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Abstract

The commonly used approach to present unfolded data only in graphical form
with the diagonal error depending on the regularization strength is unsatisfac-
tory. It does not permit the adjustment of parameters of theories, the exclusion
of theories that are admitted by the observed data and does not allow the com-
bination of data from different experiments. We propose fixing the regulariza-
tion strength by a p-value criterion, indicating the experimental uncertainties
independent of the regularization and publishing the unfolded data in addition
without regularization. These considerations are illustrated with three different
unfolding and smoothing approaches applied to a toy example.

1 Introduction and general considerations

Unfolding is a difficult mathematical problem, because independent of the amount of data the solution
of the Fredholm equation f'(z') = [ #(x, ') f(x)dx does not lead to a stable solution; here f(x) is

the function of interest, ¢(z, ') is the response- or smearing function and f’(z’) is the known distorted
function. Therefore regularization methods have been developed.

In particle physics, distributions are usually presented in the form of histograms. Histogramming
is a first regularization step. With a wide enough binning, unfolding is reduced to a simple inference
problem where the parameters, i.e. the content of the bins, have to be estimated. These parameters
and their errors can be determined by a standard fitting procedure. As is common practice in parameter
fitting, the compatibility with the data can be expressed by a p-value. So far, the situation is rather clear
and not controversial. The regularization by binning has the nice property that the interpretation of the
unfolded distribution is straight forward, the point estimates and the error matrix fully document the
result, there are no hidden parameters and all true distributions that are compatible with the observed
data are admitted by the result.

Problems arise as soon as we choose a binning that is narrow compared to the smearing and try
to represent unfolding results graphically. There are usually strong fluctuations between adjacent bins,
these are then negatively correlated and the non-diagonal error matrix elements are huge which makes a
graphical representation unreadable. But while the point estimates are badly known, the error limits are
rather precisely derived from the data. To avoid the unpleasant oscillations, usually a second regulariza-
tion step is introduced. Contrary to the implicit regularization by binning, here the kind of smoothing
and its strength are hidden and their effect is difficult to assess from the published data. Furthermore,
the explicit regularization introduces constraints that eliminate high frequency contributions, reduce the
errors assigned to the histogram bins and thus exclude solutions that are admitted by the observed data.
(We call the errors obtained in a regularized fit nominal errors to distinguish them from the errors de-
fined by the measurement alone.) Theories that are compatible with the data but where their distributions
contains narrow structures may be rejected.

As has been discussed by Blobel at this conference, for a given unfolding problem, an effective
number of degrees of freedom can be estimated. This is the number of independent significant parameters
of the unfolded distribution, i.e. the minimum number of parameters that is required to describe the
observed data within their errors. This number depends on the width of the smearing function and on
the available statistics. Thus a possible and also sensible solution would be to eliminate the second
smoothing step and to publish data with a number of rather wide bins, a number not much larger than the

252



effective degrees of freedom. The correlations would be relatively mild and could be documented with a
correlation matrix.

One common objection to wide bins is that choosing wide bins for the estimated distribution
introduces a strong dependence of the smearing matrix on the input distribution used in the Monte Carlo
simulation. However, this dependence can be avoided, by combining bins of the unfolded histogram.
Another reason for choosing histograms with many bins is that they look much more impressive than a
crudely binned histogram (see Fig. 7 in Blobel’s contribution) and that they indicate better the anticipated
shape of the true distribution. More scientific arguments for a not too wide binning are the following: 1)
When we increase the statistics by combining the data of different experiments, the spectral resolution
should increase but can only be taken advantage of if the bin size is not too large. ii) Normally we choose
bins of equal size. Then the minimum number of bins may not be adequate to describe the functional
dependence.

All problems can be avoided if a theoretical prediction of the true distribution is available. Then
we can fold the theoretical distribution and compare it to the observed data. We do not have to construct
a response matrix; binning is only required in 2’ and not in z, the distorted distribution is simulated and
compared to the data. Unknown parameters can be estimated by re-weighting the simulated events [1].
It does not make sense to pass through a histogram with many parameters to finally determine a few
parameters of interest. More important, the direct fit, for instance of the amplitude of a narrow peak
with given width superposed to a uniform background, would produce a correct result, while the true
distribution might be incompatible with an unfolded distribution where high frequencies are filtered out.

In the situation where no generally accepted theoretical description is available, a sensible solu-
tion to the stated unfolding problems is to separate the graphical representation of the result from its
documentation. We will first sketch the way the data can be documented and then turn to the explicit
regularization. We discuss how to fix the regularization strength, illustrate the problems with a simple
example and three different unfolding approaches and end with a summary and recommendations.

2 Documentation of the result

To avoid the exclusion of distributions admitted by the data and to permit the combination and compari-
son of measurements of different experiments the data have to be published without explicit regulariza-
tion.

There are at least three possibilities to document the full information: i) Unfold without regular-
ization and provide an error matrix. The number of bins has to be low, not much higher than the effective
number of degrees of freedom. ii) Publish the raw data together with the response matrix. iii) Publish
the eigenvectors of the matrix C' (see Sect. 4.1), their weights and the uncorrelated errors of the weights.

There might be statistical or technical difficulties applying any of these approaches which cannot
be discussed in a short paper. It should just be mentioned that proposal i) requires enough data to
approximate the error distributions of the unfolded histogram bins by Gaussians. Method ii) leaves
all the work to the user of the data. To follow point iii), the correlations between the contents of the
histogram bins have to be eliminated by diagonalization.

3 Fixing the regularization strength

In addition to the documentation of the data in form of tables we want to illustrate the result of our
experiments graphically and in most cases have to add an explicit smoothing step. There is no optimal
regularization algorithm, and smoothing is partially subjective. The only obvious requirement is that
the smoothing step does not destroy the compatibility of the result with the observed data. A very
attractive method favored by statisticians is to suppress small eigenvalue contributions of the least square
matrix or equivalently in the SVD decomposition (see Blobel’s and Kartvelishvili’s contributions to this
conference) but there are other methods that work equally well. The performance of a regularization
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smeared

Fig. 1: Distributions used in the unfolding example. Here and in all following graphs the axes correspond to
measured variable 0 < x < 1 (horizontal) and to the number of entries (vertical).

method depends to a certain extent on the specific problem to be solved.

There are several methods to fix the regularization strength, i.e. from the kink of the L-curve
[2], from minimum norm or vanishing global correlation. These are mathematical concepts. From a
physicist’s point of view, the essential criterion is the compatibility of the unfolded histogram with the
observed data which can be measured with a p-value derived from the 2 statistic. What is important is
not the absolute value of x? of the fit of the bin contents of the unfolded histogram but its change A y?
caused by the regularization. The p-value is p = | X; » un (z)dz where uy is the x? distribution for N
degrees of freedom, i.e. N bins of the unfolded histogram. Assuming ideal Gaussian errors, this means
that the regularized solution is located at the border of a 1 — p confidence ellipsoid. When we change the
regularization strength, rather independent on how we define it, the p-value initially remains close to one
as long as we include high frequency contributions that have little effect on the unfolded data. As soon
as we start to affect the unfolded histogram, by definition the p-value drops dramatically.

We propose to fix p to 90% or even to a higher value. This means that the parameter set of the
regularized histogram is within a 10% confidence interval of the minimum y? point which corresponds
to the undistorted measurement. There is no necessity to suppress all fluctuations, we accept them also
in standard measurements that are not affected by resolution effects. The proposed p-value is arbitrary,
but it should be large, as we want to cut only insignificant features of the data. Its choice is motivated by
experience.

It has been argued [3] that AX2 should not be referred to NV but to the difference between N
and the effective degrees of freedom Ny, i.e. Ax?~ N - N, #f- (Neyy is the number of independent
parameters that are necessary to describe the data or the effective rank of the response matrix, see Blobel’s
contribution.) The additional N — N, parameters are expected to contribute 1 to x? each. Indeed, for
the specific case N = N,y in the framework of SVD one would not regularize at all. On the other hand
smoothing N bins of an arbitrary distribution one would usually allow for a change of x? proportional
to N. Because of the sharp kink in the distribution of x? as a function of the regularization strength, the
two different methods usually will not lead to very different results. Further studies should clarify this
issue.

It is debatable what the best value for the number of degrees of freedom (NDF) should be for
converting Ax? to a p-value. However, since the cut on the p-value is arbitrary, the choice for NDF is
not crucial.

It would be very helpful if the community could agree on a common scheme. This would make
the comparison of different methods and of unfolded results much easier than it is now.

4 Toy example and three unfolding approaches

These abstract considerations are now illustrated with a simple toy example and 3 different regularization
procedures. The true distribution is a superposition of two Gaussians and a uniform distribution: 2500
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Fig. 2: Significance s of parameters (parameter / error) ordered according to decreasing eigenvalues (top left) and
unfolded distribution for different cuts in the significance. The number of contributing eigenvectors is indicated in
the top left corner of the plots.

events N (0.3;0.1), 1500 events N (0.75;0.08), 1000 events uniform in the range O to 1. The resolution
function is again a Gaussian, N(0;0.07). To demonstrate the problems, a relatively large smearing
was chosen. The effective number of degrees of freedom is around 8. In Fig. 1 the corresponding true
distribution (curve), the original and the smeared histograms from the Monte Carlo simulation are shown.
For the unfolding 20 or 10 bins for the unfolded histogram and 40 bins for the observed data were chosen.
Our notation is the following: The bin content of the histogram corresponding to the true distribution is
represented by the vector 6, the histogram of the observed data by d, and the response matrix is A. The
expectation value d is related to 8 by d = A#.

4.1 Method 1: Truncation of the eigenvalue sequence

The square matrix C' = ATV =1 A, with V the error matrix of the observed data vector d, is decomposed
into eigenvectors u;. The true distribution vector ¢ can be expressed as a sum § = ) . ¢;u;, where the
coefficients c; of the eigenvectors are to be determined. The coefficients ¢; are uncorrelated. With de-
creasing eigenvalues the components of the eigenvectorss oscillate more and more but the coefficients
become less significant and their contributions can be eliminated. In theory this is very attractive but
in practice the situation is not always simple, as is shown in Fig. 2. The upper left hand plot shows
the significance s = |¢;/dc;| for the parameters ordered by eigenvalue. We realize that the parameter
with the lowest eigenvalue is not necessarily the one with the smallest significance. The significance of
each component is proportional to the square root of the number of events. With increasing statistics
more components would become significant and correspondingly the spectral resolution would increase.
However, since the sequence of ordered eigenvalues decreases rapidly, statistics in most cases has only a
small effect on the spectral resolution. The dominant effect comes from the width of the response func-
tion. In the literature cutting or damping low eigenvalue is proposed instead of removing low significant
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Fig. 3: Unfolded distributions for different cuts in significance.
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Fig. 4: Distributions unfolded with a Poisson likelihood fit and a curvature penalty.

components, but then the shape of the observed distribution which may favor certain eigenvectors is not
taken into account.

In Fig. 2 the unfolded histograms for different cuts in significance are displayed and compared
to the true distribution (curves). How should we cut? In principle we should choose the cut without
looking at the unfolding results. Cutting contributions that are compatible with zero within their error,
s < 1, produces unacceptable results. We have to find a compromise between loss in information and
smoothing. Retaining between 8 and 11 components seems to be reasonable. The plot labeled E would
be the preferred one, as it does not show excessive fluctuations and at the same time corresponds to a
large p-value.

The regularization leads to a smooth unfolded distribution but, as expected, the nominal diagonal
errors decrease strongly with increasing regularization strength. Because of this dependency, the errors,
which are more or less arbitrary, are unreliable indicators of the precision of the result. We show them,
to highlight the problem.

The situation becomes more reasonable when we turn to a smaller number of bins as illustrated
in the Fig. 3. With 10 bins, which is about the effective number of degrees of freedom, negative bins
disappear. The calculated errors become more reasonable because the correlations are smaller. Here we
could even renounce explicit smoothing and document the errors with a simple error matrix.

The results presented have been obtained with a least square fit (LSF) and the simple matrix
formalism. It would be better to apply a Poisson maximum likelihood fit; negative entries are then
suppressed, but the qualitative features and the conclusions would remain the same. Also a smooth
cutoff of the low eigenvalue contributions would not alter the result by much.
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Fig. 5: x? as a function of the number of iterations. Stopping at 5 iterations corresponds to a p-value of about 0.9.

4.2 Method 2: Poisson maximum likelihood fit with penalty regularization

Here we fit the contents of the true histogram by maximizing the log-likelihood

InL = hlLstat — R
M . N N
In Lstat = Zd’ In Z A,-jej — Z Aijej
=1 J=1 j=1

R= TZ(QHZ‘ — 9i—1 - 9i+1>2

which consists of the statistical term and a regularization term which is related to the local curvature.
The 2 statistic is evaluated for different regularization constants r using Gaussian errors.

Fig. 4 shows some results of this method. Negative entries are excluded but the dependence of
the nominal errors on the regularization strength of course remains. The p-values are indicated. A value
around 90% corresponds to a reasonable smoothing. As in the general case, we do not know the true
distribution, it is difficult to fix the constant r if it cannot be done with a p-value.

Curvature regularization which favors linear distributions is popular, but other penalty functions
can be chosen. For a nearly exponential distribution, deviations from linearity of log 6 could be penalized.
The application of penalty functions smooths the distribution even when the smearing matrix is diagonal.

4.3 Method 3: Iterative unfolding, stopping the iteration

Iterative unfolding has become popular because there exists a simple to use program by D’Agostini.
Iterative unfolding is an old concept [4]. D’ Agostini has re-invented it and interpreted it in the context
of Bayesian statistics [5]. The iteration procedure can however also be viewed as a simple mathematical
algorithm to invert the matrix equation d = Af. The method is explained in the Appendix. It is so simple
that it can be coded in a few lines. The convergence is very fast at the beginning and suddenly slows down
(see Fig. 5). The computation is fast; 10000 iterations were obtained in 1 minute with a standard laptop
computer. They produced results almost indistinguishable from an least square or maximum likelihood
fit (see Fig. 6). Quite good agreement of the result with the data is usually obtained after a few steps. As
with other smoothing methods it is reasonable to fix the regularization strength, e.g. to stop the iteration
with the p-value criterion. To compute the p-value we have to determine the minimal x? either by a
separate fit or by estimating its value from a large number of iterations.

The nominal errors of the unfolded distribution could in principle be obtained by error propa-
gation, but this is extremely tedious as the analytic relation due to the iteration sequence is extremely
complicated. Anyway, the nominal errors are rather useless.
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5 Error assignment to the graphical representation

The fitting methods produce error estimates automatically. For other methods the uncertainties can be
obtained by the usual error propagation, but these nominal errors depend on the strength of the regular-
ization which on the other hand is unrelated to the statistical accuracy of the data. A strongly regularized
distribution may exhibit even smaller diagonal errors than the distribution before the convolution, i.e.
smaller than the square root of the number of entries. This is unacceptable, and misleading (see the fake
bump in the Alice experiment shown in the contribution to this conference by Gross-Oetringhaus) as we
loose information by smearing. We should present errors which are useful in that they indicate whether
functions are compatible with the data or not and do not depend on data manipulations.

A sensible graphical presentation of the unfolding result where the values but not the errors depend
on the regularization is the following [1]: For each unfolded bin j we attribute a relative statistical error
d60;/6; equal to one over the square root of the number of observed events associated to that bin. This is
equal to one over square root of ¢; if there are no acceptance corrections. A horizontal bar indicates the
experimental resolution [1].

6 Summary and recommendations

Experimental results should be published such that 1. the data can be compared to and combined with
those of other experiments in such a way that the combined result exhibits smaller statistical uncertainties
and superior resolution in the smeared variable, 2. theoretical predictions can be tested, 3. all predic-
tions that are compatible with the data are admitted. These requirements can only be satisfied when
the experimental data are published without explicit regularization. When we compare a theory to the
measurement, we should fold the theoretical prediction and compare it to the raw data.

A graphical representation with wide bins, such that oscillations are damped, is recommended.
In any case the number of bins should be less than twice the effective number of degrees of freedom.
If an explicit regularization is applied, we have to be aware that smoothing introduces constraints and
modifies the experimental information. We propose to fix the regularization strength using a p-value
criterion, which guarantees that the regularized distribution is compatible with the observed data. The
errors that are assigned to the unfolded histogram have to be independent of the regularization.

All smoothing approaches that fulfill these requirements are acceptable, however, efficient meth-
ods reduce essentially the fluctuations between adjacent bins. All three approaches studied above in a
simple example produce sensible and very similar results. Regularization with a penalty term is espe-
cially transparent. Iterative unfolding is simple and the smoothing prejudice is included in a flexible way.
The truncation of singular value components is mathematically attractive and singular value decomposi-
tion (SVD) provides insight into the problem of unfolding.
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Appendix: Iterative least square fit

The relation d = A6 can be solved iteratively, provided the response matrix A is positive definite. The
idea behind the iteration algorithm is the following [1]. Starting with a preliminary guess of 6O, the
corresponding prediction for the observed distribution d(*) is computed. It is compared to d and for a

bin 4 the ratio d; / dEO) is formed which ideally should be equal to one. To improve the agreement, all true
(0)

J
corresponds to the following equations: The prediction d(¥) of the iteration k is obtained in a folding step

from the true vector (*); ® “
di” = Z Ay6057 .
J

components are changed in proportion to their contribution A;;60." to dgo) This procedure when iterated

In an unfolding step, the components Aijej(.k) are scaled with c?l / dz(k) and added up into the bin j of the
true distribution from which it originated:

~

(k+1) k) di,
05 =2 Al pol

7

Dividing by the efficiency €; corrects for acceptance losses.Empirically, it has been shown that with
increasing number of iterations, the result converges to the maximum likelihood fit result for Poisson
distributed errors [4].

In D’ Agostini’s Bayesian approach (see, e.g., Bierwagen, these Proceedings), the same iteration
sequence is applied, however, between each iteration the unfolded distribution is smoothed by a polyno-
mial fit. The details of the smoothing step are left to the user. Convergence is implied by the method.
The degree of smoothing depends on the intermediate smoothing algorithm. Furthermore, prior densities
are introduced for the parameters of the multinomial and the Poisson distributions that are used in the
evaluation of the uncertainties. It is not obvious that the priors have a noticeable effect. The reliability of
the error estimates is unclear.
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