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Abstract

We construct renormalizable Standard Model extensions, valid up to

the Planck scale, that give a composite Higgs from a new fundamental

strong force acting on fermions and scalars. Yukawa interactions of

these particles with Standard Model fermions realize the partial com-

positeness scenario. Under certain assumptions on the dynamics of

the scalars, successful models exist because gauge quantum numbers

of Standard Model fermions admit a minimal enough ‘square root’.

Furthermore, right-handed SM fermions have an SU(2)R-like struc-

ture, yielding a custodially-protected composite Higgs. Baryon and

lepton numbers arise accidentally. Standard Model fermions acquire

mass at tree level, while the Higgs potential and flavor violations are

generated by quantum corrections. We further discuss accidental sym-

metries and other dynamical features stemming from the new strongly

interacting scalars. If the same phenomenology can be obtained from

models without our elementary scalars, they would reappear as com-

posite states.
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1 Introduction

Is the Higgs boson elementary or composite? It is often argued that elementary scalars cannot

be light in the absence of a mechanism that protects their masses from quantum corrections.

A time-honoured solution is to make scalars emerge from new composite dynamics featuring

fermions. A pseudo-Nambu-Goldstone boson Higgs with a compositeness scale below a TeV

is therefore considered natural. However a consistent TeV-scale composite dynamics able to

reproduce the successes of the Standard Model (SM) Higgs in the flavor sector resulted in an

unresolved challenge.

This situation prompted theorists to focus on effective field theories that supposedly cap-

ture the low energy manifestation of some unknown underlying strongly-coupled dynamics,

especially in the flavor sector. As it is well known from pion physics, accidental symmetries of
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the underlying strong dynamics provide important insight on the low energy effective theory.

Composite Higgs effective Lagrangians postulate ad hoc symmetries and features that allow

to be consistent with data, that are compatible with the predictions of an elementary Higgs.

However cosettology (assumptions about global symmetries) and resulting effective field theories

do not guarantee the existence of an underlying fundamental composite dynamics.

Nevertheless a relevant composite paradigm is currently being under intensive study and

it is based on three main hypotheses. First, the Higgs is part of a weak doublet of pseudo-

Goldstone bosons [1–3]. The original idea has been investigated via effective descriptions more

recently in [4, 5].1 Second, extra custodial symmetries are added to ameliorate compatibility

with experimental bounds (see [8] for a review). Third, fermion masses are reproduced by

postulating partial compositeness [9] — namely that each SM fermion f acquires mass by

mixing with an heavier composite fermion (see also [10]).

According to the partial compositeness prescription, each SM fermion f couples linearly to

a composite fermionic operator B through an interaction of the form f B. Large anomalous

dimensions2 of the operator B (typically composed by several fermionic fields) are then invoked

such that the operator fB is either super-renormalizable or marginal. However recent studies

of the anomalous dimensions of conformal baryon operators in SU(3) gauge theories suggest

that it is hard to achieve the required very large anomalous dimensions in purely fermionic

theories [11].

One might consider highly involved models or hope that behind these attempts there

might exist yet unknown strongly coupled dynamics possibly stemming from warped extra-

dimensional scenarios or from exotic CFTs that do not have a four dimensional quantum field

theoretical description, giving rise to scalar operators OS with dimension dimOS ' 1 (in order

to reproduce data), and with dimO2
S larger than 4 (in order to avoid naturalness issues) [12].

General considerations exclude this possibility [13, 14]. The simplest option is then that OS is

just an elementary scalar S. Any theory that mimics an elementary scalar is presumably more

simply described by an explicit elementary scalar.

Because of the challenges above, we investigate here extensions of the SM featuring a com-

posite Higgs sector made by a new fundamental techni-strong theory that besides featuring

techni-fermions (F) also features techni-scalars (S)3. We introduce the techni-scalars primarily

to construct composite techni-baryons B = FS and associate linear interactions with the SM

fermions in order to successfully implement the partial compositeness paradigm. In fact, by

construction the new composite techni-baryons have mass dimensions close to the minimum

required of 5/2. Because any purely fermionic extension [20–23] is required to have composite

baryons with dimensions close to 5/2, these baryons would presumably behave as if they were

1 De facto, effective descriptions cannot discern a composite realization from a more economical elementary
Goldstone Higgs realization [6, 7].

2Anomalous dimensions are physical quantities only in presence of (near) conformal dynamics.
3Our construction differs from bosonic technicolor [15, 16] where a TC-singlet elementary Higgs is added to

the composite TC-fermion dynamics. A TC-colored scalar was introduced for the top quark in eq. (2.6) of [17],
but in the context of TC dynamics that breaks the SM, while we consider a composite Higgs and fermion partial
compositeness. One can even try to naturalize these theories by supersymmetrizing them [18], or simply take
them at the face value of alternative models of electroweak symmetry breaking [19].
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Figure 1: We here denote as f the SM fermions, as F the TC-fermions and as S the TC-

scalars. The diagram on the left contributes to F4 operators, which become the Higgs potential,

given that H ∼ FF (extra TC-penguin diagrams are not shown). The tree-level diagram in the

middle leads to F2f 2 operators, which become the SM ffH Yukawa couplings. The diagram

on the right contributes to f 4 operators, which give corrections to flavor physics. Each diagram

gets dressed by strong TC interactions.

made by a fermion and a composite scalar similar to ours (see also [24] for a supersymmetric

realization).

The technicolor group is indicated by GTC, which can be either SU(N), SO(N) or Sp(N)

with vectorial techni-fermions and techni-scalars. For historical reasons we will use the techni-

color (TC) terminology for the underlying composite dynamics.

We will choose the TC-particle content such that it automatically leads to a custodial sym-

metry, as well as accidental conservation of baryon and lepton number, like in the SM. Partial

compositeness is realized provided that the gauge quantum numbers allow each fundamental

SM fermion to have a fundamental Yukawa coupling to at least one pair of TC particles:

(each SM fermion)× (some TC scalar)× (some TC fermion). (1)

Figure 1 illustrates how these Yukawa couplings lead to SM fermions masses at tree level, as

well as to an Higgs potential and to new flavor violations at loop level. TC-fermions and

TC-scalars acquire specific patterns of accidental global symmetries, spontaneously broken by

the TC dynamics: the Higgs can be identified with a light techni-pion (TCπ) made either

of two TC-fermions or of two TC-scalars. We further constrain the SM extensions to avoid

sub-Planckian Landau poles and require the TC model to lead to chiral symmetry breaking.

The key to the success is to find a TC gauge group and associated TC-fermions and TC-

scalars with appropriate SM quantum numbers. In practice this requires satisfying eq. (1)

by finding a minimal ‘square root’ of SM fermions gauge quantum numbers. We will show

that it is possible to construct successful composite Higgs theories and associated partially

composite sectors. Despite the presence of TC-scalars, the Higgs mass is calculable if H is a

pseudo-Goldstone boson made of two TC-fermions.

In section 2 we discuss general issues about the strong dynamics of scalars, which has not

been studied outside the special case of supersymmetry. We present the separate pieces that

must be combined together in succesfull concrete models, which are presented in section 3 (the
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eager phenomenologist might want to jump here). In section 4 we compute the resulting Higgs

physics. We present our conclusions in section 5.

2 General preliminary considerations

We consider a theory with gauge group GTC ⊗GSM and vectorial TC-fermions and TC-scalars

in the fundamental of GTC with UV Lagrangian

L = L H=0
SM + Lkin + LY − V , (2)

where Lkin contains kinetic, gauge interactions, and possible masses mF and mS for the TC

particles.

We use a compact notation for the particle spectrum quantum numbers under the SM gauge

group GSM = SU(3)c ⊗ SU(2)L ⊗ U(1)Y that we exemplify via the SM fermion fields:

L = (1, 2)−1/2, E = (1, 1)1, Q = (3, 2)1/6, U = (3̄, 1)−2/3, D = (3̄, 1)1/3, N = (1, 1)0 . (3)

We define as Rc the representation conjugated to R, e.g. U c = (3, 1)2/3.

We indicate Weyl TC-fermions by F and generically complex TC-scalars by S. They will

decompose under GSM as:

F = FL⊕FE ⊕FQ⊕FU ⊕FD ⊕FN ⊕ · · · , S = SL⊕SE ⊕SQ⊕SU ⊕SD ⊕SN ⊕ · · · (4)

with, for example,

FL = (1, 2)−1/2 , SQ = (3, 2)1/6 under GSM. (5)

Clearly each F and S field carries a further gauge index under GTC that we omitted.

In the following we will consider for GTC either SU(N), SO(N) or Sp(N) gauge groups

and we will assume TC-fermions and TC-scalars to live in the fundamental of these groups,

which minimize the contributions to gauge β functions, as needed for successful models. We

will consider TC-fermions vector-like with respect to GTC (in the SU(N)TC case for each TC-

fermion F in the fundamental there will be also F c in the anti-fundamental) and to GSM.

2.1 Accidental global symmetries

We now classify the global symmetries of a given TC theory for different choices of GTC, once

the SM interactions are switched off.

• GTC = SU(N)TC for N > 2 has a complex fundamental. The vectorial TC-fermions F
can be organized in terms of Dirac spinors ΨF = (F , F̄ c)T and the kinetic term can be

written as

Lkin = −1

4
G2µν + ΨF(i /D −mF)ΨF + (|DµS|2 −m2

S |S|2) , (6)
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where the sum over color and flavor indices is understood. Ignoring the SM gauge in-

teractions, the fermionic kinetic term has a ‘TC flavor’ non-anomalous global symmetry

SU(NF )L ⊗ SU(NF )R ⊗ U(1)V , where NF is the dimension of the SM representation to

which F belongs to, that for F = FE ⊕FL + · · · is NF = dimL+ dimE + · · · .
In the scalar sector, the kinetic term of TC scalars similarly has a SU(NS)⊗ U(1)S global

symmetry where NS counts the number of complex scalars in the fundamental of TC, that

for S = SE ⊕ SL + · · · is NS = dimL+ dimE + · · · .

• GTC = SO(N)TC has a vectorial real representation4 and therefore Weyl spinors F in

the fundamental of TC must lie in a real representation of GSM. The global symmetry is

SU(NF ) with NF the dimension of the real SM representation to which F belongs to.

In the scalar sector, we define NS as the number of real copies of N : for example NS = 6

for a TC-scalar in the fundamental 3 of SU(3)c and NS = 3 for a TC-scalar in the

3 of SU(2)L. The scalar kinetic term (DµSi)T (DµS i) has accidental global symmetry

SO(NS)⊗ Z2.

• GTC = Sp(N)TC with even N is defined as the group of matrices that leave invariant

the antisymmetric tensor γ = ε ⊗ IN/2 where ε = iσ2 is the 2-dimensional antisym-

metric tensor. The fundamental of Sp(N) is pseudo-real (see appendix A). Again, we

consider vectorial TC-fermions F constructing vectorial SM representations, with NF

Weyl fermions in the fundamental of Sp(N)TC. NF counts the dimension of the real SM

representation of F and it must be even to avoid the Witten topological anomaly. As

for the orthogonal TC gauge group the fermion kinetic term has the non-abelian global

symmetry SU(NF ).

In the scalar sector, the kinetic term of NS complex scalars in the N of Sp(N)TC has

accidental global symmetry Sp(2NS), see appendix A. For example, a scalar in the (3, N)

of SU(3)c ⊗ Sp(N)TC has NS = 3 and global symmetry Sp(6).

The global symmetries of the kinetic terms are summarized in table 1.5

Group theory allows to construct renormalizable Yukawa operators of the form of eq. (1).

(For N = 3 Yukawa interactions among 3 TC particles are also possible). These are the

operators leading naturally to the partial compositeness scenario. In fact when the techni-

force is strong enough it will create the fermionic bound state B = FS that already has mass

dimension 5/2 at the engineering level. Also, we do not need an extra mechanism or additional

force to construct the overall fB operator. Furthermore, since any other construction for

partial compositeness will have to yield a composite fermion with at most mass dimension

4Spinorial matter representations of SO(N) contribute less to β functions than fundamental representations
only for N ≤ 6; these are already taken into account since SO(6) ∼ SU(4), SO(5) ∼ Sp(4), SO(4) ∼ SU(2)2,
SO(3) ∼ SU(2) ∼ Sp(2). We explore fundamentals of SO(N) which do not correspond to fundamentals of the
equivalent groups.

5Supersymmetric models predict extra Yukawa and quartic couplings of order gTC, such a unique global
symmetry acts on fermions and scalars.
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Fields Gauge Global symmetry of fermions Global, scalars

SU(N)TC SU(NF )L SU(NF )R U(1)V SU(NS) U(1)S
F N NF 1 +1 1 0

Fc N̄ 1 N̄F −1 1 0

S N 1 1 0 NS 1

SO(N)TC SU(NF ) O(NS)

F N NF 1

S N 1 NS

Sp(N)TC SU(NF ) Sp(2NS)

F N NF 1

S N 1 2NS

Table 1: Gauge and local non anomalous symmetries of generic models with gauge group

GTC = SU(N)TC or SO(N)TC or Sp(N)TC and NF (NS) TC-fermions (TC-scalars) in the N

representation; for SU(N)TC and Sp(N)TC we count complex scalars, for SO(N)TC we count

real scalars.

5/2 we expect that at the effective description level it will reduce to our construction. The

simplest example is a TC-baryon emerging from an SU(3)TC gauge theory with fundamental

TC-fermions. In this case, at the fundamental level, the TC-baryon will be made by three

TC-fermions that can always be represented as a bound state of one TC-fermion and a TC-

scalar with the quantum numbers of di-techniquarks. It is a simple matter to show that this

intermediate dynamical description can be generalized to the case in which a TC-baryon is

made by TC-fermions in multiple TC representations.6 Of course, in the purely fermionic case,

one must argue for the existence of near conformal non-supersymmetric quantum field theories

yielding baryon operators with unplausibily large [11] anomalous dimensions.

2.2 Quartic couplings among TC-scalars

TC-scalars develop self-interactions generated by RGE effects via, for example, their gauge

interactions. These effects are encoded in β functions βλ = dλ/d lnE which at one loop assume

the generic form (4π)2βλ ∼ +λ2+g4TC−λg2TC. Here we indicated the generic scalar self-couplings

by λ and the TC gauge coupling with gTC. Running down to low energy, when the TC gauge

coupling start becoming strong, quartics become of order ±g2TC, where the sign depends on

the specific model. This means that, if quartics remain positive up to the confinement scale,

they also contribute to the nonperturbative dynamics of the theory. In this case, a simplifying

assumption is to use flavor universal quartics in order not to spoil the symmetries of the scalar

sector listed in Table 1. If, on the other hand, quartics become negative at some energy scale,

6If TC-scalars result from composite fermionic dynamics the intermediate description must abide a number
of consistent conditions, known as compositeness conditions, that have been properly re-discussed and extended
in [25] for a general class of gauge-Yukawa theories
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Gauge group Fermion bilinear condensate Intact scalar symmetries

SU(N)TC SU(NF )L ⊗ SU(NF )R → SU(NF ) U(NS)

SO(N)TC SU(NF )→ SO(NF ) O(NS)

Sp(N)TC SU(NF )→ Sp(NF ) Sp(2NS)

Table 2: Pattern of chiral symmetry breaking induced by fermion condensates FF c for

SU(N)TC and FF for SO(N)TC and Sp(N)TC. An explicit positive squared mass term for

the scalars ensures that the scalar symmetries remain intact.

the Coleman-Weinberg mechanism can take place.7

To estimate the effects on the quartic self-couplings we consider NS scalars in the fundamen-

tal of SU(N)TC, such that TC-scalars S form a complex N×NS matrix. At very high energies,

because the couplings are assumed to be small, we can ignore masses and cubic interactions, and

we write the following quartic potential including only the SU(NS) flavor-symmetric operators

V = λS Tr(SS†)2 + λ′S Tr(SS†SS†). (7)

Such potential is definite positive for λS + rλ′S > 0 where r = Tr(SS†SS†)/Tr(SS†)2 ranges

between 1/min(N,NS) and 1. The relevant one-loop RGEs are

(4π)2βgTC
= bg3TC (8a)

(4π)2βλS = 4(NNS + 4)λ2S + 12λ′2S + (8b)

+λS

[
8(N +NS)λ′S −

6(N2 − 1)

N
g2TC

]
+

3(N2 + 2)

4N2
g4TC,

(4π)2βλ′S = 4(N +NS)λ′2S + λ′S

[
24λS −

6(N2 − 1)

N
g2TC

]
+

3(N2 − 4)

4N
g4TC. (8c)

The left panel of fig. 2 shows a sample numerical solution in the model that will be proposed in

section 3.1: quartic couplings can remain numerically small up to the Planck scale. The right

panel shows the pseudo-fixed point structure of a different model that admits two pseudo-fixed

points (namely, λ/g2TC flow to constant values) with positive values of the quartics, which can

flow from one point to the other. The pseudo-fixed-point conditions can be solved analytically

in general [26] and acquire a simple form in the large N limit, where the equations for the

two quartics basically decouple, showing that pseudo-fixed points λ ∼ g2TC ∼ 1/N exist for

NS < 2N + b+ b2/12N .

The overall conclusion is that techni-quartic interactions can be well defined till the Planck

scale (either with or without interacting pseudo-fixed points) and furthermore that there are

theories in which the low energy physics is driven by the techni-gauge interactions becoming

strong.

7Although this is not the main focus of this work it is worth mentioning that, if a Coleman-Weinberg
phenomenon occurs, one can obtain an elementary Goldstone Higgs, as discussed in appendix B.
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Figure 2: Left: numerical solution to the RGE in the model of section 3.1. Right: pseudo-

fixed point structure of a model with 2 pseudo-fixed points (shown as dots); the scalar potential

becomes unstable when quartics flow into the shaded region.

2.3 Dynamical symmetry breaking

The analysis above allows us to assume the new strong interaction to be asymptotically free and

further require that the force is sufficiently strong to confine the fundamental degrees of freedom

into techni-hadrons at a scale ΛTC>∼ TeV. Asymptotic freedom is realized when the first order

coefficient of the gauge β function is negative. We fill further impose stronger conditions under

which it is reasonable to expect that the underlying dynamics does not display large distance

conformality [27,28]. We will limit here to investigate condensation phenomena induced by the

techni-strong force that leave intact the TC gauge interactions.8

Fermion condensates

We start by reviewing the pattern of chiral symmetry breaking expected to occur when fermion-

bilinear Lorentz preserving condensates form.

In asymptotically free theories with only vector-like fermions one can show [30] that the

associated condensates preserve the gauge group (e.g. only gauge-singlets 〈ψ̄LψR〉 can form in

SU(N)TC theories). Furthermore, it is often argued that non-vanishing fermion condensates

orient in such a way to preserve as much as possible of the original global symmetry provided

the massless spectrum is compatible with the t’Hooft anomaly conditions and other relevant

8We refrain from using very early results [29] that would lead to too naive estimates of certain quantities in
theories with TC-scalars.
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constraints. The pattern of symmetry breaking implied by such arguments is summarized in

table 2. This means that for GTC = SU(N)TC the TCπ are made of FF c states (with F a

Dirac fermion) and for SO(N)TC and Sp(N)TC are made of FF (with F a Weyl fermion).

Scalar condensates

In the presence of scalars, various dynamical phases can occur. A detailed dynamical study

goes beyond the scope of this work, where we just describe the possible patterns of chiral

symmetry breaking in the scalar sector stemming from scalar bilinears. The fact that both scalar

and fermion bilinears form is partially supported by the intuition gained via the naive most

attractive channels approach (MAC) [31] that here we take merely as guidance. Furthermore,

because of the anti-commutative nature of composite operators F̄S, they cannot acquire a

vacuum expectation value and therefore Lorentz invariance is preserved.

An interesting class of models is the one in which the fermions condense and break their

global symmetries while the scalars do not break neither their global symmetries nor the gauge

interactions. This can be achieved by endowing the scalars with a positive mass squared

respecting the gauge and scalar global symmetries. In this case the symmetries of the theory

are presented in table 2. For the scalars to still be actively participating in the TC dynamics we

require the explicit common scalar masses to be of the order or smaller than the TC dynamical

scale, mS <∼ΛTC.

Depending on the mass squared term and the strong dynamics one could also have partial

spontaneous symmetry breaking of some of their global symmetries and Higgsing of gauge

interactions. One of these possibilities will be summarized in table 5. Alternatively, scalars

could break their global symmetries while still leaving confinement intact. Scalar condensates

proportional to the unity matrix in flavor space do not explicitly break the global accidental

symmetry in the scalar sector. This breaking arises if scalars develop flavor non-universal

condensates. For example, TC-scalars with the quantum numbers of L and N and a 〈SNS∗N〉
condensate would give rise to the pattern of global symmetry breaking U(3) → U(2) leading

to a Goldstone boson SLS∗N with the quantum numbers of a Higgs doublet plus a singlet.

Naive conformal window

If the number of matter fields of the theory is sufficiently large, and in absence of a Higgsing

phenomenon, the TC dynamics can develop an infrared interacting fixed point. In this scenario

no dynamical scale forms at low energies, before coupling the theory to the SM. Since we want

the fermions to condense, we must lie outside the conformal window. We provide a crude

estimate of the ‘safe’ region of number of fermions and scalars as a function of the number of

TC (N) where we expect dynamical condensation to occur.

The one loop β function for gTC is:

β
(1)
TC =

g3TC

(4π)2

[
−11

3
C2(Adj) +

2

3
T (F )m(F ) +

1

3
T (S)m(S)

]
, (9)

10



where F and S denote the Weyl fermion and complex scalar representations respectively and

m(F ), m(S) their multiplicity.9 In the SU(N)TC case m(F ) = 2NF and m(S) = NS, for

SO(N)TC we have m(F ) = NF and m(S) = NS/2, while for Sp(N)TC, m(F ) = NF and

m(S) = NS with NF and NS defined in section 2.1 for each choice of GTC.

We simply assume that condensates are formed if the first coefficient of the full beta function

β
(1)
TC, in modulus, is larger than the third of the modulus of the first coefficient of the gauge

beta function, i.e. β
(1)
TC
<∼

1
3
β
(1)
TC|gauge. This is intuitively reasonable since matter screens the

confining gauge interactions and the resulting naive condition is roughly compatible with earlier

estimates [27, 28, 32–34]. Considering TC-fermions and TC-scalars in the fundamental of the

gauge group we obtain the following conditions:

G C2(Adj) T (F ) = T (S) Condensates form if

SU(N)TC N 1
2

N >∼
3(4NF +NS)

44

SO(N)TC N − 2 1 N >∼
3(4NF +NS)

44
+ 2

Sp(N)TC
1
2
(N + 2) 1

2
N >∼

3(2NF +NS)

22
− 2

(10)

To clarify the counting of fermions and scalars, we consider for example a TC-fermion and a

TC-scalar in the fundamental of the TC group and in the 2−1/2 of SU(2)L ⊗ U(1)Y , if the TC

group is SU(N)TC we have NF = NS = 2, if it is SO(N)TC we have NF = NS = 4 and if it is

Sp(N)TC we have NF = 2NS = 4.

2.4 Custodial symmetry

The T parameter agrees with SM predictions and gives a strong bound on the |H†DµH|2
effective operator which can arise in models where H is composite. The typical correction is of

order T̂ ∼ v2/f 2
TC such that the experimental bound |T̂ |<∼ 2×10−3 would imply fTC>∼ 5 TeV and

a correspondingly large unnatural correction to the Higgs mass. This unseen deviation from the

SM is much suppressed if the Higgs sector respects a ‘custodial’ symmetry SU(2)L⊗ SU(2)R →
SU(2)c [35]. In fundamental models such symmetry must be a consequence of the TC-fermion

content, arising as an accidental global symmetry. Below we list the simplest possibilities that

lead to a custodial symmetry. Considering first the case in which the Higgs is a TCπ made of

two TC-fermions:

1. The most minimal model is obtained considering GTC = Sp(N) with TC-fermions F =

20⊕11/2⊕1−1/2 under SU(2)L⊗ U(1)Y .10 If their mass differences are much smaller than

ΛTC, the TC dynamics respects a global symmetry SU(4) broken to Sp(4), leading to

TCπ in a (2, 2)⊕ (1, 1) of SU(2)L⊗ SU(2)R, among which we can identify the composite

Higgs doublet. In general, whenever there is one Higgs doublet, the custodial symmetry

9We adopt the common notation T a
RT

a
R = C2(R)I and Tr[T a

RT
b
R] = T (R)δab with TR the generators of the R

representation.
10These TC-fermions are not fragments of any SU(5) representation; we will later show that they allow to

write all needed Yukawa couplings.
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is ensured when the unbroken global symmetry group contains a subgroup SO(4) ⊃
SU(2)L ⊗ SU(2)R. Lattice simulations [36] find that the pattern of chiral symmetry

breaking envisioned above is indeed achieved for the minimal SU(2) ∼ Sp(2) case.

2. Another minimal possibility arises from SO(N)TC with TC-fermions F = FL⊕FLc⊕FN .

If their mass differences are much smaller than ΛTC, dynamics respects a global symmetry

SU(5) spontaneously broken to SO(5), delivering TCπ in the (1, 1) ⊕ (2, 2) ⊕ (3, 3) of

SU(2)L ⊗ SU(2)R. One must check that the extra scalars, such as the triplet in FLFLc ,

acquire positive squared masses and have no vev.

3. Finally, SU(N)TC with N ≥ 3 and TC-fermions F = FL ⊕ FEc ⊕ FN respects a global

symmetry SU(4)L⊗ SU(4)R spontaneously broken to SU(4)V . If the mass difference be-

tween FEc , FN is much smaller than ΛTC, TC-strong dynamics respects a global custodial

SU(2)L ⊗ SU(2)R symmetry, under which the TCπ in the adjoint of SU(4)V transform

as 2 × (2, 2) ⊕ (1, 1) ⊕ (3, 1) ⊕ (1, 3). Unlike in the previous cases, one has a complex

bidoublet of Higgses: in the presence of two Higgs doublets, a generic minimum of the

potential breaks the electro-weak and the custodial symmetry. The vacuum expectation

values of the two Higgses must be aligned. A generic potential can have appropriate

minima [37]; however special potentials (such as those arising for TCπ) can need an extra

discrete symmetry in order to obtain the desired alignement [38]. One must check that

the extra scalars, such as the triplet in FLF cL, acquire positive squared masses, and have

no vacuum expectation values.

We next consider the case where the Higgs is a TCπ made of two TC-scalars, recalling that

they can have the accidental global symmetry listed in table 2, and that its breaking pattern

is model dependent. We assume that scalar condensates preserve GTC and break the global

symmetry as follows:

• SU(N)TC with TC-scalars S = SL⊕SEc⊕SN respects a global SU(4) symmetry. A GSM-

preserving condensate 〈S∗S〉 = f 2I + f ′2 diag(0, 0, 1, 1) would break it into SU(2)L ⊗
SU(2)R, leading to two custodially protected Higgs doublets. The TCπ decompose as

2× (2, 2)⊕ (1, 1) under the SU(2)L ⊗ SU(2)R unbroken symmetry.

• SO(N)TC with TC-scalars S = SL ⊕ SN respects a global SO(5) symmetry. The most

generic GSM-preserving condensate 〈SS〉 = f 2I + f ′2 diag(0, 0, 0, 0, 1) would break it into

SO(4), leading to one custodially protected Higgs doublet.

• Sp(N)TC with TC-scalars S = SL ⊕ SN respects a global Sp(6) symmetry. The GSM-

preserving condensate 〈SS〉 = ε⊗ diag(f 2, f 2, f 2 + f ′2) breaks Sp(6)→ Sp(4)⊗ Sp(2),

leading to 8 TCπ that decompose under SU(2)L ⊗ SU(2)R as 2 × (2, 2), giving two

custodially protected Higgs doublets.

Custodial symmetry for Z → bb̄

In order to reproduce the large top Yukawa coupling, the 3rd-generation Q = (tL, bL) must be

significantly mixed with composite fermions B. This can give gauge interactions that deviate
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from those of an elementary fermion. Thereby a correction of order δgbL ∼ v2/Λ2
TC to the

ZbLb̄L coupling would imply ΛTC>∼ 5 TeV. This bound is less severe than the one from the

T parameter, but it is serious enough that various authors have discussed how to alleviate it

via effective field theories with extra custodial symmetries [39]. One such example needs a

left-right symmetry that exchanges SU(2)L with SU(2)R and that bL respects the condition

TL = TR and T 3
L = T 3

R under the custodial group [39]. This can be realized if the composite

spectrum in the top sector is LR-symmetric and if the SM quark doublet Q = (tL, bL) couples

with a composite quark in a (2, 2)2/3 of SU(2)L ⊗ SU(2)R ⊗ U(1)X where Y = T 3
R + X. The

embedding of bL into such a representation satisfies the condition above.

In the fundamental theory, this protection mechanism occurs automatically in the SO(N)TC

model described above, with TC-fermions F = FL ⊕ FLc ⊕ FN . In fact, if the mass difference

between FL and FLc is much smaller than ΛTC they form a left-right-symmetric bidoublet.

Adding a TC-scalar SUc allows to couple the SM quarks Q and U to the TC-particles, obtaining

the top Yukawa couplings. Then, the fermionic bound states B = FS contain an accidentally

degenerate pair of composite fermions SUcFL = (3, 2)1/6 and SUcFLc = (3, 2)7/6, where we

showed the SM gauge quantum numbers. By mixing with them, Q keeps its SM value of the

Zbb̄ coupling, up to higher order corrections. A model will be discussed in section 3.5. In the

SU(N)TC and Sp(N)TC cases such a mechanism would require a more involved construction.

3 Successful models

Having discussed separately the main ingredients, we now study if concrete models exist that

realize simultaneously all the 4 following conditions:

1. The new strong gauge interaction is asymptotically free and generates condensates. For

a given content of TC-particles, this implies an approximated lower bound on N , see

eq. (10).

2. All couplings can be extrapolated up to the Planck scale without hitting Landau poles.

For the SM gauge couplings this implies that their one-loop β function coefficients bi
defined by dα−1i /d logE = −bi/2π + · · · must satisfy the conditions

b3 . 1.9 , b2 . 5.3 , b1 . 10 (11)

having assumed ΛTC ∼ TeV and written b1 in SU(5)GUT normalization (equivalently

bY = 5
3
b1 . 16.6). For a given TC-particle content, these conditions imply an upper

bound on N .

The above two requirements are compatible if the TC-particle content is small enough. However,

the third condition requires a large enough TC-particle content.

3. Each generation of SM fermion L,D,U,Q,E must acquire mass. In effective scenarios, one

requires that each SM fermion mixes with a composite state; in our models this translates

into Yukawa couplings involving a SM fermion, a TC-scalar and a TC-fermion. But this
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is not enough: it can still happen that some masses are either forbidden for symmetry

reasons and/or that operators that break baryon and lepton number are generated.11

The above conditions eliminate the most naive models12 and require us to devise an economical

enough set of TC-particles with the same accidental U(1)B,L symmetries of the SM. Quarks with

equal baryon number and leptons with equal lepton number can be combined in right-handed

doublets QR = {U,D} and LR = {E,N}, where N is an optional right-handed neutrino. The

Yukawa couplings must have the generic form

LY ∼ (QFS∗q +QRF cSq) + (LFS∗` + LRF cS`) (12)

such that the (so far unspecified) TC-particles F ,Sq,` mediate all SM Yukawa couplings. This

can be more easily seen in the artificial limit where the TC-scalars S`,q are so heavy that they

can be integrated out at tree level as in fig. 1, giving rise to 4-fermions operators LLRFF c +

QQRFF c. A similar structure arises if TC-scalars are below the confinement scale. The TC-

fermion bilinears necessarily have the quantum numbers of a Higgs doublet, and do not contain

any lepto-quark.

The fact that an SU(2)R structure automatically emerges is beneficial for the last condition.

4. The model must be compatible with experimental bounds. LHC bounds force the new

particles to be heavier than about ΛTC>∼ 1 TeV. Precision data (mostly the T parameter

and ZbLb̄L) imply the stronger bound ΛTC>∼ 5 TeV, corresponding to a large fine-tuning

FT>∼ 100 in the Higgs mass. One can follow different strategies, and it is not clear which

one is preferable:

4a. Accept a large fine-tuning.

4b. Build ad-hoc models aiming at suppressing the unnaturally large quantum correc-

tions to the Higgs mass.

4c. Conceive models able to suppress corrections to T and ZbLb̄L, such that ΛTC>∼ 1 TeV

corresponding to FT>∼ 10, becomes allowed. This can be realized through custodial

symmetries that typically need a special TC-particle content.

Figure 3 shows the most general ‘economical’ choice of quantum numbers: in the left diagram

we assume that Q couples to a TC-fermion weak doublet F2 (with generic hypercharge Y ) and

to a TC-scalar color triplet S3. Then U and D must couple to S3 and to TC-fermion singlets

F1. In the middle diagram, we next assume that L couples to the same F2 and to a new

TC-scalar singlet S1; then E and N have hypercharges such that they can couple to the F1

11An example of an unfortunate model plagued by both problems is best described in SU(5)GUT language:
the SM fermions are 5̄ ⊕ 10, the TC-particles are F5̄ ⊕ F̄1 and S5, the Yukawas are 5̄Fc

1S5 + 10F5̄S∗5 . No
up quark mass is generated. Baryon number is violated because, like in any model that employs full SU(5)
representations, Q and U are both contained in the 10, but have opposite baryon number.

12For example those with a TC-fermion for each SM fermion and TC-scalars with the same SM gauge quantum
numbers as the SM Higgs doublet, or of a neutral singlet.
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Figure 3: Most general ‘economical’ choice of quantum numbers. The pedices in every field

denote the hypercharge and Y is a free constant. 3 denotes a color triplet, 2 a weak doublet and

1 a singlet. Thick lines denote TC-particles; the presence of techni-strong interaction among

them is understood.

singlets previously introduced. If Y = ±1/2, all TC-particles lie in SU(5)GUT fragments, giving

rise to the models described in sections 3.1 and 3.2. The minimal choice Y = 0 gives the model

in section 3.3.

Alternatively, a less minimal model is obtained mediating lepton masses as described in

the right diagram (rather than as in the middle diagram): E is coupled to F2 through a scalar

doublet S2; then L can be coupled to one of the TC-fermion singlets F1. Right-handed neutrinos

N remain uncoupled. The model is described in section 3.4 for Y = −1/2.

3.1 Model with SU(5)GUT fragments and Y = −1/2

Referring to the first two diagrams of fig. 3, the choice Y = −1/2 corresponds to the TC-particle

content

NgF × (FL ⊕FEc ⊕FN)⊕NgS × (SEc ⊕ SDc). (13)

For extra clarity, table 3 lists the gauge quantum numbers of the TC-particles. For GTC =

SU(N)TC the most generic Yukawa couplings are

LY = yL LFLS∗Ec + yE EF cNSEc + (yD DF cN + yU UF cEc)SDc + yQ QFLS∗Dc + h.c. (14)

The scalar interactions are

λE|SEc |4 + λED|SEc |2 Tr(SDcS†Dc) + λD Tr(SDcS†Dc)2 + λ′D Tr(SDcS†DcSDcS†Dc). (15)

The renormalizable interactions conserve 5 accidental U(1) global symmetries. First, an anomaly-

free TC-baryon number, with charges equal to +1 (−1) for TC-particles in the N (N̄), and to

0 for SM particles. Next, baryon and lepton-number, under which the TC-fermions are neutral

and the TC-scalars compensate for the charge of the SM fermions. Finally, two extra U(1)

restrict the interactions among SM particles and TC particles. No extra Yukawa couplings nor

cubic scalar couplings are allowed for N = 3.
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name spin generations SU(3)c SU(2)L U(1)Y GTC

FN 1/2 NgF 1 1 0 N

F cN 1/2 NgF 1 1 0 N̄

FL 1/2 NgF 1 2 −1/2 N

F cL 1/2 NgF 1 2 +1/2 N̄

FEc 1/2 NgF 1 1 −1 N

F cEc 1/2 NgF 1 1 +1 N̄

SEc 0 NgS 1 1 −1 N

SDc 0 NgS 3 1 −1/3 N

Table 3: Explicit field content of the model of section 3.1 in the case of GTC = SU(N)TC.

Analogous Yukawa couplings can be written in the SO(N)TC ( Sp(N)TC) case, with the

only difference that the fundamental is a real (pseudo-real) representation, such that one can

identify FN = F cN breaking TC-baryon number. For Sp(N)TC two copies of the FN singlet

must be considered in order to avoid topological anomalies. The one-loop coefficient of the TC

gauge β function is

bTC =


−11

3
N + 2

3
(4NgF +NgS) for SU(N)TC ,

−11
3

(N − 2) + 2
3
(7NgF + 2NgS) for SO(N)TC ,

−11
6

(N + 2) + 2
3
(4NgF +NgS) for Sp(N)TC .

(16)

We verified that the two-loop term is subdominant for gTC<∼ 4π. In all cases the one loop

coefficients of the SM gauge β functions are

b3 = −7 +
N

6
NgS , b2 = −10

3
+

2N

3
NgF , b1 = 4 +

6

5
NNgF +

4

15
NNgS . (17)

We assume NgF = 1, NgS = 3, which is the most economic choice that allow to write Yukawa

couplings for all the 3 generations of SM fermions and to satisfy the conditions on the β

functions. All gauge β functions lie in the allowed range for 1.9<∼N < 3.0 in the SU(N)TC

case and for 1.8<∼N < 3.0 in the Sp(N)TC case (for N = 2 one has SU(2) = Sp(2)). No

solution is found for SO(N)TC.13

Table 2 gives the global symmetry breaking pattern in the fermionic sector: SU(8)→ Sp(8)

for Sp(N)TC and SU(4)L⊗ SU(4)R → SU(4)V for SU(N)TC. The latter possibility corresponds

to the minimal one that can realize a custodial symmetry as described in point 2 of section 2.4:

the chiral symmetry breaking produces 15 light TCπ in the adjoint of SU(4)V , that decomposes

as

TCπ = 2× (1, 1)0 ⊕ (1, 3)0 ⊕ [(1, 1)1 ⊕ 2× (1, 2)−1/2 + h.c.] under GSM. (18)

All TCπ are unstable. Among these TCπ we can identify two Higgs doublets that can be

embedded in a complex bidoublet of the unbroken custodial symmetry SU(2)L ⊗ SU(2)R. As

13No solutions are found for any group for the alternative choice NgF = 3, NgS = 1, which would also lead to
a large set of TCπ made of two TC-fermions.
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said above, in the presence of two Higgs doublets, generic vacuum expectation values break

the custodial symmetry: in appendix C we show how a custodial preserving minimum can be

obtained in this model (and more in general in SU(N)TC models).

TC-baryon number, conserved in SU(3)TC models, implies that the lightest TC-baryon is

stable. If TC-particle masses are such that the lightest TC-baryon is the neutral spin-3/2 TC-

baryon F3
N , it can be identified with Dark Matter, either as a thermal relic or with a TC-baryon

asymmetry [40].

Neutrino masses can be obtained adding right-handed neutrinos N , which can have the

Yukawa couplings

yN NF cEcSEc + y′NN FEcS∗Ec + h.c. (19)

as well as Majorana masses MN . The Yukawa couplings yN together with y′N break lepton

number and contribute to MN as ∼ yNy
′
NΛTC/g

2
TC. If MN = 0 and y′N = 0 lepton number

is conserved, and neutrinos acquire Dirac masses mν ∼ yLyNv/gTC. If instead N have large

Majorana masses MN , they can be integrated out obtaining the dimension-5 effective operators

y2N(F cEcSEc)2/MN among TC-colored particles, which breaks lepton number by 2 units and

respects TC-baryon number. Integrating TC-particles out at the ΛTC scale, taking into account

the yL couplings, gives rise to Majorana neutrino masses mν ∼ (yNyL/gTC)2v2/MN .

3.2 Model with SU(5)GUT fragments and Y = +1/2

For brevity, we only describe the main differences with respect to the previous model. Setting

Y = +1/2 we obtain the TC-particle content

(FLc ⊕FE ⊕FN)⊕ 3× (SN ⊕ SUc). (20)

The model has a built-in custodial symmetry, with the same TCπ content as the previous

model. For GTC = SU(N)TC the most generic Yukawa couplings are

LY = yL LFLcS∗N + yE EF cESN + (yD DF cE + yU UF cN)SUc + yQ QFLcS∗Uc + h.c. (21)

Gauge β functions lie in the allowed range for 1.9<∼N < 3.0 ( SU(N)TC and for 1.8<∼N < 3.0

( Sp(N)TC). For N = 3 the extra terms FNFNSN and (for NgS ≥ 3 ) S3
N are allowed, breaking

TC-baryon and lepton numbers. As a consequence the lightest TC-baryon becomes unstable,

and ∆L = 3 4-fermion interactions between 3 SM leptons and heavy composite fermions are

generated. These are not subject to the significant bounds that hold on ∆L = 2 effects. If

instead the extra terms are absent, the lightest TC-baryon of SU(3)TC is stable, and it is a good

Dark Matter candidate if made of SN and/or FN . Neutrino masses can be obtained, similarly

to section 3.1, adding right-handed neutrinos N with Yukawa couplings NF cNSN .

3.3 Model with minimal custodial symmetry and Y = 0

The choice Y = 0 does not correspond to TC-particles in fragments of SU(5)GUT but leads to

an interesting model with simple representations

W ≡ (1, 2)0, Y ≡ (1, 1)1/2, X = (3, 1)1/6. (22)
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As discussed in section 2.4, these are the representations that can realize the minimal coset with

a custodially protected Higgs doublet from GTC = Sp(N)TC dynamics. The needed TC-particle

content is:

NgF × (FW ⊕FY ⊕FY c)⊕NgS × (SY ⊕ SX) , (23)

such that the allowed Yukawa couplings are

LY = yL LFWSY + yE EFY cS∗Y + (yU UFY + yDDFY c)SX + yQQFWS∗X . (24)

All composite states have non-exotic gauge quantum numbers. Assuming NgF = 1 and NgS = 3

the β functions are in the allowed range for 0.7<∼N < 14.914: this range is larger than in

previous models thanks to fact that FW is real. This model contains no stable TC-baryons.

Neutrino masses can be generated thanks to a NFY S∗Y coupling.

3.4 Model with SU(5)GUT fragments and scalar doublet

Setting Y = −1/2 the less minimal model with the scalar doublet, outlined in the right-handed

panel of fig. 3, corresponds to the TC-particle content

NgF × (FL ⊕FEc ⊕FN)⊕NgS × (SLc ⊕ SDc). (25)

It automatically contains a custodial symmetry. For GTC = SU(N)TC the full set of Yukawa

couplings is

LY = yL LF cNSLc + yE EFLS∗Lc + (yD DF cN + yU UF cEc)SDc + yQ QFLS∗Dc + h.c. (26)

Notice that integrating out SDc gives a ∼ Q(D + U)FF 4-fermion operator, which gives mass

to both up and down-quarks; integrating out SLc gives lepton masses. The model contains

lepto-quarks with masses of order of ΛTC coupled to D̄γµL and to ĒγµQ, while the previous

models contained lepto-quarks coupled to Q̄γµL and to D̄γµE.

Models with NgS = 3, NgF = 1 have all β functions in the desired range for GTC =

SU(N)TC with 2.1<∼N < 3.5, (for N = 3 the extra Yukawa couplings FNFLSLc + h.c. are

allowed making the lightest TC-baryon unstable), and in the unphysical range 2.2<∼N < 3.5

for GTC = Sp(N)TC. As anticipated, in this model right-handed neutrinos remain uncoupled.

3.5 Imperfect SO(N)TC model with minimal custodial symmetries

SO(N)TC model realizing a minimal custodial symmetry (as described in section 2.4) can be

obtained splitting the first diagram in fig. 3 in two diagrams, one for U and another for D,

mediated by different TC-scalars. The required Yukawa couplings involving the fundamental

TC-states

(FL ⊕FLc ⊕FN)⊕ 3× (SUc ⊕ SDc ⊕ SE) (27)

14Solutions with 1.8<∼N < 8.6 also exist for NgF = 3 and NgS = 1, but lead to multiple Higgs doublets.
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are

LY = yL LFLSE + yE EFNS∗E + yD DFNSDc + yU UFNSUc + (yQ FLcS∗Uc
+ y′Q FLS∗Dc

)Q+ h.c.

(28)

This SO(N)TC model does not satisfy all the required conditions on the β functions for

SO(N)TC. Nevertheless, it is worth discussing at least the less worse case, corresponding to

SO(5)TC: βTC is negative, but the approximated condition of eq. (10) is not satisfied.15 Fur-

thermore, the hypercharge gauge coupling hits a Landau pole around 1014 GeV. Despite this

problem, this model is interesting because it is the most economic SO(N)TC with a built-in

Higgs bidoublet of the custodial symmetry. Moreover, the correction to the Zbb̄ coupling

is of order δgbL ∼ y4Qv
2/g4TCf

2
TC, automatically protected from larger corrections of order

δgbL ∼ y2Qv
2/g2TCf

2
TC thanks to a custodial symmetry along the lines of [39], as explained

in section 2.4. The pattern of global symmetry breaking is SU(5) → SO(5) corresponding to

14 TCπ including one Higgs bidoublet (2, 2) of SU(2)L ⊗ SU(2)R and triplets (3, 3) with vevs

that can be set zero using mechanisms as in [41]. The lightest TC-baryon is stable thanks to a

Z2 symmetry [40], and could be a good Dark Matter candidate such as FLFLcF3
N . With this

matter content, right-handed neutrinos are decoupled.

3.6 Model with a full family of TC-scalars

Finally, we present a model where the light Higgs boson is a TCπ made of two TC-scalars. We

choose a minimal content of TC-fermions (three generations of neutral SM singlets) and one

full family of TC-scalars

3FN ⊕ SL ⊕ SEc ⊕ SUc ⊕ SDc ⊕ SQ. (29)

The β functions lie in acceptable ranges for GTC = SU(N)TC with 1.8<∼N < 8.9, Sp(N)TC

with 1.7<∼N < 8.9, SO(N)TC with 5.6<∼N < 8.9. Undesired scalar cubics or quartics are

allowed for N = 3 or 4. For larger N the lightest TC-baryon is stable at renormalizable level,

and can be an acceptable Dark Matter candidate.

Each SM particle f has a Yukawa coupling of the form fFNS∗f or fF cNSfc . Tree-level FN
exchange mediates ffSS effective operators, which give Yukawa couplings for the SM fermions

f after identifying the Higgs doublet as H ∈ SS.

H can be a light pseudo-Goldstone boson if a 〈SS〉 condensate appropriately breaks the

accidental global TC-flavor symmetry among TC-scalars. Depending on the pattern of global

symmetry breaking we can have one or more TCπ with the quantum number of a Higgs doublet.

One can realize the custodial symmetry along the lines discussed in section 2.4. For example,

for an SU(N)TC group, one can add a TC-scalar singlet SN , obtaining the sector SL⊕SEc⊕SN .

Alternatively, a custodial symmetry is already present in the colored sector SQ⊕SDc⊕SUc : the

global symmetry contains SU(3)c ⊗ SU(4) and the latter factor can get spontaneously broken

to SU(2)L⊗ SU(2)R, leading to two custodially protected Higgs doublets. Neutrino masses can

be generated adding a TCscalar SN .

15We insist with 3 generations of TC-scalars, although 2 might be enough.
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4 Higgs properties

Composite Higgs estimates use effective field theories descriptions that combine assumed pat-

terns of symmetry breaking with dimensional analysis. Having a fundamental theory featuring

simultaneously a composite Higgs and partial compositeness, we now proceed to extract as

much informations as possible.16

Chiral Lagrangians are tailored for (pseudo) Goldstone bosons, here the TCπ states are

indicated with Π.17 In general, by integrating out the heavy states, one obtains a set of

effective operators for the light fields. We consider models where the Higgs doublet is a TCπ

made of two TC-fermions, FF c if GTC = SU(N)TC and FF otherwise.18 We then have

FF = f 2
TCΛTC U , U = exp

2iΠ

fTC

(30)

where ΛTC is the mass of unprotected composite states, fTC ∼ ΛTC/gTC is the Π decay constant,

and gTC ∼ 4π/
√
N is the estimated size of the coupling among composite states assuming a

large-N behaviour of the TC gauge theory. This applies to FF ,FS,SS composite states,

while TC-baryons have larger masses ∼ NΛTC. Notice that in models without TC-scalars

partial compositeness needs a TC-baryon B and therefore the Higgs mass receives ≈ N times

larger corrections than in our model where, instead, B = FS (see also section 4.2).

As outlined in fig. 3, the Yukawa couplings fFS induce ffFF operators: roughly speaking,

FF can be expanded as FF ∼ f 2
TCΛTC+2ifTCΛTCH+· · · where H is the Higgs doublet, leading

to the ffH SM Yukawa couplings, to be studied in section 4.1. The Higgs potential is generated

by FF terms (present in our theory at tree level) and by FFFF terms (generated at higher

orders), to be studied in section 4.2. Furthermore ffff terms give rise to flavor effects, studied

in section 4.3.

4.1 Yukawa couplings

To estimate the Yukawa couplings we formally reduce the associated squared of the partial

composite operator fB ∼ fFS to the more familiar 4-fermion operator ff ′FF as if it were

mediated, at tree level, by the TC-scalars S, such that their coefficient is yfyf ′/m
2
S . Of course,

TC strong interactions are relevant and this estimate only captures the general properties of

16State-of-the-art lattice simulations [36] are providing vital informations on the pattern of chiral symmetry
breaking, spin-one spectrum, decay constants, TC-fermion mass dependence, and scattering lengths for the
minimal fundamental composite Higgs scenario [42] discussed in subsection 3.3, but without TC-scalars. It
would be interesting to investigate the dynamics of this theory including TC-scalars, in particular to estimate
the spectrum of composite baryons constituted by a TC-fermion and a TC-scalar.

17To describe heavier states one would need to follow the prescriptions of the CCWZ formalism [43], that
allows to include resonances that are lighter than the cutoff consistently with the symmetry of the system. This
is, however, not enough to ensure that quantum corrections can be properly taken into account. Depending
on the added massive states one can, for example, make use of the properly implemented large N counting
scheme [44].

18We will leave this distinction implicit. Furthermore, we do not discuss global symmetry breaking in the
TC-scalar sector, which can lead to extra TCπ made of two TC-scalars and described as S∗S = f2

TCUS .
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these operators. Nevertheless there is a limit in which this approximation is precise (up to

renormalization corrections) and corresponds to TC-scalars heavier than the confinement scale,

mS � ΛTC. However, at least for the top quark, we need mS <∼ΛTC and the TC-scalars take

part in the strong dynamics. Here the coefficient of the ff ′FF operator is roughly estimated

by setting the TC-scalar mass to be around ΛTC. Finally, each resulting ff ′FF operator can

be rewritten as ff ′ Tr[ΠfΠf ′U ] with Πf the projector onto each SM fermion involved in the

resulting Yukawa interactions.

For example the 4-fermion operator ≈ yQyUQUFF/Λ2
TC generates the SM top Yukawa

coupling ytQUH with yt ≈ yUyQ/gTC. In order to obtain yt ≈ 1, the underlying Yukawa

couplings yU , yQ must be large, e.g. yU ∼ gTC, yQ ∼ 1. We now show that such values are

compatible with the fundamental TC dynamics, and indeed quite natural.

Let us consider a fundamental Yukawa operator yf fSF , where S and F are TC-scalars

and TC-fermions in the fundamental N of GTC and f is a SM fermion with nf components.

The relevant RGE are

(4π)2
∂gTC

∂ lnµ
= bg3TC, (4π)2

∂yf
∂ lnµ

= ffy
3
f − fgg2TCyf , (31)

where

ff =
N + 2nf + 1

2
, fg = 6CN = 6


(N2 − 1)/2N for GTC = SU(N)

(N − 1)/2 for GTC = SO(N)

(N + 1)/4 for GTC = Sp(N)

. (32)

The RGE flow has the IR-attractive pseudo-fixed point y2f/g
2
TC = (fg + b)/ff , such that yU

(nf = 3) can be bigger than yQ (nf = 6). Taking into account that yf � 1 is the other

pseudo-fixed point, Yukawa couplings can naturally be either very small or of order gTC.

The top Yukawa gets enhanced if the composite fermion that mixes with the top is light, and

this possibility is often assumed in Composite Higgs scenarios based on effective descriptions.

However, in our fundamental theory all SF composite fermions are expected to be quasi-

degenerate with a mass around ΛTC, in view of the unbroken TC-flavor symmetries among

fermions F and among scalars S, similarly to how the QCD nucleons have a mass around

ΛQCD.19 As in the QCD case, the degeneracy of TC-hadrons is broken by various effects:

i) TC-particle masses give a correction of order ∆MB ∼ mF + mS , where mF and mS are

the possible constituent masses;

19 One can extend the chiral Lagrangian to approximatively include the interactions between light Goldstone
bosons in U and some heavy composite states given that all states interact respecting the global symmetries of
table 1, in the limit where the small explicit breakings are neglected. The interactions of the composite fermions
Bai = SaFi (where a is a flavor index of the fundamental of U(NS) and i of the fundamental of SU(NF )) are
obtained as

SaFi ∼ fTC UijBaj (33)

in analogy to the QCD effective interactions of nucleons with pions.
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ii) SM gauge interactions give positive corrections of order ∆MB ∼ +αSMΛTC/4π, where

αSM is the SM charge of each composite state.

iii) Yukawa couplings can give larger corrections to the composite fermions that mix with the

top quark. This latter possibility might lead to lighter top-quark partners.

4.2 Higgs potential

The TCπ content is model dependent, and the full set of TCπ can contain extra Higgs doublets

and/or extra singlets. We consider as SM-like Higgs the state that carries the vev v, such that

the physical Higgs boson h contributes to the W mass as M2
W = 1

2
g22f

2
TC sin2(h/

√
2fTC), with

〈h〉 ∼ 246 GeV. Since the Higgs is a pseudo-Goldstone boson, its potential is generated by

interactions that break the accidental global fermionic symmetry and can be parameterized by

inserting symmetry-breaking terms in a symmetric expression written in terms of U . Like in

the previous discussion, we need to consider three effects:

i) The TC-fermion masses contribute as

Vm = −cmf 2
TCΛTCTr[mFU + h.c.]. (34)

where mF is the TC-fermion mass matrix and cm is aO(1) coefficient, presumably positive

like in QCD. Specializing to the SM Higgs, it yields

Vm = −2cm f
2
TCΛTC

∑
i

mFi
cos

(
h√

2fTC

)
(35)

where the sum runs over the TC-fermions that make the Higgs. This term alone cannot

break the electro-weak symmetry since it predicts cos(h/
√

2fTC) = 1.

ii) SM loops induce positive squared masses for the Higgs via the quantum-induced potential

Vg = −cg
3

2(16π2)
Λ2

TCf
2
TC

(
g22 Tr[UT aU †T a] + g2Y Tr[UTY U †TY ]

)
+O(g42,Y ) (36)

where T a, TY are the generators of SU(2)L⊗ U(1)Y and cg ≈ ln(4π/gTC) > 0 is a positive

O(1) coefficient. Specializing to the SM Higgs, it yields

Vg = cg
3(3g22 + g2Y )

64π2
Λ2

TCf
2
TC sin2

(
h√

2fTC

)
+O(g42,Y ) (37)

where we neglected subleading terms. Taken in isolation this term does not break the

electro-weak symmetry.

iii) The Yukawa couplings give rise to effective FFFF interactions stemming, for exam-

ple, from the first diagram of fig. 1. The non trivial contribution comes when Q and

U(D) are exchanged with an overall coefficient scaling like ∼ y2Qy
2
U(D). The largest
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contribution comes from the top sector because of its large coupling yt yielding Vy ∼
Nc(F̄ cy†UyUF c)(F̄y

†
QyQF)/(4π)2m2

S . Recalling eq. (30), this becomes

Vy = −cy
Ncy

2
Qy

2
Uf

4
TC

(4π)2
Tr[U †Π†QΠQU(Π†UΠU)∗] = −cy

Ncy
2
Qy

2
Uf

4
TC

(4π)2
sin2

(
h√

2fTC

)
. (38)

where cy is a (presumably) positive order one constant, and ΠQ,U are projectors over

specific TC-fermions Q,U : their explicit expressions can be computed in each model, see

appendix C.20 This term alone cannot break the electro-weak symmetry.

Summing V = Vm + Vg + Vy and expanding it as −1
2
M2

h |H|2 + λH |H|4 + · · · , we obtain

−M2
h ∼ cm

(∑
i

mFi

)
ΛTC +

(
cg

3(3g22 + g2Y )

64π2
− cyNc

y2t
16π2

)
Λ2

TC ,

λH ∼
cyNcy

2
Qy

2
U

12(4π)2
− cgg

2
TC(3g22 + g2Y )

16(4π)2
∼ y2t
N
, (39)

where in the second line we assumed mF . ΛTC and that the dominant contribution is given

by yt. Notice that Vg and Vy acquire the form of SM loops, with SM couplings g2, gY and

yt, with a naive cut-off at ΛTC. The electro-weak symmetry can be appropriately broken by a

combination of the above effects, such that M2
h is positive and small. This tuning is possible

since Vm has a different functional dependence on h with respect to Vg and especially Vy. These

results are in line with [42]. In appendix C we study in more detail the Higgs potential in the

model of section 3.1.

4.3 Flavor violations

Explorations of flavor in Composite Higgs have been performed using effective theories [45].

We here discuss flavor from the point of view of a fundamental theory.

Making flavor indices explicit, we can write the Yukawa matrices of each SM fermion f =

{U,D,Q, L,E} as yijf where i runs over Ng = 3 (number of generations of SM fermions) and j

20 Terms proportional to y4
Q,U,D do not arise if GTC = SU(N)TC because the TCπ are described by a U

matrix that transforms as U → LUR† under the SU(NF )L⊗ SU(NF )R symmetry (less formally, TCπ are FFc

states). The projectors ΠQ,U,D (or, equivalently, the Yukawa couplings yQ,U,D written as matrices) can be seen

as spurions transforming as (Π†QΠQ)→ L(Π†QΠQ)L† and (Π†U,DΠU,D)→ R∗(Π†U,DΠU,D)RT such that eq. (38) is
the only invariant. Terms proportional to y4

Q,U,D can arise if instead GTC = SO(N) or Sp(N), because TCπ are
FF states. More formally, they are described respectively by a symmetric and anti-symmetric unitary matrix
that transforms as U → gUgT with g ∈ SU(NF ) such that contractions of the form Tr[U(Π†QΠQ)TU†(Π†QΠQ)]
are allowed.

Furthermore, some effective scenarios with symmetry structures not related to fundamental theories can
have composite states in representations of the global group that lead to corrections to the potential quadratic
(rather than quartic) in the fB mixing terms. In our fundamental models FFFF interactions quadratic in
the Yukawa couplings are generated by TC-penguin diagrams. However such diagrams only lead to a constant
contribution to the TCπ potential: in our models the TC-fermions lie in the fundamental representation of
GTC, which implies that the only possible index contraction is ∝ U†U = I. The same results can be obtained
with symmetry arguments as done above.

23



Coupling Flavor symmetry of SM fermions Flavor of TC-scalars

U(3)L U(3)E U(3)Q U(3)U U(3)D U(3)SEc U(3)SDc

yL 3 1 1 1 1 3 1

yE 1 3 1 1 1 3̄ 1

yQ 1 1 3 1 1 1 3

yU 1 1 1 3 1 1 3̄

yD 1 1 1 1 3 1 3̄

m2
SE 1 1 1 1 1 3⊗ 3̄ 1

m2
SD 1 1 1 1 1 1 3⊗ 3̄

λE 1 1 1 1 1 (3⊗ 3̄)2 1

λD,D′ 1 1 1 1 1 1 (3⊗ 3̄)2

λED 1 1 1 1 1 3⊗ 3̄ 3⊗ 3̄

Table 4: Transformation properties of the Yukawa couplings, scalar masses and scalar quartics

under flavor rotations of the 5 SM fermions and of the 2 TC-scalars. For concreteness we

considered those of the model of section 3.1, but other models share the same flavor spurionic

symmetric, for the reasons illustrated in fig. 3. The 3⊗ 3̄ representation can be decomposed as

adjoint plus singlet.

runs over NgS (number of generations of TC-scalars). We assume the minimal choice NgS = 3,

NgF = 1 and that there is one Yukawa matrix per SM fermion f (one can build models with

more than one: see for example section 3.5 and the extended model of appendix C).

Then, each yf can be decomposed as yf = V †f y
diag
f Uf , where V and U are unitary matrices

and ydiagf is a diagonal matrix with positive entries. The 5 matrices Vf can be rotated away,

by redefining the SM fields as f → Vff . The 5 matrices Uf are physical, provided that the 2

TC-scalars have non-trivial mass matrices m2
S . If instead the potential couplings among TC-

scalars conserve flavor, 2 of the matrices Uf can be rotated away, leaving, for example, UD, UU
and UE as physical matrices. The SM Yukawa couplings

−L SM
Y = yLELEH

∗ + yQDQDH
∗ + yQUQUH + h.c. (40)

are obtained as described in the middle panel of fig. 1:

yff ′ ≈ yf × t
(fTCΛTC

m2
S

)
× yTf ′ = ydiagf Uf t

(fTCΛTC

m2 diag
S

)
UT
f ′y

diag
f ′ . (41)

where the loop function equals t(x) = x in the artificial limit mS � ΛTC. If instead the explicit

TC-scalars masses are below the compositeness scale we expect the major contribution to their

mass to come from the underlying strong dynamics leading to the estimate t(x) ≈ 1/gTC.

The CKM matrix results, as usual, from the misalignment between yQU and yQD. The 2 or

4 extra flavor-violating matrices must have small enough mixing angles in order to satisfy

flavor bounds. In particular these extra rotations act on the right-handed fermions, generating

potentially dangerous operators not present in the SM.
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In the SM, the Yukawa matrices yQU , yQD and yLE can be conveniently seen as spurions

under global U(3)5 rotations of the 3 generations of L,E,Q, U,D fields. In the present models

a common similar structure arises, as summarized in table 4. Specific models have specific

patterns of TC-fermions F , which further restrict the possible couplings of the Higgs H ∼ FF .

The spurionic structure significantly restricts the form of the possible flavor effects [46] and

is similar enough to the SM structure.

Electric dipoles and µ→ eγ

Electro-magnetic dipole operators contribute to electric dipole moments and to µ→ eγ. They

arise at loop level from ffFFV operators, which have the same spurionic structure of the SM

Yukawa couplings, and where FF becomes the SM Higgs.

Dressing the tree level diagram that mediates lepton masses (middle of fig. 1) with TC

gluons and attaching a SM vector one obtains

dijLE(LiγµνEj)Vµν , with dLE =
gSMv

gTCΛ2
TC

yL · t̃
(Λ2

TC

m2
S

)
· yTE (42)

for leptons, with similar results for up and down quarks. Here v is the Higgs vev and t̃(x) is

a loop function different from t(x). If its argument is a generic matrix, the dipole matrix dLE
is not proportional to yLE and the electron dipole is de ∼ eme/Λ

2
TC ∼ 10−23e cm ( TeV/ΛTC)2,

5 orders of magnitude above the bound |de| < 0.87 10−28e cm [47]. Similarly, if dQU(D) is

not proportional to yQU(D) the electric and chromo-electric dipoles of light quarks u, d give

a neutron electric dipole dn & emd/Λ
2
TC ∼ 10−22e cm ( TeV/ΛTC)2 much above the bound

|dn| < 2.9 10−26e cm [48].

If instead m2
S ∝ I (this can arise e.g. if TC-scalars have no mass term, and acquire a mass

of order ΛTC from TC-strong interactions) and the TC-scalar potential conserves flavor, the

leading-order dLE becomes proportional to yLE, such that it gives no flavor nor CP violation.

In such a case, effects only arise through higher order powers in the Yukawa couplings. We

assume that scalar quartics similarly conserve flavor. A spurion analysis shows two possible

effects. One has the form

dLE ∼
gSM
gTC

v

Λ2
TC

yL ·X · yTE with X =
(y†LyL)

g2TC

,
(y†EyE)T

g2TC

(43)

which arises adding extra Yukawa loops on the TC-scalar propagator in the middle diagram of

fig. 1. Assuming yL ∼ yE the estimated dipole de gets reduced by Xee ∼ ye/gTC ∼ 10−7, be-

coming compatible with experimental bounds for ΛTC>∼ 200 GeV, for gTC ∼ 4π. An analogous

result applies to dn that becomes compatible with the limits for a similar scale ΛTC.

A similar estimate can be done for µ → eγ. The experimental bound BR(µ→ eγ) <

5.7 10−13 [49] must be compared to the theoretical prediction

BR(µ→ eγ) = (|deµ|2 + |dµe|2)
384π2v4

m2
µ

(44)
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where, assuming gTC ∼ 4π, yL ∼ yE and mixing angles Ueµ ∼
√
me/mµ, one has Xµe,eµ ∼√

yeyµ/gTC and deµ,µe ∼ eXeµ,µe
√
memµ/Λ

2
TC, from which we derive the bound ΛTC & 500 GeV.

Similar considerations hold for ffFF operators, which can give rise to flavor-violating Higgs

decays.

The second higher order correction to the dipole matrix has the form

dLE ∝ (yLy
T
E)T (45)

where T is a flavor trace arising from extra loops on the TC-fermion propagator. An imaginary

part in T gives rise to EDMs, while µ→ eγ remains vanishing. Using only the biggest Yukawa

matrices one can have

ImT =
1

g12TC

Im Tr[(y†QyQ)2(y†UyU)T2(y†QyQ)(y†UyU)T ] ∼ y4t y
2
cVcbVubVus
g6TC

. (46)

Using yD one can have

ImT ∼ 1

g6TC

Im Tr[(y†QyQ)T (y†UyU)(y†DyD)] ∼ y2t y
2
bV

2
cb

g2TC

. (47)

Both contributions are safely small.

4-fermion operators

New operators with 4 SM fermions have the Lorentz structure with the coefficient demanded

by box diagrams like in the right panel of fig. 1, and the flavor structure demanded also by

spurionic considerations:

∼
(y†fyf )ij(y

†
f ′yf ′)i′j′

g2TCm
2
S

(f̄iγµf
′
j′)(f̄

′
i′γµfj) for any f, f ′ = {L,E,Q, U,D}. (48)

The extra operator (L̄γµQ)(ĒγµD) appears in the models of section 3.1, 3.2, 3.3, while the

extra operator (L̄γµD)(ĒγµQ) appears in the model of section 3.4. These operators can be

thought as mediated by the lepto-quarks mentioned in section 3.4 [50]. If one can ignore the

fact that flavor contractions differ from those that define the SM Yukawa couplings yff ′ , such

coefficient is of order y2ff ′/Λ
2
TC, having assumed mS ∼ ΛTC.

Flavor data put the strongest constraint on the (s̄RdL)(s̄LdR)/Λ2 operator, which contributes

to CP-violation in K0/K̄0 mixing: if complex it must be suppressed by |Λ| > 3× 105 TeV [51].

In our scenario it arises as Λ>∼ΛTC/
√
ysyd ∼ 104ΛTC.

TC-penguin diagrams contribute to ∆F = 0, 1 processes by giving extra operators of the

form (f̄γµy
†
fyff)J where J is a flavor-universal SM or TC current. Bounds are weaker than

those from K0/K̄0.
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5 Conclusions

We proposed renomalizable extensions of the Standard Model in which a new fundamental

gauge dynamics becomes strong at around a TeV and yields a composite pseudo-Goldstone

Higgs boson that gives mass to all SM quarks and leptons through partial compositeness.

The first key ingredient in our construction is the simultaneous presence of fermions and

scalars charged under the new strongly interacting gauge group, that allows to write Yukawa

couplings to SM fermions (see for example eq. (14)). The second is that the SM chiral fermions

have specific gauge quantum numbers (i.e. specific hypercharges) that non-trivially allow to

implement the partial compositeness scenario in these models. This peculiarity is analogous to

the SM case in which one Higgs doublet is enough to give mass to all fermions. Furthermore,

right-handed SM fermions (U,D) and (E,N) have an SU(2)R-like structure that gets extended

to new fermions with new strong interactions, resulting in custodially-protected composite

Higgses, improving the agreement with data.

Figure 1 shows how the SM-like Yukawa couplings to the composite Higgs arise at tree level,

and how extra flavor violations arise at one loop level. The renormalizable Yukawa couplings

between one SM fermion, one TC-fermion and one TC-scalar feature a spurionic-like symmetry

different from the structure present in the SM, as summarized in table 4. Nevertheless, the

structure is similar enough (e.g. flavor violations among quarks do not imply flavor violations

among leptons), and flavor bounds are satisfied if TC-scalars masses are flavor universal. This

possibility can emerge if the bulk of the composite scalar mass comes from the fundamental

dynamics, which is of the order of the compositeness scale. However, since also the quartic

couplings of TC-scalars can induce flavor violation, we have to assume they are flavor universal.

In more detail, models based on SU(N)TC are allowed for N = 2, 3; however the TCπ

contain two Higgs doublets such that their vacuum expectation values can break the custodial

symmetry, see sections 3.1, 3.2, 3.4 and appendix C. Models based on SO(N)TC lead to a

single custodially-protected Higgs; however they have Landau poles slightly below the Planck

scale (section 3.5). Models based on Sp(N)TC (section 3.3) lead to a single custodially-protected

Higgs if one employs TC-particles in representations not compatible with SU(5)GUT unification.

Finally, models where TCπ are made of TC-scalars (section 3.6) need assumptions about their

strong dynamics. In some models the lightest TC-baryon is a stable Dark Matter candidate.

In section 2 we discussed general features of fundamental composite theories with both

gauged fermions and scalars, including their classical and quantum global symmetries, and

possible patterns of dynamical symmetry breaking. We argued that the new class of composite

theories we considered here offers viable and testable solutions to several currently unsolved

problems plaguing composite extensions of the SM in search of a successful microscopic re-

alization of the partial compositeness scenario. Compositeness allows for the introduction of

new TC-scalars and its non-perturbative dynamics can be further investigated via first princi-

ple lattice simulations. In this respect, we foresee some immediate advantages of ‘scalarphilic’

fundamental theories because of the following concrete reasons: a) Adding TC-scalars on the

lattice is less computationally demanding than adding TC-fermions; b) We do not rely on

nearly-conformal dynamics, hence lattice computations do not need the usual extremely large
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volumes; c) The state-of-the-art simulations of SU(2) gauge theories [36] can be readily extended

with the TC-scalars needed in the model of section 3.3. This will jump-start the investigation

of realistic composite theories from ab-initio computations. Lattice simulations will also help

to determine the spectrum and the phase diagrams of theories with TC-fermions and TC-

scalars.21 Finally, from a ‘scalarphobic’ standpoint, our theories can also be viewed, at least

at some intermediate energies, as approximate descriptions of the yet to be found phenomeno-

logically successful composite theories featuring only TC-fermions: here our scalars would be

interpreted as intermediate composite states rather than elementary.

Acknowledgements

This work was supported by the grant 669668 – NEO-NAT – ERC-AdG-2014. AT is supported by

a Oehme Fellowship. AT thanks for hospitality the Aspen Center of Physics, which is supported by

NSF grant PHY-1066293. The work of FS is partially supported by the Danish National Research

Foundation grant DNRF:90. We thank Roberto Contino, Serguey Petcov, Alex Pomarol, Riccardo

Rattazzi, Slava Rychkov and Michele Redi for useful discussions.

A Basics of Sp(N) groups

Sp(N) is defined as the group of rotations U = exp(iT ) = exp(iθaTa) that leave γ = ε⊗IN/2 invariant,

UTγU = γ, so that the generators satisfy T Ta γ+ γTa = 0. In the canonical basis where the generators

are hermitian, they can be written as block matrices:

T =

(
X +X† Y + Y T

Y † + Y ∗ −(X∗ +XT )

)
(49)

where X+X† is a N/2×N/2 complex hermitian matrix and Y +Y T is a complex N/2×N/2 symmetric

matrix. Therefore the dimension of the Sp(N) group is 1
4N

2 + 1
4N(N + 2) = N

2 (N + 1). The Sp(N)

generators Ta in the fundamental are related to the complex conjugated T ∗a as

−T ∗a = γ−1Taγ. (50)

The representations N and N∗ are not independent: Ñ ≡ γN∗ transforms as the fundamental N .

The kinetic term of NS complex scalars in the N of Sp(N)TC has an enhanced accidental global

symmetry Sp(2NS). To see this, let us start from the simplest case N = 2 and NS = 1, namely one

doublet of Sp(2) ∼ SU(2). As well known, the Higgs kinetic term (neglecting the hypercharge) can

be written in terms of a bi-doublet Φ = (H, H̃) with H̃ = εH∗ in an SU(2)L ⊗ SU(2)R invariant

21The main difference with respect to theories featuring gauge-fermions for partial compositeness is that for
these theories: a) the spectrum contains typically two different fermion representations; b) one still lacks an
underlying realization able to link the composite baryons to the standard model fermions; c) one generically
requires very large anomalous dimensions for the composite baryons that can only emerge in near-conformal
field theories with highly non-trivial dynamics that, would they exist at all [11], are much harder to simulate
on the lattice than the present theory. Last but not the least adding TC-scalars on the lattice it is an easier
task than adding fermions. One of the reasons is that chiral symmetry on the lattice for fermions is hard to
maintain.
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Scalar vev 〈S〉
Gauge group Global group

SU(N)TC → SU(N − 1)TC U(NS)→ U(NS − 1)
SO(N)TC → SO(N − 1)TC O(NS)→ O(NS − 1)
Sp(N)TC → Sp(N − 2)TC Sp(2NS)→ Sp(2NS − 2)

Table 5: Minimal pattern of gauge and global symmetry breaking induced by one scalar vacuum

expectation value.

form. The global symmetry of the Higgs kinetic term is SU(2)R ∼ Sp(2). In the two Higgses case

(N = NS = 2) one similarly finds a Sp(4) global symmetry [38]. For general N and NS , one can

construct a N × 2NS matrix Φ = (S, S̃) = (S1, S̃1, . . . ,SNS
, S̃NS

) and write the scalar kinetic term as

Lkin =
1

2
Tr[(DµΦ)†(DµΦ)] , (51)

that is left invariant by a 2NS × 2NS matrix acting as Φ→ ΦM . The pseudoreality of Φ

Φ∗ = γΦγ′ , γ′ = diag(ε, . . . , ε) , (52)

gives a condition on M :

Φ∗ → Φ∗M∗ = γΦγ′M∗, γΦγ′ → γΦMγ′ , (53)

which implies γ′M∗ = Mγ′, defining a Sp(2NS) global symmetry analogously to eq. (50).

B Higgs as a TC-scalar Goldstone boson

In this appendix we further elaborate on the possibility (outlined in section 2.2) that the Higgs is an

elementary pseudo-Goldstone boson, neutral under the unbroken part of GTC.

This can arise as follows. The TC gauge couplings become larger at low energy, driving the quartic

couplings to negative values at an energy which can naturally be not much above the confinement

scale. This triggers a vacuum expectation value for the TC-scalars through the Coleman-Weinberg

mechanism. Depending on which of the stability conditions discussed below eq. (7) is violated, either

one or N TC-scalars acquire vacuum expectation values.

Let us assume that only one TC-scalar S11 acquires a vacuum expectation value: it breaks the

gauge symmetry (its unbroken part decouples from SM particles) and the TC-flavor global symmetry

as described in table 5, leaving an approximated Goldstone boson in the fundamental of the broken

TC-flavor group. Yukawa couplings can explicitly break the TC-flavor symmetry, giving mass to the

pseudo-Goldstone boson.

We present two models where the elementary pseudo-Goldstone boson can be identified with the

Higgs boson. In both cases the TC-particle content is so large that the β functions never lie in the

desired range, if we insist on reproducing the masses of all SM fermions: we thereby focus only on

third generation quarks, ignoring the other SM particles.

The first model considers an SU(N)TC gauge theory with TC-particle content

FQ ⊕ SL ⊕ SLc ⊕ SN . (54)
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The β coefficients lie in the desired range for N = 3. We assume that RGE corrections are dominated

by TC effects, such that the dominant quartic couplings respect the accidental global symmetry U(5).

As a consequence, the vev 〈SN 〉 = fTC (which leaves GSM intact) breaks SU(N)TC → SU(N − 1)TC

and U(5) → U(4), giving rise to approximate pseudo-Goldstone bosons, which fill two Higgs bosons

and one real pseudo-scalar. The global symmetry can be explicitly broken by extra quartics not

generated by gTC and by Yukawas interactions

LY = yU UFQS∗L + yDDFQS∗Lc + yQQFcQSN + h.c. . (55)

The top Yukawa coupling arises as yt = yU sin θ, where θ ∼ fTCyQ/MF is the mixing between F and

the first component of FQ.

The second model considers an SO(N)TC gauge theory with TC-particle content

FQ ⊕ SL ⊕ SN . (56)

The β coefficients lie in the desired range for N = 6. This corresponds to the minimal coset

SO(5)/SO(4) of [4], such that the pseudo-Goldstone boson is a single Higgs doublet. The Yukawa

couplings are

LY = yU UFQS∗L + yDDFQSL + yQQFcQSN + h.c. . (57)

C Detailed analysis of a model

We here present explicit results for the model of section 3.1, although the same discussion applies to

all models with SU(N) TC group. The TC-particle content is

(FL ⊕FEc ⊕FN )⊕ 3× (SEc ⊕ SDc), (58)

for GTC = SU(N)TC, so that the most generic Yukawa couplings are those of eq. (14). The conditions

on the gauge β functions are satisfied for N = 2, 3. We consider N = 3 so that the pattern of global

symmetry breaking is SU(4)L ⊗ SU(4)R → SU(4)V , which has a SU(2)L ⊗ SU(2)R subgroup in the

composite sector.22 The explicit embedding of SU(2)L ⊗ U(1)Y into SU(4)V is:

T iL =
1

2

(
σi 0

0 0

)
, TY =

1

2

(
0 0

0 σ3

)
︸ ︷︷ ︸

T 3
R

+qX , where qX(FL,FN ,FEc) = −1

2
(59)

and σi are the Pauli matrices. Notice that U(1)X is the non anomalous U(1) in the global symmetry

U(4)L ⊗ U(4)R. The 15 pNGB in the adjoint of SU(4)V can be decomposed under the SM as

15 = ((1, 1)1 + h.c.)︸ ︷︷ ︸
φ±

⊕ 2× (1, 1)0︸ ︷︷ ︸
η1,η2

⊕ (1, 3)0︸ ︷︷ ︸
π±,π0

⊕ (2× (1, 2)−1/2 + h.c.︸ ︷︷ ︸
H,H†,H′ ,H′†

) . (60)

22For N = 2 the TC gauge group is SU(2) ∼ Sp(2) and the pattern of global symmetry breaking in the
fermionic sector becomes SU(8)→ Sp(8) giving rise to 27 TCπ.
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The Goldstone matrix U = exp(2iΠ/fTC) with Π = Π† has the explicit form

Π =
1√
2


1
2(η1 +

√
2π0) π+ H ′0 H+

− 1
2(η1 −

√
2π0) H ′− H0

− − 1
2(−η1 +

√
2η2) φ+

− − − 1
2(−η1 −

√
2η2)

 . (61)

From the kinetic term (f2TC/4) Tr[(DµU)†(DµU)] we get the W and Z masses, finding that the vacuum

expectation values of the two Higgs doublets H ∼ FLFcEc and H ′ ∼ FLFcN contribute at tree level to

the T parameter as23

T̂ =
M2
W3

M2
W1

− 1 =

[
cos(
√

2|H0|/fTC)− cos(
√

2|H ′0|/fTC)
]2

2
[

cos(
√

2|H0|/fTC) cos(
√

2|H ′0|/fTC)− 1
] , (62)

that vanishes if |H0| = |H ′0|. A sizeable misalignment between H0 and H ′0 would give a contribution of

order v2/f2TC such that the experimental bound |T̂ | . 2×10−3 would imply fTC>∼ 5 TeV. A symmetry

of the fundamental Lagrangian can protect the T parameter from large corrections aligning H0 and

H ′0. All the interactions that generate the potential such as the Yukawa couplings must respect this

symmetry or the vacuum will misalign H0 6= H ′0. The model that we are considering does not enjoy

such a symmetry since the doublet H ∼ FLFcEc is only coupled to the top and H ′ ∼ FLFcN only to

the bottom. On the other hand, TC-fermion masses and gauge interactions align the vacuum in a

direction |H0| = |H ′0|:

i) The mass matrix for the TC-fermion masses in the custodial limit is

mF = diag(mL,mL,mR,mR) (63)

and from eq. (34) we get the potential

Vm = −2cmΛTCf
2
TC(mL +mR)

(
cos

√
2|H0|
fTC

+ cos

√
2|H ′0|
fTC

)
(64)

that is symmetric under |H0| ↔ |H ′0|.

ii) Gauge interactions contribute to the potential as in eq. (36) giving

Vg = −
3cgf

2
TCΛ2

TC

128π2

[
g2Y

(
6− sin2

√
2|H0|
fTC

− sin2

√
2|H ′0|
fTC

)
+

+g22

(
2− sin2

√
2|H0|
fTC

− sin2

√
2|H ′0|
fTC

+ 4 cos

√
2|H0|
fTC

cos

√
2|H ′0|
fTC

)]
(65)

that is again symmetric under H0 ↔ H ′0. Taking only the terms above, one can show that the

vacuum is aligned in a direction that preserve the electro-weak symmetry.

23Defining the complex bidoublet M = (H ′, H), our parametrization is equivalent to [23], once M is identified
with Φ1 + iΦ2, where Φ1,2 are two real bi-doublets of SU(2)L ⊗ SU(2)R. Moreover, we can rotate H0 and H ′0
to the basis where only one doublet gets a vacuum expectation value, and our formulæ take the form of section
4.2 with the physical SM-like Higgs h ≡ Re (H0 +H ′0).
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iii) EW symmetry breaking is triggered by the contribution from the Yukawa couplings. The dom-

inant contribution comes from the top (see eq. (38)) and since the top couples only to H, it is

not symmetric in |H0|, |H ′0|

Vy = −
cyNcy

2
Qy

2
Uf

4
TC

(4π)2
sin2

√
2|H0|
fTC

, (66)

so that the minimum does not preserve custodial symmetry.

This can be cured by adding one TC-scalar SU coupled to the third generation quarks, so that the

extra Yukawa couplings are allowed

∆LY = (y′D DFEc + y′U UFN )S∗U + y′Q QFcLSU . (67)

In the symmetric limit y = y′, the Lagrangian enjoys a discrete symmetry F ↔ Fc and S∗Dc ↔ SU
(see [38] for the role of discrete symmetries in other models with two composite Higgs doublets). With

this addition the β functions lie in the desired range. Focussing on the third generation quark sector,

the Yukawa couplings of the SM fermions to the TCπ are

L SM
Y = yQUQΠQUΠT

UU + yQDQΠQUΠT
DD + y′QUQΠ′QUTΠ

′T
U U + y′QDQΠ′QUTΠ

′T
DD + h.c. (68)

with ΠQ,U,D, Π′Q,U,D defined as

ΠQ =

(
0 1 0 0

−1 0 0 0

)
, ΠU =

(
0 0 0 1

)
, ΠD =

(
0 0 1 0

)
,

Π′Q =

(
1 0 0 0

0 1 0 0

)
, Π′U =

(
0 0 −1 0

)
, Π′D =

(
0 0 0 1

)
. (69)

We can assign spurionic transformation properties under the global symmetry SU(4)L ⊗ SU(4)R

Π†QΠQ → LΠ†QΠQL
† , Π†U,DΠU,D → R∗Π†U,DΠU,DR

T ,

Π′†QΠ′Q → R∗Π′†QΠ′QR
T , Π′†U,DΠ′U,D → LΠ′†U,DΠ′U,DL

† ,

Π′†QΠQ → R∗Π′†QΠ′QL
† , Π′†U,DΠU,D → LΠ′†U,DΠ′U,DR

T ,

and, recalling that U → LUR†, we can construct all the possible invariants contributing to the poten-

tial. Taking into account that mb � mt the relevant terms are

y2Qy
2
U Tr[(Π†QΠQ)U(Π†UΠU )∗U†] = y2Qy

2
U sin2

√
2|H0|
fTC

,

y′2Qy
′2
U Tr[(Π′

†
QΠ′Q)UT (Π′

†
UΠ′U )TU∗] = y′2Qy

′2
U sin2

√
2|H ′0|
fTC

, (70)

y′QyQy
′
UyU Tr[(Π′†QΠQ)U(Π′

†
UΠU )TU∗] + h.c. = −2y′QyQy

′
UyU cos(φ0 + φ′0) sin

√
2|H0|
fTC

sin

√
2|H ′0|
fTC

,

where H
(′)
0 = |H(′)

0 |eiφ
(′)
0 . These contributions arise from the ‘square’ of the diagram contributing to

the top mass. Only the latter term depends on the phases φ0, φ
′
0, and the minimum corresponds to
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cos(φ0 + φ′0) = −1. The symmetry y ↔ y′ implies the alignement |H0| = |H ′0|. The symmetry allows

also for other terms:

y2Qy
′2
Q Tr[(Π†QΠQ)U(Π′

†
QΠ′Q)∗U†] = y2Qy

′2
Q

[
cos2

√
2|H0|
fTC

+ cos2
√

2|H ′0|
fTC

]
,

y2Qy
′2
Q Tr[(Π†QΠ′Q)UT (Π′

†
QΠQ)TU†] = −2y2Qy

′2
Q cos

√
2|H0|
fTC

cos

√
2|H ′0|
fTC

. (71)

When added together (as dictated by the symmetry of the strong dynamics), the sum does not

contribute to quadratic terms in the fields H and H ′. Finally, we can write the invariants

y2Uy
′2
U Tr[(Π†UΠU )UT (Π′

†
UΠ′U )∗U∗], y2Uy

′2
U Tr[(Π†UΠ′U )U(Π′

†
UΠU )TU∗], (72)

that only contribute to the potential of the (broken) SU(2)R triplet φ±, η2.
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