CERN Accelerating science

Article
Title Bayesian Analysis Toolkit in Searches
Author(s) Beaujean, Frederik (Munich, Max Planck Inst.) ; Caldwell, Allen (Munich, Max Planck Inst.) ; Kollár, Daniel (CERN) ; Kröninger, Kevin (U. Gottingen (main)) ; Pashapour, Shabnaz (U. Gottingen (main))
Publication Geneva : CERN, 2011
Imprint 2011-01-17
Number of pages 6
In: Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, pp.209-214
DOI 10.5170/CERN-2011-006.209
Subject category Particle Physics - Experiment ; Detectors and Experimental Techniques
Abstract The Bayesian Analysis Toolkit, a software package for data analysis based onBayes' theorem, is introduced. This toolkit takes advantage of Markov ChainMonte Carlo to find the full posterior probability distributions. The tool caneasily be used for parameter estimation, limit setting and error propagation.Model comparison and goodness-of-fit estimation are realized in the packagethrough well-established methods. In addition to a brief description of theBayesian Analysis Toolkit, the use of this tool in searches is described in theexample of Banff Challenge 2a problem 1.
Copyright/License CC-BY-3.0

Corresponding record in: Inspire


 Rekord stworzony 2016-08-02, ostatnia modyfikacja 2017-07-31


Published version from CERN:
Pobierz pełny tekst
PDF