Industrial Automation and Control Systems Security Program), approved and
published by the American National Standards Institute (ANSI). This readable standard lays out seven
key steps for creating a cybersecurity management system for use with supervisory control and data
acquisition and control systems.

The steps in ISA-99.02.01 are divided into three fundamental categories: risk analysis, addressing
risk with the cybersecurity management system, and monitoring and improving the cybersecurity
management system.

1 The first category lays out the stages an organization needs to follow to assess its current security
situation and determine the security goals it wants to achieve.

2 The second category outlines processes to define security policy, security organization, and
security awareness in the organization and provides recommendations for security
countermeasures to improve supervisory control and data acquisition system security. The core
idea in this section is a concept known as ‘defence in depth’, where security solutions are carefully
layered to provide multiple hurdles to attackers and viruses.

3 The third category describes methods to make sure a supervisory control and data acquisition
system not only stays in compliance with the cybersecurity management system but follows a
continuous improvement programme.

2.12.1 Defence in depth

Sound strategy, regardless of whether it is for military security, physical security, or cybersecurity, relies
on the concept of ‘defence in depth’. Effective security is created by layering a number of security
solutions so that if one is bypassed another will provide the defence. This means, for instance, not
overrelying on any single technology, such as a firewall.

Defence in depth begins by creating a proper electronic perimeter around the supervisory control
and data acquisition or control system and then hardening the devices within. The security perimeter for
the control system is defined by both policy and technology. First, policy sets out what truly belongs in
the control-system network and what is outside; next, a primary control-system firewall acts as the choke
point for all traffic between the outside world and the control-system devices.

Once the electronic perimeter of the control system is secured, it is necessary to build the
secondary layers of defence in the control system itself. Control components, such as human–machine
interfaces and data historians based on traditional IT-operating systems, e.g., Windows and Linux,
should take advantage of the proven IT strategies of patch and anti-virus management. However, this
requires prior testing and care.

For such devices as programmable logic controllers and supervisory control and data acquisition
controllers—where patching or anti-virus solutions are not readily available—industrial security
appliances should be used. This solution deploys low-cost security modules directly in front of each
group of control devices needing protection. The security modules then provide tailored security
services, e.g., ‘personal firewalling’ and message encryption, to the otherwise unprotected control
devices.

Table 3 compares the cybersafety requirements of a machine protection system with those of a
personnel protection system (access control)—the latter being, generally, stricter.

2.13 Evolution of cybersafety landscape (a US perspective)

2.13.1 Framework for Improving Critical Infrastructure Cybersecurity (US National Institute of
Standard, NIST, February 2014): a system of regulations and the means used to enforce
them

The framework is based on:

— core functions (activities and references);

— implementation tiers (guidance);

— a framework profile (how to integrate cybersecurity functions within a cybersecurity plan).

The framework consists of four implementation tiers, each defined for three categories—risk
management process, integrated risk management programme, and external participation. Any
organization will follow into one of these three categories.

2.13.1.1 Tier 1: Partial

— Risk management process: Organizational cybersecurity risk management practices are not
formalized, and risk is managed in an ad-hoc and sometimes reactive manner.

— Integrated risk management programme: There is limited awareness of cybersecurity risk at the
organizational level.

— External participation: An organization may not have processes in place to participate in
coordination or collaboration with other entities.

Table 3: Cybersafety requirement comparisons

Requirements Personnel protection Machine protection
Use of configuration versioning
system for software

Yes Yes

Manage check-in and out of
configuration versioning system with
procedures

Yes Yes

Track and check checksum Yes; additional ‘safety signature’
available for safety-rated
programmable logic controllers

Yes

Software download is password
protected

Yes Yes

Download over network? No, not allowed; only local
PROFIBUS (process field bus)
connection allowed

Yes

Download to wrong CPU across
network?

No; isolated networks and different
CPU names and Internet protocol
addresses even if on same network

No; isolated networks and
different CPU names and
Internet protocol addresses
even if on same network

Protection against wrong safety
program load

Hardware configuration is loaded;
safety modules have hardware dual in-
line package switches: hardware
configuration error causes fail-safe
shutdown

No

Physical isolation from controls
network

No No

Possible accidental (or act of
sabotage) download of safety-critical
code from controls network

No; local download only Yes

Possible accidental changes (or act of
sabotage) to supervisory control and
data acquisition human–machine
interface from controls network

Yes Yes

2.13.1.2 Tier 2: Risk informed

— Risk management process: Risk management practices are approved by management but may not
be established as organizational-wide policy.

— Integrated risk management programme: There is an awareness of cybersecurity risk at the
organizational level but an organization-wide approach to managing cybersecurity risk has not
been established.

— External participation: The organization knows its role in the larger ecosystem, but has not
formalized its capabilities to interact and share information externally.

2.13.1.3 Tier 3: Repeatable

— Risk management process: The organization’s risk management practices are formally approved
and expressed as policy.

— Integrated risk management programme: There is an organization-wide approach to managing
cybersecurity risk.

— External participation: The organization understands its dependencies and partners and receives
information from these partners that enables collaboration and risk-based management decisions
within the organization in response to events.

2.13.1.4 Tier 4: Adaptive

— Risk management process: The organization adapts its cybersecurity practices based on lessons
learned and predictive indicators derived from previous and current cybersecurity activities.

— Integrated risk management programme: There is an organization-wide approach to managing
cybersecurity risk that uses risk-informed policies, processes, and procedures to address potential
cybersecurity events.

— External participation: The organization manages risk and actively shares information with
partners to ensure that accurate, current information is being distributed.

2.13.2 NIST Special Publication (SP) 800-53 (Computer Security Guide)—Revision 4, April 2013

This standard is based on an information security programme: it covers risk assessment; policies and
procedures; subordinate plans; training; periodic testing; incident response; and continuity of operations.

The standard is mission-oriented. It is based on FIPS 199 (Federal Information Processing
Standard) for Security Categorization of Federal Information and Information Systems, and it includes
definitions of security control categories for information systems (based on the key aims of
confidentiality, integrity, availability).

The standard is also based on the impact on an organization’s capability to accomplish its mission.
(There is a full catalogue, including access control, awareness and training, audit and accountability,
authentication, maintenance, media protection and access.)

2.13.3 Other standards

2.13.3.1 IEC 17799: Information Technology—Code of Practice for Information Security
Management

This standard is of a high level; being broad in scope and conceptual in nature, it forms a basis to develop
customized security standard and security management practices.

2.13.3.2 ISA-TR99: Integrating Electronic Security into the Manufacturing and Control System
Environment

This standard is a guide to user and manufacturers. It can be used to analyse technologies and determine
their applicability in securing manufacturing and controls.

2.13.3.3 IEC 15408 (3.1): Information Security Management Systems (ISMS)

This standard provides a framework to specify security functional and assurance requirements through
the use of protection profiles. Vendors can implement security attributes and testing laboratories can
evaluate products.

2.13.3.4 IEC 27001:2005: Common Criteria (CC) for Information Technology Security Evaluation

This is a system to bring information security under explicit management control through policies and
governance; asset management; human resources security; access control; incident management;
business continuity; etc.

2.13.3.5 NIST SP 800-82

This standard formalizes the defence-in-depth strategy: layering security mechanisms to minimize the
impact to one mechanism as a result of failure.

The standard covers:

— Internet connection sharing policies based on Department of Homeland Security threat level;

— implementation of a multi-layer network topology;

— provision of logical separation between corporate and Internet connection sharing networks;

— use of a demilitarized zone (i.e., no direct communication between Internet connection sharing
and corporate use);

— fault-tolerant design;

— redundancy for critical components;

— privilege management;

— encryption.

For laboratories, the risk tolerance for ‘generic’ Internet connection sharing is different than that
for personnel protection or medical technology (the protection of lives, information, assets, etc.).
Boundaries and interfaces have to be identified; moreover, in highly regulated environments, once a
standard is chosen and committed, the organization can be audited against it.

3 An example: the Linac Coherent Light Source machine protection system
The machine protection system at the Linac Coherent Light Source (LCLS-I) at the SLAC National
Accelerator Laboratory is an interlock system responsible for turning off or reducing the rate of the
beam in response to fault conditions that might damage or cause unwanted activation of machine parts.

The system is required to:

— turn off or limit the rate of the electron beam when faults are detected, to prevent damage to
sensitive machine components;

— protect undulator permanent magnets from the electron beam, limiting the radiation dosage to
below a specified amount;

— protect beamline components from excessive beam exposure, to prevent damage to the vacuum
system and unnecessary activation;

— shut off the beam (detect and mitigate) within one pulse at 120 Hz (i.e., 8.33 ms for LCLS-I);

— protect the laser heater system from the injector laser;

— allow fault conditions to set different maximum rates for each mitigation device;

— allow automatic beam rate recovery (after a fault is corrected, the beam rate is raised to its before-
fault value);

— bypass faults securely;

— provide a user interface that quickly identifies system trips, allows ‘post-mortem’ analysis and
shows history;

— provide the ability to change the configuration of the logic and beam rate by adding and removing
input signals, bypassing device fault inputs, and setting and changing fault thresholds.

The machine protection system (see Fig. 3) is able to reduce the beam rate only to below the
operators’ requested beam rate, and cannot raise the beam rate above operators’ requested beam
rate. Separate systems support the machine protection system, to protect other energized devices
such as power supplies, magnets, and klystrons. A separate beam containment system ensures that
no beam or radiation reaches potentially occupied areas. To perform its functions, the machine
protection system relies on a set of inputs and output signals (see Fig. 4).

Fig. 3: Linac Coherent Light Source machine protection system

3.1 Inputs

3.1.1 Inputs from obstructions

Obstructions cover numerous devices, including vacuum valves, tune-up dumps, beam finder wires, and
profile monitor screens. The beam is turned off whenever an obstruction reads a ‘not-out’ status. Beam
finder wires, the tune-up dump, and profile monitor screens allow a maximum 10 Hz repetition rate once
they are fully inserted. All obstruction devices require two limit switches to be incorporated in the
design, to indicate fully in and fully out positions. An inconsistent status between the two switches is to
be treated as a machine protection system fault. Obstructions are regarded as a pre-emptive fault, where
the beam is turned off before it can cause any damage, e.g. to:

— profile monitor screens;

— collimator jaws;

— dechirper plates;

— beam stoppers.

3.1.2 Beam loss monitors

Beam loss is regarded as an actual fault with a requirement that the beam be shut off before the next
pulse can be delivered; this means that the overall system must detect and mitigate the fault in less than
8.3 ms for 120 Hz operation.

Loss monitors with different types of sensitivity (e.g., toroids; protection ion chambers; optical
fibre beam loss monitors) are deployed in different locations. The signal is gated to coincide with the
beam arrival time and compared with a programmable threshold; it will indicate a fault if the threshold
is exceeded. Two programmable threshold settings are required:

— exceeding the lower threshold can allow the beam rate to be lowered by the machine protection
system;

— exceeding the higher threshold should cause the beam to be shut off and require the machine
protection system to be reset manually.

Fig. 4: Board diagram. EPICS, Experimental Physics & Industrial Control System; I/O, input–output; MPS,
machine protection system.

3.1.3 Other inputs

These include:

— watchdog;

— vacuum valves;

— temperature readouts.

3.1.4 Sensors

There are a number of sensors. These include sensors for:

— vacuum valve position;

— water flow status;

— magnet power supply status;

— temperature;

— in-beam diagnostics status;

— beam position;

— beam charge;

— RF system status;

— beam containment status;

— beam loss.

3.2 Outputs (mitigation devices)

3.2.1 At the gun

The following devices interrupt the beam at the gun:

— laser heater mechanical shutter;

— photocathode laser mechanical shutter;

— gun trigger permit.

The mitigation scheme is based on shifting the timing of the gun RF from beam-time to standby
time, while leaving the average rate of the laser and RF systems constant. The beam will not be extracted
from the gun if the timing is shifted to standby time, since the RF is not present at the same time that
the laser impinges on the cathode. The mechanical shutter is still deployed to block the light when the
rate goes to zero. The shutter inhibits the injector UV laser before it hits the gun’s cathode; its control
is verified with optical position sensors; it faults the beam containment system mechanical shutter when
the control does not match the position status.

3.2.2 Pre-undulator fast kicker (BYKIK)

The BYKIK (Fig. 5) is a pulsed dipole in LCLS-I, and is located in the middle of the DL-2 bend system
in the linac-to-undulator beam line. The BYKIK is pulsed at a constant average frequency of 120 Hz
and receives two input triggers, one at beam-time and the other at standby time. When the standby
trigger is applied, the beam is transported unperturbed to the undulator. When the machine protection
system shifts the trigger to beam-time, the beam is deflected by BYKIK onto a dump (collimator) and
is not transported to the undulator. The switching of the BYKIK triggers between standby and beam-
time can be done on a pulse-by-pulse basis so that either the beam is fully suppressed or bunches can be
selectively allowed through to the undulator at a reduced rate. This feature is further exploited in special
cases to send single shots and burst modes to the undulator on demand.

The secondary mitigation device requirements for BYKIK are derived from the need to suppress
the beam to the undulator while the beam at the front end remains on at the full rate so that the machine
is held stable by the beam-based feedback systems. For this to be reliable, the system must verify that
BYKIK is operating correctly and dumping the beam before the undulator can be damaged. The
verification is achieved at two levels. First, the BYKIK magnet control module signals a pre-emptive
machine protection system fault if the magnet is out of tolerance within the specified time window of
the pulse. The final verification must come from the beam itself at the time that BYKIK actually fires
to kick the beam. For example, the beam position monitor immediately downstream of BYKIK should
see the beam deflected by >1 mm, otherwise it should also register a machine protection system fault.
In the event of either of these faults occurring, the beam is shut off at the gun.

3.3 Architecture

The system (Fig. 6) is based on a (dedicated, private) star network (Fig. 7) consisting of two entities:
link processor and link nodes (interconnected over a private Gb ethernet network).

The machine protection system determines the maximum allowed beam rate by processing device
fault input signals (from link nodes and input multiplexers) with a rate-limiting algorithm (executed on
the link processor).

— The link node is the collection point of all sensor signals; it integrates sensor subsystems and
drives mitigation devices.

— The link processor, in turn, runs the machine protection system control algorithm and makes
decisions based on sensor states and interfaces to the timing system.

Fig. 5: BYKIK architecture: EVG, event generator; EVR, event receiver

Fig. 6: Conceptual architecture diagram: CA, channel access; Dev, device; ENET, ethernet; EPICS, Experimental
Physics & Industrial Control System; EVR, event receiver; GbE, Gb ethernet; LCLS, Linac Coherent Light
Source; Lsr Htr, laser heater; Mech., mechanical; MPS, machine protection system; PS, power supply.

Fig. 7: Network architecture: EVG, event generator; IMPS, interface message processor system; IP, Internet
protocol; MPS, machine protection system.

The link processor (a Motorola MVME 6100) has two copper Gb ethernet interfaces, a serial
console port, and two peripheral component interconnect mezzanine card sites, along with an MPC7457
PowerPC processor that runs at 1.267 GHz, with 1 GB of RAM. The link processor’s serial port is
connected to a terminal server, a 1 Gb ethernet interface is used for high-speed communication with link
nodes; the other is used for communication with the LCLS control system. It also sends synchronization
and permit messages to link nodes. It faults all link node inputs to link nodes that provide a response
within 8.3 ms.

The 32 LCLS link nodes are responsible for debouncing and latching digital inputs, digitizing
analogue signals and comparing them with fault thresholds, and controlling the machine protection
system mitigation devices. Link nodes are rack-mountable devices and occupy three rack units in a
19 inch rack. Built around the Xilinx Vertex four-field programmable gate arrays, each link node can
be configured to support up to 96 digital inputs, 8 solid-state relay outputs, 4 TTL-compatible logic level
trigger inputs, and 4 trigger outputs. One of each link node’s two small form-factor pluggable slots is
filled with a fibre-optic transceiver for high-speed communication with the link processor over the Gb
ethernet. A full speed USB 1.1 port provides serial communication with the field programmable gate
array while a separate DE-9 serial port gives access to the link node’s EPICS (Experimental Physics &
Industrial Control System) input–output controller serial port. The input–output controller serial ports
are connected to terminal servers.

Four interface board slots allow signal conditioning to be placed between incoming signals and
the link nodes’ Industry Pack cards. Commercial off-the-shelf analogue-to-digital converter and digital-
to-analogue converter Industry Pack cards are used to control and read back beam loss monitor high-
voltage power supply voltages. A charge-integrating analogue-to-digital converter (QADC) Industry
Pack card is used to digitize up to eight protection ion chamber or beam loss monitor signals, allowing
each link node to monitor up to 32 analogue signals. The digitized signals are compared in the link node
field programmable gate array against thresholds set by the link node’s input–output controller via
EPICS. Only the Boolean results of these comparisons are sent to the link processor for fault mitigation.

3.4 Communication

All time-critical data are transmitted over the machine protection system’s dedicated Gb ethernet
network using the user datagram or Internet protocol. The link processor uses a real-time protocol stack

originally created for the LCLS beam position monitor data acquisition system. The real-time protocol
stack not only provides deterministic behaviour for the messaging, but also allows ordinary network
hardware and software tools to be used to build and test the system, since no new protocols are
introduced. On the link node side, the network stack is implemented in the field programmable gate
array firmware. A stack of dedicated Gb ethernet switches connects the link nodes and the link processor
These switches queue and serialize concurrent data sent to the link processor and also handle the
physical layer conversion of the link processor’s copper and the link nodes’ fibre Gb ethernet
connections.

When the link processor is woken by the 360 Hz signal from the LCLS timing system, it
broadcasts a synchronization message to all link nodes, requesting updated fault data, and providing the
timing system’s newest time-stamp. In response, the link nodes send the link processor a time-stamped
status message containing all unacknowledged machine protection system device faults that have
occurred since the previous synchronization message. The link processor copies the fault data to local
buffers and returns the status message to the source link node. The link node uses this message as an
acknowledgement of the faults that the link processor has received. All faults are latched in the link
nodes and are cleared only when the link processor has acknowledged the fault and the fault itself has
been cleared.

The link processor processes the faults using the currently running machine protection system
logic and broadcasts a permit message to the link nodes. Link nodes allow the beam past their connected
mitigation devices for 1/360 s if permitted. If a permit message is not received or if the beam is not
permitted, link nodes stop the beam at their mitigation devices.

3.4.1 History server

The link processor logs all fault and status messages to a machine protection system history server
application, which stores the messages in an Oracle database in real time. Machine protection system
messages are stored separately from the normal logging system so that no messages are lost; they are
also forwarded to the normal message logging system, so that they can be correlated with other logged
events. A machine protection system history viewer is available to the operators via the machine
protection system graphic user interface.

The events logged are:

— device state changed;

— beam rate changed;

— destination changed;

— history servers notify link processor of their existence.

3.4.2 Faults bypass

Device faults can be bypassed via an EPICS display by selecting a fault, choosing its bypass state, and
supplying the bypass duration.

For example, an operator can choose to bypass a flow switch for one day by selecting the flow
switch input, selecting its OK state, and giving a bypass duration of 24 h. All bypasses are logged and
automatically timed by the machine protection system. The operator is alerted when the bypass time is
reached, forcing the operator to re-evaluate bypasses.

3.5 Human–machine interface

The human–machine interface is illustrated in Figs. 8 to 11.

Fig. 8: MAIL machine protection system: graphic user interface

Fig. 9: Machine protection system: global panel

Fig. 10: Injector panel

Fig. 11: Injector inputs

Acknowledgements
The author wishes to thank M. Boyes and F. Tao of SLAC for many fruitful conversations and their
insights on machine protection systems for accelerators.

References
[1] ISO 14118 Safety of Machinery—Prevention of Unexpected Start-Up.
[2] IEC 60204-1 Safety of Machinery, Electrical Equipment of Machines.
[3] IEC 61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related

Systems.

Bibliography
Centre for Chemical Process Safety, Guideline for Safe Automation of Chemical Processes,
(AIChE/CCPS, New York, 1993).

SLAC, Guidelines for Operations (SLAC, Menlo Park, CA, 2008).

R. Langner, Robust Control System Networks (Momentum Press, New York, 2012).
W. Stallings, Network and Internetwork Security (IEEE Press, New York, 1995).

W.M. Goble, Evaluating Control Systems Reliability (ISA, Research Triangle Park, NC, 1992).

E. Marszal and E. Scharpf, Safety Integrity Level Selection (ISA, Research Triangle Park, NC, 2002).

D. Smith, Reliability, Maintainability and Risk (Butterworth-Heinemann, Burlington, MA, 2007).

W.M. Goble and H. Cheddie, Safety Instrumented Systems Verification (ISA, Research Triangle Park,
NC, 2005).

C.A. Ericson II, Hazard Analysis Techniques for System Safety (Wiley-Interscience, Hoboken, NJ,
2005). http://dx.doi.org/10.1002/0471739421

H.E. Roland and B. Moriarty, System Safety Engineering and Management (Wiley-Interscience,
Hoboken, NJ, 1990).

E. Schlosser, Command and Control: Nuclear Weapons, the Damascus Accident, and the Illusion of
Safety (Penguin, New York, 2014)

R.A. Stephans, System Safety for the 21st Century (John Wiley and Sons, Hoboken, NJ, 2004).
http://dx.doi.org/10.1002/0471662542

K. Belt, Certification Frequency (SLAC Memorandum, Menlo Park, CA, 2012).

PICMG MTCA.0, revision 1.0, 2006-07-06, and revisions 2, 3, and 4.

IEC 62381: Automation Systems in the Process Industry—Factory Acceptance Test (FAT), Site
Acceptance Test (SAT) and Site Integration Test (SIT), 2006.

ANSI/ISA 84.00.01 (IEC 61511 Mod).

IEC 61511 Committee Draft, 2012.

ANSI/ISA TR84.00.03.

http://dx.doi.org/10.1002/0471662542
http://dx.doi.org/10.1002/0471662542

	Controls and Machine Protection Systems
	1 A software problem
	1.1 Accelerator controls are complex systems

	2 Functional safety
	2.1 Introduction
	2.2 Life cycle management
	2.3 Redundancy
	2.4 Choosing components
	2.5 Diagnostics and fail-safe design principle
	2.6 Functional safety and safety integrity level
	2.7 Standards and guidance
	2.7.1 Software standards
	2.7.1.1 IEEE 12207—Software Life Cycle Processes

	2.7.2 Hardware standards
	2.7.2.1 Computer Automated Measurement and Control (CAMAC)
	2.7.2.2 Versa Module Europa (VME)
	2.7.2.3 xTCA (Telecommunications Computing Architecture

	2.8 Tests
	2.8.1 Planning and control
	2.8.2 Analysis and design
	2.8.3 Implementation and execution
	2.8.4 Evaluating exit criteria and reporting
	2.8.5 Test closure activities
	2.8.6 Proof tests
	2.8.7 Test examples
	2.8.7.1 Programmable logic controller or field programmable gate array bench test
	2.8.7.2 Interlock checks
	2.8.7.3 Initial acceptance test
	2.8.7.4 System features to be tested by initial acceptance test
	2.8.7.5 Safety assurance test
	2.8.7.6 Other tests

	2.9 Configuration control
	2.10 Quality assurance and quality control
	2.10.1 Technical reviews

	2.11 Documentation
	2.12 Cybersafety
	2.12.1 Defence in depth

	2.13 Evolution of cybersafety landscape (a US perspective)
	2.13.1 Framework for Improving Critical Infrastructure Cybersecurity (US National Institute of Standard, NIST, February 2014): a system of regulations and the means used to enforce them
	2.13.1.1 Tier 1: Partial
	2.13.1.2 Tier 2: Risk informed
	2.13.1.3 Tier 3: Repeatable
	2.13.1.4 Tier 4: Adaptive

	2.13.2 NIST Special Publication (SP) 800-53 (Computer Security Guide)—Revision 4, April 2013
	2.13.3 Other standards
	2.13.3.1 IEC 17799: Information Technology—Code of Practice for Information Security Management
	2.13.3.2 ISA-TR99: Integrating Electronic Security into the Manufacturing and Control System Environment
	2.13.3.3 IEC 15408 (3.1): Information Security Management Systems (ISMS)
	2.13.3.4 IEC 27001:2005: Common Criteria (CC) for Information Technology Security Evaluation
	2.13.3.5 NIST SP 800-82

	3 An example: the Linac Coherent Light Source machine protection system
	3.1 Inputs
	3.1.1 Inputs from obstructions
	3.1.2 Beam loss monitors
	3.1.3 Other inputs
	3.1.4 Sensors

	3.2 Outputs (mitigation devices)
	3.2.1 At the gun
	3.2.2 Pre-undulator fast kicker (BYKIK)

	3.3 Architecture
	3.4 Communication
	3.4.1 History server
	3.4.2 Faults bypass

	3.5 Human–machine interface

