

tt + X production at ATLAS and CMS

Antonio Sidoti

on behalf of the ATLAS and CMS collaborations

Istituto Nazionale Fisica Nucleare - Sezione di Bologna

Top quark

Try to avoid repetitions with M. Aldaya Martin on Tuesday plenary session

- Top quark elementary particle with the largest mass
- → Largest Yukawa coupling

Deviation from SM predictions → Hints of BSM

- Top quark decays before hadronization
- \rightarrow ~ free quark
- → Test of perturbative QCD
- tt pairs produced with large statistics at LHC

 \rightarrow Main background to many BSM searches (cf .C. Lee presentation on plenary)

√s	7 TeV	8 TeV	13 TeV
σ(tī) (pb)	177	253	830

Uncertainties: PDF \rightarrow ~5 %, Scale and $\alpha_s \rightarrow$:~3%

NNLO+NNLL Predictions (Czakon and Mitov Comput.Phys.Commun. 185 (2014) 2930) tt pairs predominantly produced from gg \rightarrow tt at LHC (~90% at $\sqrt{s}=13$ TeV)

Top quark pair decay

BR(t \rightarrow Wb) almost 100%

Different final state according to W boson decay modes.

Decay modes considered:

- Lepton +jet (e/μ + jet)
- Dilepton (ee,eμ,μμ)

Measurements at $\sqrt{s}=7$, 8 and 13 TeV

tt inclusive cross section measurement at 13 TeV: CMS

Measurement of ttbar cross section in diletpon channel

→ only e μ Full 2015 statistics: 2.2 fb⁻¹

For M_{top}=172.5 GeV Theory predictions from: Czakon and Mitov Comput.Phys.Commun. 185 (2014) 2930

$$\sigma_{t\bar{t}} = 832^{+20}_{-29} \pm 35$$
 (pdf) pb at $\sqrt{s} = 13$ TeV

Cross section measurement cut & count method:

 $\sigma_{t\bar{t}} = \frac{N - N_B}{\mathcal{A} \cdot \mathcal{L}},$

 $\sigma_{t\bar{t}} = 793 \pm 8 \text{ (stat)} \pm 38 \text{ (syst)} \pm 21 \text{ (lumi) pb}$

Largest experimental systematics: Lepton eff (2.3%), Jet Energy scale (2.2%), btagging (1.4%) From theory: NLO Generator (2.1%), Single top quark (1.5 %),

01/06/2016

tt inclusive cross section measurement at13 TeV: ATLAS13 TeV: ATLAS13 TeV: 3.2 fb^1

Different method \rightarrow reduce the systematics Measuring 1 and 2 btag events Fit simultaneously $\sigma_{t\bar{t}}$ and ϵ_{b-tag} efficiency

Event counts	N_1	N_2	
Data	11958	7069	$\sigma_{t\bar{t}} = 803 \pm 7 \text{ (stat)}$
Single top	1160 ± 120	224 ± 70	fid 11.10 0.10 (
Dibosons	34 ± 12	1 ± 0	$\sigma_{t\bar{t}}^{\rm ind} = 11.12 \pm 0.10$ (
$Z(\to \tau \tau \to e\mu) + \text{jets}$	37 ± 16	2 ± 1	
Misidentified leptons	165 ± 65	116 ± 55	
Total background	1390 ± 140	343 ± 89	- loti - Rencontres Blois 2016

Largest systematics: Ttbar hadronization (2.8 %), NLO (0.8%), misidentified leptons (0.6 %)

 $\sigma_{t\bar{t}} = 803 \pm 7 \text{ (stat)} \pm 27 \text{ (syst)} \pm 45 \text{ (lumi)} \pm 12 \text{ (beam) pb},$

 $\sigma_{t\bar{t}}^{\text{fid}} = 11.12 \pm 0.10 \text{ (stat)} \pm 0.28 \text{ (syst)} \pm 0.62 \text{ (lumi)} \pm 0.17 \text{ (beam) pb},$

ATLAS: ATLAS-CONF-2016-005

Ratio tt to Z production at 13 TeV: ATLAS

To reduce luminosity uncertainties measure ratio wrt well known processes

$$R_{t\bar{t}/Z} = \frac{\sigma_{t\bar{t}}}{0.5 \left(\sigma_{Z \rightarrow ee} + \sigma_{Z \rightarrow \mu\mu}\right)}\,,$$

Measure $\sigma(pp \rightarrow tt)$ in dilepton (ee, $\mu\mu$) (same method as e μ) or lep (e/ μ)+jet

 $R_{t\bar{t}/Z} = 0.445 \pm 0.027 \text{ (stat)} \pm 0.028 \text{ (syst)} = 0.445 \pm 0.039$,

Largest systematics: Ttbar hadronization (4.5 %), NLO (2.2%), Lepton Id & Trigger (2.2%) Z acceptance (1.5%) PDF (1.4%), misidentified leptons (1.4 %). ISR/FSR (1.2%) Powerful test of Parton Distribution Functions

$t\bar{t}$ inclusive cross section legacy measurement at 7 and 8 TeV: CMS $e\mu$

Profile LH fit of P_{τ} of additional jets in 0,1 and 2 b-tag regions

 P_{τ} of additional jets sensible to modeling uncertainties

Measure visible inclusive cross section \rightarrow extrapolate to full phase space

$$\begin{array}{lll} \sigma_{t\bar{t}} &=& 173.6 \pm 2.1 \, ({\rm stat})^{+\,4.5}_{-\,4.0} \, ({\rm syst}) \pm 3.8 \, ({\rm lumi}) \, {\rm pb} & {\bf 7 \, {\rm TeV}} \\ \sigma_{t\bar{t}} &=& 244.9 \pm 1.4 \, ({\rm stat})^{+\,6.3}_{-\,5.5} \, ({\rm syst}) \pm 6.4 \, ({\rm lumi}) \, {\rm pb} & {\bf 8 \, {\rm TeV}} \end{array}$$

CMS (7 and 8 TeV eµ): arXiv: 1603.02303

01/06/2016

tt inclusive cross section legacy measurement at 7 and 8 TeV: CMS lep+jet

tī inclusive cross section measurement at 13 TeV vs 8 TeV (eµ and lep+jet): ATLAS and CMS

	Companson of systematic uncertainties					
	Run 1 Legacy papers			First Run2 measurement		
Systematics (%)	ATLAS Run1 (8 TeV) Eur.Phys.J. C74 (2014) 3109	CMS Run1 (7 and 8 TeV) 1603.02303	CMS Run1 (8 TeV) lep+jet 1602.09024	ATLAS Run2 (13 TeV) ATLAS-CONF -2016-005		
PDF	1.1	0.3	2.1	0.5		
Modelling	1.2	1.1	4.4	28		
MC generator	0.9	1.1	3.7	2.0		
Lepton Reconstruction & Trigger	0.9	1.9	0.5	0.8		
Jet Reconstruction & E _T scale	0.7	0.9	2.2	0.4		
b-tagging	0.4	0.5	0.7	0.3		
Backgrounds	0.3	1.6	0.3	1.1		

15 years of tt xsection Measurements

01/06/2016

Differential xsection Measurement

Lepton + jet channel e/μ (CMS also dilepton)

- Reconstructed variables: Hadronic top and $t\bar{t}$ system P_{T} , y,...
- → Particle level (Fiducial phase space)
- → Parton Level (Full phase space)
- Detector: \vec{E}_{T} , N_{jet} , N_{bjet}
- Radiation sensitive: $\Delta \phi$,...

CMS and ATLAS are providing RIVET routines easing comparison with theory

Two kinematical regimes:

- Resolved (top quark with low P_{T})
- Boosted (enhanced at 13 TeV, BSM may increase this region)
- → use jet substructure to reduce QCD background

Differential xsection Measurement: 8 TeV

8 TeV measurements: Parton level

Differential cross section as a function of P_{τ} of reconstructed top (hadronic) Theoretical predictions overshoot measured data (discrepancy increases with momentum)

01/06/2016 ATLAS: Resolved: arXiv: 1511.04716 (Accepted EPJC) Boosted Phys. Rev. D93 (2016) 032009 Rivet routine

A. Sidoti - Rencontres Blois 2016 CMS:

Resolved EPJC 75 (2015) 542 (dilepton) Boosted arXiv:1605.00116 (Subm Phys Rev D)

Differential xsection Measurement: 8 TeV

PDF variations enhanced in large Pt bin

Comparison with differente NLO generators

Discrepancy seems to be reduced with NNLO predictions

https://twiki.cern.ch/twiki/pub/LHCPhysics/LHCTopWGSummaryPlots/t t xsec diff 8TeV toppt.pdf

Differential xsection Measurement: 13 TeV

tt+jets: 13 TeV

Mismodeling of $t\bar{t}$ +jets \rightarrow uncertainties in measurements where $t\bar{t}$ +jets are background

ATLAS main uncertainties:

Jet Energy scales ~5% to 22% Signal modeling 6% to 18%

CMS main uncertainties: Jet Energy scales ~0.5% to 8% μ_{r}/μ_{p} and PS 6% to 10%

A. Sidoti - Rencontres Blois 2016

tt+jets: 13 TeV

Large dependence on α_s in ISR (cf CMS)

tt+jet: Jet Rapidity Gap 8 TeV

 $\begin{array}{r} \text{# events with no additional jets in} \\ \text{rapidity interval with } \Sigma E_{T,Jet} > H_{T} \\ \hline \end{array}$

Total events ATLAS: In preparation CMS: CMS-TOP-12-041 (accepted by EPJC)

A. Sidoti - Rencontres Blois 2016

tt+b-jets (8 TeV)

Crucial to understand tt+HF production to reduce uncertainties

18

ttW and ttZ (13 TeV)

Theory prediction at 13 TeV ($t\bar{t}Z \times 3.5$ wrt 8 TeV, $t\bar{t}W \times 2.4$)

 $\sigma(t\bar{t}Z) = 839.3^{+80}_{-92}(scale) \stackrel{+25}{_{-25}}(pdf) \stackrel{+25}{_{-25}}(\alpha_s) fb$

 $\sigma(t\bar{t}W)$ =570 fb (~10% uncertainty)

Irreducible background for Higgs (ttH) and BSM searches with multileptons signatures

 $\sigma(pp \rightarrow t\bar{t}Z) = 1065 {}^{+352}_{-313}(stat.) {}^{+168}_{-142}(sys.)$ fb

CMS@13 TeV

 $\sigma(t\bar{t}Z)=0.92\pm0.30(stat)\pm0.11$ (syst) pb $\sigma(t\bar{t}W)=1.38\pm0.70(stat)\pm0.33(syst)$ pb

Multilepton channels: ATLAS: tīW Same Sign dimuon and trilepton ATLAS and CMS: Trilepton and 4-lepton channels

Method: cut&count analysis using different signal regions (different jet multiplicities and b-tag multiplicities) Evaluate reducible background using data-driven methods

With more statistics \rightarrow go differential! Handle for anomalous gauge couplings or EFT studies ATLAS@13 TeV

```
ATLAS: (ttW and ttZ @ 13 TeV)
ATLAS-CONF-2016-003
```

CMS (ttZ @ 13 TeV): CMS-PAS-TOP-16-008

Pre-fit 3-lep ttZ Signal region

ttW and ttZ (13 TeV)

Measurement Summary

Measurements	7 TeV	8 TeV	13 TeV
Inclusive Cross Section	✓	✓	✓
Differential Cross section (Resolved)	✓	1	✓ (CMS)
Differential Cross section (Boosted)	✓	✓	
tt + jets	✓	✓	✓ (CMS b- jet)(ATLAS jets)
tt + photon	✓	1	
tt+W/Z		✓	✓ (ATLASW and Z)✓ (CMS Z)

Conclusions

Toward precision measurement in $t\bar{t}$ cross section Exploit increase of \sqrt{s} for differential measurement

- \rightarrow Search for physics BSM (enhanced in boosted region?)
- Improve precision and MC tuning of $t\bar{t}+\gamma/jet(HF)/W/Z$ for better

background determination

tt+Z for top-Z boson couplings (BSM searches, EFT parametrization)