Author(s)
|
Cocolios, T E (Manchester U.) ; de Groote, R P (Leuven U.) ; Billowes, J (Manchester U.) ; Bissell, M L (Manchester U. ; Leuven U.) ; Budinčević, I (Leuven U.) ; Day Goodacre, T (Manchester U. ; CERN) ; Farooq-Smith, G J (Manchester U.) ; Fedosseev, V N (CERN) ; Flanagan, K T (Manchester U.) ; Franchoo, S (Orsay, IPN) ; Garcia Ruiz, R F (Leuven U.) ; Gins, W (Leuven U.) ; Heylen, H (Leuven U.) ; Kron, T (Mainz U., Inst. Phys.) ; Li, R (Orsay, IPN) ; Lynch, K M (Leuven U. ; CERN) ; Marsh, B A (CERN) ; Neyens, G (Leuven U.) ; Rossel, R E (CERN ; Mainz U., Inst. Phys.) ; Rothe, S (CERN) ; Smith, A J (Manchester U.) ; Stroke, H H (New York U. (main)) ; Wendt, K D A (Mainz U., Inst. Phys.) ; Wilkins, S G (Manchester U.) ; Yang, X (Leuven U.) |
Abstract
| The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems. |