Available on CMS information server CMS CR -2016/121

m\s The Compact Muon Solenoid Experiment
N

~_ Conference Report ()

X \\
)
AN | Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

07 June 2016

SWATCH Common software for controlling and
monitoring the upgraded CMS Level-1 trigger

S. Bologna, G. Codispoti, G. Dirkx, L. Kreczko, C. Lazaridis, E. Paradas, A. Rose, A. Thea, T. Williams

Abstract

The Large Hadron Collider at CERN restarted in 2015 with a higher centre-of-mass energy of 13TeV.
The instantaneous luminosity is expected to increase significantly in the coming years. An upgraded
Level-1 trigger system has been deployed in the Compact Muon Solenoid experiment, in order to
maintain the same efficiencies for searches and precision measurements as those achieved in the pre-
vious run. This system consists of the order of 100 electronics boards connected by the order of 3000
optical links, which must be controlled and monitoring coherently through software, with high op-
erational efficiency. In this paper, we present the design of the software framework that is used to
control and monitor the upgraded Level-1 trigger system, and experiences from using this software to
commission the upgraded system.

Presented at IEEE-RT2016 IEEE-NPSS Real Time Conference (RT)

SWATCH: Common software for controlling and
monitoring the upgraded Level-1 trigger of the
CMS experiment

S. Bologna, G. Codispoti, G. Dirkx, L. Kreczko, C. Lazaridis, E. Paradas, A. Rose, A. Thea, T. Williams

Abstract—The Large Hadron Collider at CERN restarted
in 2015 with a higher centre-of-mass energy of 13TeV. The
instantaneous luminosity is expected to increase significantly in
the coming years. An upgraded Level-1 trigger system has been
deployed in the Compact Muon Solenoid experiment, in order
to maintain the same efficiencies for searches and precision
measurements as those achieved in the previous run. This system
consists of the order of 100 electronics boards connected by
the order of 3000 optical links, which must be controlled and
monitoring coherently through software, with high operational
efficiency. In this paper, we present the design of the software
framework that is used to control and monitor the upgraded
Level-1 trigger system, and experiences from using this software
to commission the upgraded system.

I. INTRODUCTION

Since 2009, the Compact Muon Solenoid (CMS) experi-
ment [1] has been analysing the particles produced from the
proton—proton and heavy ion collisions of the Large Hadron
Collider, in order to investigate the predictions of the Standard
Model of particle physics, and search for physics beyond the
Standard Model. The Level-1 trigger system selects 100 kHz
of the most interesting events from the 40 MHz rate of proton—
proton collisions [2], using coarse data from the calorimeters
and muon detectors, within 3.8 us of each collision, whilst the
full-resolution data is held in pipeline memories in the front-
end electronics.

The legacy Level-1 trigger system is composed of ap-
proximately 4000 data processor boards, of several custom
application-specific designs [2]. These boards have been con-
trolled and monitored by a medium-sized distributed system
of over 40 computers and 200 processes. The legacy trigger
was organised into subsystems. Only a small fraction of the
control and monitoring software was common between the
different subsystems; the configuration data was stored in a
database, with a different schema for each subsystem. This
large proportion of subsystem-specific software resulted in

Manuscript received May 30, 2016.

S. Bologna is with University of Milan-Bicocca and INFN. Milano, Italy.

G. Codispoti is with University of Bologna and INFN. Bologna, Italy, and
CERN, Geneva, Switzerland.

G. Dirkx is with CERN, Geneva, Switzerland.

L. Kreczko is with H.H. Wills Physics Laboratory, University of Bristol.
UK.

C. Lazaridis is with Dept. of Physics, University of Wisconsin-Madison.
US.A.

E. Paradas is with University of Ioannina. Greece.

A. Rose is with Blackett Laboratory, Imperial College, London. U.K.

A. Thea and T. Williams are with STFC Rutherford Appleton Laboratory.
Harwell Oxford, U.K. (email: t.williams@cern.ch)

ECAL HF
energy

HCAL

energy energy

cscHits | | RPCHits | | PTHItS | | HouTR
CuOF
0 5
Layer-1 Mezz @
Calo
TwinMux

Layer-2 CPPF
Calo

1

DeMux DeMux end-cap overlap barrel
track track track
finder finder finder

Micro-Global

Muon Trigger

Micro-Global
Trigger

Fig. 1. Diagram illustrating the overall architecture of the Level-1 trigger
system. The black arrows represent the flow of trigger primitive data and local
trigger objects through the system. The back-end electronics for the detectors
(electromagnetic calorimeter, hadronic calorimeter and muon detectors) are
shown at the top of the diagram; the boxes below represent the trigger
electronics that analyses the calorimeter and muon detector trigger primitive
data, on the left and the right respectively. Each box corresponds to one or
more crates of electronics boards.

high long-term maintenance costs, and a high risk of losing
critical knowledge through the turnover of software developers
in the Level-1 trigger project.

After a two-year shutdown, the LHC restarted collisions
in 2015, with higher proton—proton centre-of-mass energy
(13TeV) and increased luminosity. So, the Level-1 trigger
system has been upgraded during 2015 and early 2016, in
order to improve its efficiency for searches and precision mea-
surements, compared with the previous run [3]. The upgraded
system is composed of a set of general purpose boards, that
follow the MicroTCA specification, connected by high-speed
serial optical links, resulting in a more homogeneous system.
This system will contain the order of 100 boards connected by
3000 optical links, which must be controlled and monitored
coherently. The data flow within the upgraded Level-1 trigger
system is shown in Fig. 1. The experiment’s off-detector
electronics transmit reduced-granularity data (trigger primi-
tives) from the calorimeters and muon detectors to the trigger
electronics over optical links. The trigger primitive data from

different fiducial regions of the muon detectors — the barrel,
end-cap, and overlap regions — are processed in three separate
track finder subsystems; the resulting three sets of muon track
candidates are combined in the micro-Global Muon Trigger.
The calorimeter data is processed to reconstruct electrons, tau
leptons and jets in a separate data path, consisting of two layers
of electronics: a first layer that time multiplexes the data, and
a second layer in which each electronic board processes the
data from the entire calorimeter for every 9th event, in a round
robin sequence. The particles reconstructed in the calorimeter
and muon pathways are then combined in the micro-Global
Trigger (uGT), which takes the decision of whether or not
a proton—proton collision is a sufficiently interesting event,
by applying kinematic and quality selection criteria on the
received particle candidates.

In this paper, we present the design of the software that is
used to control and monitor the upgraded Level-1 trigger sys-
tem, and experiences from using this software to commission
the upgraded system.

II. REQUIREMENTS ON THE CONTROL AND MONITORING
SOFTWARE

The Level-1 trigger system must be controlled and mon-
itored coherently through software, with high operational
efficiency. The control and monitoring software must have
reliable and predictable behaviour under all circumstances, and
must fulfil the trigger system’s operational requirements both
in its initial commissioning period, and for the next several
years.

A. Functional requirements: Control

The Level-1 trigger system must be configured through the
online software; during configuration, the electronic boards’
programmable logic must be set up correctly — for example,
in each board:

o The clock infrastructure must be configured correctly

o Optical input ports must be configured, and input data
aligned with appropriate delays

o Data processing algorithm parameters (such as energy
thresholds, and calibration factors) must be set to appro-
priate values according to the current running conditions
of the experiment and the LHC.

The online software must be able to configure the trigger
hardware in multiple scenarios:

1) Configuration of the entire trigger system by the shift
crew, along with all of the experiment’s detectors, for
normal data-taking runs. In this scenario, the trigger will
be controlled via SOAP (Simple Object Access Protocol)
messages sent from the top node of the experiment’s run
control hierarchy. To ensure traceability of the system’s
configuration during data-taking periods, the values of
configuration parameters used in each global run must
be stored in a database.

2) Configuration of the entire trigger system by experts,
without the experiment’s detectors, through a graphical
user interface (GUI).

3) Configuration of individual subsystems by experts, with-
out interfering with the operation of other subsystems.
This mode of operation is essential, in particular during
the commissioning period, and during LHC downtime,
for example in order to independently validate the func-
tionality of new firmware or software in that in that
subsystem.

After configuring the hardware, the online software should
perform appropriate checks to ensure that the operation has
been completed successfully. In case of failure — for example,
inability to lock onto the clock from an external source, or
errors in input ports — the online software must report back
detailed messages that allow the source of problem to be
identified promptly either by the shift crew, or by on-call
experts.

Finally, the configuration status of all subsystems must be
summarised in a single graphical interface.

B. Functional requirements: Monitoring

Once the Level-1 trigger is configured for a data taking run,
if any problem occurs in the trigger’s data processing chain
— for example, the failure of an optical transmitter — then
it must be detected and fixed in a timely manner, in order to
minimise the experiment’s downtime. As a result, the online
software must periodically query monitoring registers in the
trigger electronics, and promptly alert the shift crew when
a problem is detected. Furthermore, the graphical interfaces
must allow rapid access to sufficient in-depth information in
order for the shift crew, or on-call experts, to be able to fix
the problem quickly and thereby minimise downtime.

In addition, the values of some of the monitoring data read
from the hardware must be periodically stored in a database.
A small amount of this archived monitoring data is critical, i.e.
the experiment should not continue to run if the data storage
mechanism fails. For example, the prescale factors used by
the ©GT must be recorded every 23 seconds. It is also useful
to periodically archive a large proportion of the monitoring
data values from each subsystem, for post-mortem analysis;
however, this more extensive archiving of monitoring data
archival is not critical to the experiment’s operation.

C. Non-functional requirements

Commissioning The implementation of the control and mon-
itoring software must be flexible enough to be able to rapidly
add new features during the commissioning period, adapt to
continually evolving operational needs, and improve interfaces
based on experience. In order to minimise downtime during
the short commissioning period, such rapid improvement of
the online software must be achievable without introducing
bugs or regressions into existing functionality.

Testing The online software should be designed so that as
much as is practical of its functionality can be validated by unit
tests or integration tests without access to the trigger hardware.

Personpower Any common control and monitoring software
framework should be designed to minimise the required per-
sonpower for both development and maintenance of the online
software of the Level-1 trigger upgrade project as a whole.

¥ 17 '
Optical Clock
oc
] TTC TTC
»! Input 1<
——| Algorithm
< output{ Readout|+—DAQ
| E—
T I 4

Fig. 2. Diagram showing the common model for data processor boards.

Maintainable lifetime The upgraded Level-1 trigger system
could be operating for several years; its control and monitoring
infrastructure should have same maintainable lifetime.

Existing control and monitoring libraries The online soft-
ware should make use of the existing functionality provided by
the XDAQ [4] and Trigger Supervisor (TS) [5] libraries, in par-
ticular the infrastructure for distributed control and monitoring
systems, running programs as services and implementing web
servers.

III. COMMON PROCESSOR AND SYSTEM MODELS

In order to minimise the personpower required for the devel-
opment of the Level-1 trigger online software overall, the com-
mon online software framework should provide a subsystem-
agnostic interface that reflects the common structure of the
subsystems in the upgraded Level-1 trigger. A uniform in-
depth graphical interface for controlling and monitoring sub-
systems will also simplify the training of the shift crew, on-call
experts, and other operation personnel. Therefore, in the early
stages of designing this common online software framework,
significant effort was dedicated to identifying an in-depth
generic description of the upgrade hardware that is applicable
to all subsystems.

A. Common processor model

In each subsystem, the data processing nodes are all AMCs
(Advanced Mezzanine Cards) following the MicroTCA spec-
ification [6]. Each AMC uses an FPGA (Field Programmable
Gate Array) for processing logic, and transmits/receives the
trigger data on high-speed serial optical links. The common
structure of the logic in each data processing board is reflected
in the common processor model, shown in Fig. 2; in this
model, each data processor board consists of:

e A TTC block, that receives the clock and fast (fixed-
latency) control commands from TCDS (Trigger Control
and Distribution System) [3], the experiment’s central
clock and trigger distribution system.

e Zero or more optical input ports

e Zero or more optical output ports

o An algorithm block, that processes the data received on
the optical input ports into data for the optical output
ports

Fig. 3. Diagram showing the common model for the structure of systems
of processor boards within the Level-1 trigger. Each black box represents a
single electroncis board, each grey box represents a MicroTCA crate, and each
dashed box represents a subsystem of the Level-1 trigger. The black arrows
represent optical links carrying trigger primitives or trigger objects. The blue
arrows represent the paths of the clock signals and fixed-latency commands
sent by TCDS. The red arrows represent the flow of readout data to the DAQ
system.

o A readout block, that sends data from the board’s input
and output buffers to the experiment’s Data Acquisition
(DAQ) system. This recorded I/O data is later used to
validate that the trigger algorithm firmware is functioning
correctly.

B. Common system model

Each subsystem consists of one or more processor
boards housed in MicroTCA crates. A common module, the
AMCI13 [7], provides the clock, timing and DAQ services (i.e.
TTC, TTS and DAQ backplane links) for all data processor
AMCs within each MicroTCA crate. It distributes the clock
and fast commands that it receives from TCDS onto high-
speed point-to-point links on the MicroTCA backplane; in
the opposite direction, it receives readout data over backplane
links from each slot, and forwards that data into the CMS
DAQ network. The common model for the structure of the
trigger subsystems is shown in Fig. 3; in this abstract model,
the AMC13 is referred to as a DAQ-TTC manager.

IV. THE SWATCH FRAMEWORK

The SWATCH (SoftWare for Automating the conTrol of
Common Hardware) framework provides a set of abstract
interfaces for controlling and monitoring the hardware of
the upgraded Level-1 trigger system, following the common
processor and system models, whilst remaining independent
of the driver software.

Within SWATCH, the structure of each subsystem — i.e.
the locations and names of processors, optical I/O ports and
AMCI13s, as well as their interconnections — are stored in
subsystem-agnostic data structures.

Each component within the common processor and system
models is represented by an abstract interface class. The sub-
system specific software for controlling and monitoring each
of these components is implemented in subsystem-specific
classes that inherit from the common interface classes. The
subsystem-specific classes for processors, systems and DAQ-
TTC managers are registered and created using the factory
pattern.

The SWATCH framework provides a generic interface for
controlling each individual electronics board (both processors
and DAQ-TTC managers), based on three concepts:

o Command A stateless action, represented by an ab-
stract base class that is customised for subsystem-specific
drivers by subtype polymorphism. Commands form the
fundamental modular block of hardware control.

o Command sequence A stateless action, consisting of a list
of commands that are executed in sequence.

e Finite state machine (FSM) Stateful actions; each FSM
consists of a set of named states connected by transitions.
Each transition between states is a list of commands that
are executed in sequence. The structure of the standard
run control FSM for processors and DAQ-TTC managers
are automatically defined; their transitions are later popu-
lated with subsystem-specific command sequences in the
constructors of subsystem-specific classes.

The parameters required for each command are registered
through a generic interface; the values of parameters can
be automatically retrieved by the framework, through the
gatekeeper interface, an abstract representation of a pool of
named configuration parameters. The gatekeeper interface was
designed to be independent of the source of the configuration
parameter values, in order to allow subsystem hardware to be
easily configured and tested using file-based configurations,
in scenarios when accessing the configuration database is not
pratical (for example, when testing hardware in a laboratory
outside of CERN). During the commissioning period, this
source-agnostic gatekeeper interface also ensured a seamless
transition when the control software switched from using
reading configuration parameters from files, to reading them
from the database.

The SWATCH framework also provides a generic interface
for monitoring the status of each board, based on two concepts:

e Metric Represents an individual item of monitoring data
that is read from the hardware. Each metric can have as-
sociated error/warning conditions, that determine whether
the metric’s current value results in an error/warning
monitoring state.

o Monitorable object can contain metrics and other mon-
itorable objects as children. The monitoring state of a
monitorable object is the combined status of all its child
metrics and monitorable objects. Each of the common
firmware components within processors and DAQ-TTC
managers (for example, optical I/O ports, TTC block,
readout block) are represented in SWATCH as a mon-
itorable object.

The framework allows both common metrics to be registered
in the abstract interface classes, and additional subsystem-

specific metrics to be registered in subsystem-specific classes.

A comprehensive suite of unit and integration tests for
the SWATCH framework have been developed; these were
implemented using the BOOST unit test framework, and are
run regularly during development. We have found these unit
and integration tests to be essential for quickly developing
new features in the commissioning phase, without suffering
from downtime due to bugs or regressions. Notably, since
the SWATCH framework is hardware-agnostic, the frame-
work’s entire functionality can be tested without access to any
subsystem’s hardware; instead the unit and integration tests
use dummy classes that represent processors and DAQ-TTC
managers locally within computer memory.

V. DISTRIBUTED CONTROL AND MONITORING

The SWATCH framework described in the previous section
provides a C++ API for controlling and monitoring hardware
whose structure matches the common processor and system
models, whilst allowing the configuration sequence and the
mechanism for retrieving monitoring data to be defined by
each subsystem as required. However, the online software must
also provide a graphical user interface that shows the con-
figuration status and monitoring status of each subsystem. In
addition, each subsystem must be integrated into the CMS run
control hierarchy so that the trigger system can be configured
coherently by the shift crew, in global runs, along with all of
the experiment’s detectors.

The Trigger Supervisor cell [5] is a XDAQ application that
contains a generic interface to register stateful and stateless
actions that can be initiated through a graphical user interface
(webpages), or by SOAP messages received over the network
— for example, from the CMS run control applications or from
other TS cells. In the legacy trigger system, each subsystem
was controlled by a unique hierarchy of cells, since each
crate of electronics could only be directly controlled and
monitored from a single computer. However, the majority of
the hardware in the upgraded trigger system is controlled
and monitored using IP-based communication protocols, and
hence the host computers for online software applications can
be de-localised with respect to the hardware. Therefore, to
simplify the operation of the entire upgraded trigger system,
and the independent operation of individual subsystems, each
subsystem is controlled and monitored by a single TS cell.

Through the SWATCH framework’s subsystem-agnostic
API, we have been able to develop subsystem-agnostic im-
plementations for a significant fraction of the cell’s hardware-
agnostic functionality, such as the network-based run control
FSM, threads that periodically collect monitoring data from
the hardware, and the retrieval of configuration parameters
from database. The configuration of all subsystems for global
running is coordinated by another TS cell, the central cell;
the central cell is in turn controlled by the Level-1 Trigger’s
Function Manager, a java application that lies in the 2nd
layer of the central CMS run control hierarchy. The full run
control hierarchy for the upgraded LIT system is shown in
Fig. 4. These applications have been successfully controlling
and monitoring the upgraded Level-1 trigger since February.

—
=

controls_
>

<«

query|Database
proxy

Oracle
database

Database
proxy

controls
monitors

Hardware

Fig. 4. A diagram illustrating the hierarchy of applications and services that
are used to configure the upgraded Level-1 trigger system.

A. Graphical user interface

The C++ API of the SWATCH framework both reflects
the common processor and system model, and exposes the
common and subsystem-specific monitoring/control primitives
through subsystem-agnostic interfaces. As a result, it was
feasible to develop common graphical user interfaces for
the subsystem TS cell that allow subsystem experts, on-call
personnel and shift crew to (among other things):

o Control one or more boards by executing commands,
sequences or FSM transitions, and then view the detailed
status and results of those actions

o View the monitoring status of an entire system, or of
individual processors, I/O ports and DAQ-TTC managers.

« Inspect the current values of any user-defined subset of
monitoring data (metrics) and their error/warning condi-
tions.

« Plot the values of any user-defined subset of monitoring
data (metrics) in real time.

Some of the graphical user interfaces are shown in Fig. 5.
These generic GUIs are used regularly by subsystem experts
to control subsystems in standalone tests, and by shift crew
or on-call personnel in order to rapidly diagnose problems
observed during global running. The ability to implement these
GUIs only once, using the subsystem-agnostic SWATCH API
has significantly reduced the personpower required to develop
online software during the commissioning period.

= CALOL2 SWATCH Cell) Control Panels) SWATCH Commands @

es

SELECTALL SELECTNONE

Load from GateKeeper:
P [ZAun commanD

- peers Last upciatod: 203605

Oiect Suws PN progress Messsge Resut

(Conflgu Fx MGTs complatec: XD, x0T, R0z, R3, Rudd,
A0S, Rx06, <07, Ra08, R0B, Rx10, R, A, Rxtd, Rxid,

= CALOL2 SWATCH Cell) Control Panels) SWATCH Monitoring @

calol2 system overview [t]

Systom Procassors Object Detalls Ports

82D11-20 foc

SWATCH Sy
3 Montoring
- pears

o8 Processor ID st Staus algo readout te
on

inputPorts outputPorts.

= CALOL2 SWATCH Cell)

EEEEEEEEE
Output Ports
MY

Input Port Details

Monitorng: Enabled
MPO N

Portld Status Monitoring Masked crcrrors isLocked

alignCycle

alignErrors alignBx packetCounter isAligned

Ax00 Enabled False 0 o 485 255 o true true
R0t G Enabled False o o 3495 255 o true true

Rx02 Enabled False o [3495 255 o true true

Fig. 5. Some of the generic GUIs for controlling and monitoring the
subsystems of the upgraded Level-1 trigger.

VI. CONCLUSIONS

The software framework (SWATCH) that provides a generic
interface for controlling and monitoring the upgraded Level-1
trigger’s hardware has been presented. This new framework
has controlled and monitored the upgraded trigger system
coherently and reliably, since February. The design of this
framework is based on common models of the data processor
boards, and the subsystems. By defining a generic hardware
description of significantly finer granularity, the SWATCH
framework has enabled the creation of a more uniform graph-
ical interface across the different subsystems compared with
the legacy system, simplifying the training of the shift crew,
on-call experts, and other operation personnel. A common
database schema is now used to store configuration parameters
and a description of the hardware in each subsystem. The
architecture of online software services is now identical for

all subsystems. The introduction of the SWATCH framework
has increased the proportion of common online software in the
Level-1 trigger project. In long term, this increased fraction
of common software should reduce the maintenance costs and
risk of losing critical knowledge through turnover of software
developers.

ACKNOWLEDGMENT

We would like to thank the Science and Technology Facili-
ties Council (STFC) for funding the U.K. contribution to this
research.

[1

[2

3

[4

[5

[6

[7

1

—

]

]
1

—

—

REFERENCES

The CMS collaboration, “The CMS experiment at the CERN LHC,”
Journal of Instrumentation, vol. 3, no. 08, p. S08004, 2008. [Online].
Available: http://stacks.iop.org/1748-0221/3/i=08/a=S08004

The CMS Collaboration, CMS TriDAS project: Technical Design Report,
Volume 1: The Trigger Systems, ser. Technical Design Report CMS.
Geneva: CERN, 2000.

The CMS collaboration, “CMS Technical Design Report for the Level-1
Trigger Upgrade,” CERN, Geneva, Tech. Rep. CERN-LHCC-2013-011,
CMS-TDR-12, Jun 2013, http://cds.cern.ch/record/1556311.

XDAQ developers, “XDAQ website,” https://svnweb.cern.ch/trac/cmsos.
I. Magrans de Abril, C. E. Wulz, and J. Varela, “Concept of the CMS
trigger supervisor,” IEEE Trans. Nucl. Sci., vol. 53, pp. 474483, 2006.
The PCI Industrial Computer Manufacturers Group (PICMG), “Mi-
croTCA: PICMG MTCA.0 R1.0 Short Form Specification,” PICMG,
Tech. Rep. PICMG MTCA.O R1.0, Sep 2006, http://www.picmg.org/pdf/
MicroTCA_Short_Form_Sept_2006.pdf.

E. Hazen, A. Heister, C. Hill, J. Rohlf, S. X. Wu, and D. Zou,
“The AMCI13XG: a new generation clock/timing/DAQ module for CMS
MicroTCA,” Journal of Instrumentation, vol. 8, no. 12, p. C12036, 2013.
[Online]. Available: http://stacks.iop.org/1748-0221/8/i=12/a=C12036

