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Abstract
A Bayesian analysis of the probability of a signal in the presence of back-
ground is described. As an example, the method was used to calculate the
sensitivity of the GERDA experiment to neutrinoless double beta decay. In
addition, we discuss the use of consensus priors, the look-elsewhere-effect in
Bayesian analysis and other topics.

1 Introduction

Scientific knowledge, i.e., justified belief, comes from inductive reasoning. Experimental tests allow us
to build our justification for believing in particular models. In the context of the models, frequency dis-
tributions can be produced and probabilities of different outcomes calculated. However, it is impossible
to make a statement on the truth of the model without considering all possible models which could give
similar results, and assigning prior beliefs to the models. Frequentist approaches avoid using priors and
therefore in principle do not allow statements on how strongly we should believe in a particular model.
Statements of belief in a model become maximally subjective - each interpreter of the data is advised
to reach their own conclusions on what to believe [1]. In contrast, in the Bayesian approach the prior
beliefs are explicitly stated so that posterior beliefs can be evaluated. While the posterior beliefs are also
subjective, the reasoning which led to the conclusion is made clear. Given that the goal is to make a
statement on how strongly we believe our models, the Bayesian approach seems to us appropriate.

2 Signal discovery in an event counting setting

Imagine we have a collections of events where we have measured some physical quantity x which can
take on a continuous range of values. We assume that we have a background model, with background
contribution B, for the distribution of the values of x, possibly with nuisance parameters involved, and
we can predict the distribution of x values for some new physics, which could depend on parameters of
interest (e.g., for a Gaussian distribution for signal events, we have some position µ, width parameter σ,
and amplitude S). To proceed, we need our prior belief that the background model accounts completely
for the observations, P0(H1), and the prior belief that there could be new physics contributing to the
observations, P0(H2) = 1−P0(H1). For the models, we also need the prior beliefs in the possible values
of the parameters: e.g., for the ‘new physics’ model P0(µ, S, σ|H2). We then group the observations {x}
in intervals ∆xi and compare the predictions with the observations. Using D to represent the data, we
have for the posterior belief in H2:

P (H2|D) =
P (D|H2)P0(H2)

P (D|H2)P0(H2) + P (D|H1)P0(H1)
(1)

where

P (D|H2) =

∫
P (D|µ, S, σ,B)P0(µ, S, σ|H2)P0(B)dµdSdσdB

P (D|H1) =

∫
P (D|B)P0(B)dB
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and

P (D|µ, S, σ,B) =
∏

i

e−νiνni
i

ni!
(2)

P (D|B) =
∏

i

e−λiλni
i

ni!
(3)

and

λi(B) =

∫

∆xi

fB(x|B)dx (4)

νi(µ,A, σ,B) = λi(B) +

∫

∆xi

fS(x|µ,A, σ)dx (5)

with ni the observed number of events in bin i, λi the expectation for bin i for the background model,
and νi the expectation including the new physics signal given the parameter values.

3 Sensitivity analysis for GERDA

This analysis method was used to estimate the sensitivity of the GERDA experiment to neutrinoless
double beta decay [2]. In the GERDA case, the location and shape of the signal are known (i.e., µ and σ
above are fixed), so that the only physics parameter is the expectation for the number of signal events.

Given the lack of theoretical consensus on the Majorana nature of neutrinos and the cloudy exper-
imental picture, the prior probabilities for H1 and H2 were chosen to be equal, i.e.

P0(H1) = 0.5, (6)

P0(H2) = 0.5 . (7)

The prior probability for the number of expected signal events, assuming H2, was taken flat up to
a maximum value, Smax, consistent with existing limits1. It should be noted that the prior probability
for H1 depends on the maximum allowed signal rate. Smax was chosen so that the probability for the
hypothesis H1 is 50 %, which is a reasonable assumption. The effect of choosing a different prior for the
number of signal events was studied in Ref. [2].

The overall background contribution B was chosen to be Gaussian with mean value µB = B0 and
width σB = B0/2. The prior probabilities for the expected signal and background contributions were
taken as

P0(µ, S, σ|H2) = P0(S|H2) =
1

Smax
, 0 ≤ S ≤ Smax, p0(S) = 0 otherwise, (8)

P0(B) =
e
−

(B−µB)2

2σ2
B

∫∞
0 e

−
(B−µB)2

2σ2
B dB

, B ≥ 0, P0(B) = 0 otherwise . (9)

Ensemble tests were then used to evaluate the sensitivity of the experiment to both signal discovery
and probability limits on the half-life T1/2 for neutrinoless double beta decay. An example data set as
well as the resulting discovery sensitivity are given in Fig. 1.

1Smax was calculated assuming a half-life of T1/2 = 0.5 · 1025 years.
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Fig. 1: Left: an example data set generated with T1/2 = 2 · 1025 yr, a background index of 1 · 10−3/(keV·kg·yr)
and an exposure of 100 kg·yr. Right: the curves indicate the half-life where an experiment would have a 50 %
chance of claiming a discovery as a function of exposure, and for different background indices. Discovery was
defined in [2] as P (H1|D) < 0.0001.

4 Error bars

No error bars are shown in Fig. 1, since error bars on distributions of observed numbers of events are at
best misleading. There is certainly no uncertainty on the number of observed events. The only uncer-
tainty comes when the observed number of events is used to estimate the mean of the underlying Poisson
distribution. There are different ways in which this mean can be extracted, and placing the estimate for
the mean at the number of observed events is in any case not always the best choice. The second problem
arises with the size of the error bar. This is routinely plotted as the square root of the number of events,
taking the Poisson result that the variance is equal to the mean. However, this definition does not lead to
an error bar which contains 68 % probability. The probability range covered varies dramatically for small
numbers of events and is asymmetric around the point. This leads to great confusion when non-experts
analyze data/model agreement ‘by eye’. We would strongly favor ending the practice of putting error
bars on the number of observed events. It is better to give no extra information than to give misleading
information.

5 The Look-Elsewhere Effect (LEE) in Bayesian Analysis

There is no look-elsewhere effect in the GERDA example since the location of the signal is known. In
general, the LEE is suppressed in Bayesian analysis, since a penalty is built into the prior for allowing
a signal to appear in different places during a search. This is demonstrated here for a simple example
of searching for a signal in a 1-D distribution. Assume that the resolution (width of the peak, σ) for the
potential signal is known as well as the amplitude, but we allow a search with the location of the signal
free. Define H1 as the null hypothesis - only known backgrounds are present. H2 is the hypothesis that
in addition to the known backgrounds, there is also a signal. In this case, using µ as the location of the
new physics signal, we have

P (H2|D) =

∫
P (D|H2, µ)P0(H2, µ)dµ∫

P (D|H2, µ)P0(H2, µ)dµ+ P (D|H1)P0(H1)
. (10)

where D represents the data and we assume that the null hypothesis has no free parameters.

Taking a simple example,

P0(H2, µ) = P0(H2)P0(µ|H2)
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P0(H2) = P0(H1) = 1/2

our equation (10) becomes

P (H2|D) =

∫
P (D|H2, µ)P0(µ)dµ∫

P (D|H2, µ)P0(µ)dµ+ P (D|H1)
. (11)

Now assume we can use a flat prior for µ, given by

P0(µ) =
1

Lµ

where Lµ is the range over which the parameter can vary. Our equation further simplifies to

P (H2|D) =

∫
P (D|H2, µ)dµ∫

P (D|H2, µ)dµ+ LµP (D|H1)
(12)

The integral can be written as
∫
P (D|H2, µ)dµ = P (D|H2, µ

∗)δµ

where µ∗ is the parameter value which maximizes the probability of the data, and δµ is an effective width
of the distribution P (D|H2, µ). We expect δµ ≈

√
2πσ. Using these results, we find

P (H2|D) =
P (D|H2, µ

∗)δµ

P (D|H2, µ∗)δµ+ LµP (D|H1)
.

The probability P (D|H2, µ
∗) tends to grow relative to P (D|H1) as we allow searches over bigger ranges

(new data sets). However, there is a penalty δµ/Lµ for allowing the signal to appear anywhere in the
spectrum, and this will shrink as Lµ is expanded, compensating for the larger P (D|H2, µ

∗). Since the
search range Lµ is presumably much greater than the resolution σ, the penalty factor can be quite small.
Every additional parameter (dimension in which we search) will bring such a reduction factor.

6 p-values and incomplete sets of models

A full Bayesian analysis is only possible if we have a complete set of models. In the GERDA example,
we performed a kind of either/or (background model or background+specific signal). We are often in a
situation where we are not sure if we have found a complete (enough) set of models. What do we do
if we want to include also other possibilities (other types of signals could be present, the background
estimate could be faulty) ? We may not even know whether we should include other possibilities. A
hierarchical structure can be set up as was done for the BAT solution to the BANFF challenge [3]. The
logic for searching for new physics in this case is shown diagrammatically in Fig. 2. The logic is based
on using p-values, and is implicitly a Bayesian argument (see [4]). It is assumed that incorrect models
have p-value distributions sharply peaked at 0, so that a small p-value gives reason to believe that we
have found an incorrect model. Without specifying prior beliefs, the argumentation remains vague.

7 Consensus priors

Our degree-of-belief that we have found new physics depends on both the data and the prior belief.
The discussion in the physics community on how many sigmas are needed to define a discovery clearly
reflects the need for the definition of consensus priors. Different signals will clearly have different priors.
E.g., it would come as no great surprise to find the Higgs particle with a mass around 120 GeV. A search
for the Higgs in this mass range would start with a sizeable prior belief. On the other hand, signals for
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