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1 Introduction

The strong coupling αs is one of the most important parameters of the standard model. A clean
environment for determining αs is the study of event shape distributions in electron-positron
collisions. Particularly well suited for this task are quantities related to three-jet events, as the
leading term in a perturbative description of such observables is already proportional to the
strong coupling. Accordingly, three-jet event shapes were measured extensively, especially at
LEP [1–4]. The precision of experimental measurements calls for an equally precise theoretical
description of these quantities. Because the strong interactions occur only in the final state,
non-perturbative QCD corrections are restricted to hadronization and power corrections. These
corrections can be determined either by extracting them from data by comparison to Monte
Carlo predictions or by using analytic models. Hence, the precision of the theoretical predictions
is mostly limited by the truncation of the perturbative expansion in the strong coupling.

Current state-of-the art includes next-to-next-to-leading order (NNLO) predictions for the
three-jet event shapes of thrust, heavy jet mass, total and wide jet broadening, C-parameter
and the two-to-three jet transition variable y23 [5, 6], as well as for oblateness and energy-
energy correlation [7]. Next-to-leading order (NLO) predictions for the production of up to
five jets [8–12] (and up to seven jets in the leading color approximation [13]) are also known.
Moreover, logarithmically enhanced contributions to event shapes can be resummed at up to
next-to-next-to-leading logarithmic (NNLL) accuracy [14–18] and even at next-to-next-to-next-
to-leading logarithmic (N3LL) accuracy for some observables [19,20].

In addition to its phenomenological relevance, three-jet production in electron-positron colli-
sions is also an ideal testing ground for developing general tools and techniques for higher-order
calculations in QCD. The straightforward evaluation of radiative corrections in QCD is ham-
pered by the presence of infrared singularities in intermediate stages of the calculation which
cancel in the final physical results for these observables. Nevertheless, they must be regularized
and their cancellation has to be made explicit before any numerical computation can be per-
formed. This turns out to be rather involved for fully differential cross sections at NNLO and
constructing a method to regularize infrared divergences has been an ongoing task for many
years [21–53].

In this paper we present a general subtraction scheme to compute fully differential pre-
dictions at NNLO accuracy, called CoLoRFulNNLO (Completely Local subtRactions for Fully
differential predictions at NNLO accuracy) [41–51]. The method uses the known universal fac-
torization properties of QCD matrix elements in soft and collinear limits [54–62] to construct
completely local subtraction terms which regularize infrared singularities associated with unre-
solved real emission. Virtual contributions are rendered finite by adding back the subtractions
after integration and summation over the phase space and quantum numbers (color and fla-
vor) of the unresolved emission. We have worked out the method completely for processes
with a colorless initial state and involving any number of colored massless particles in the final
state. We validate our method and code by computing NNLO corrections to three-jet event
shape variables and comparing our predictions to those available in the literature [5,6]. We also
present here for the first time the computation of the jet cone energy fraction (JCEF) at NNLO
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accuracy. We note that the CoLoRFulNNLO method has already been successfully applied to
compute NNLO corrections to differential distributions describing the decay of a Higgs boson
into a pair of b-quarks [63], as well as to the computation of oblateness and energy-energy
correlation in e+e− → 3 jet production [7].

The paper is structured as follows: after introducing our notation and conventions in sec-
tion 2, we present the CoLoRFulNNLO method in section 3. In section 4 we describe the
application of the general framework to the specific case of three-jet production. In particu-
lar, we show that the double virtual contribution is free of singularities. Our predictions for
event shape observables follow in section 5. We draw our conclusions and give our outlook in
section 6.

2 Notation and conventions

2.1 Phase space and kinematics

The phase space measure in d = 4− 2ε dimensions for a total incoming momentum Qµ and n
massless outgoing particles reads

dφn(Q2) ≡ dφn
(
pµ1 , . . . , p

µ
n;Qµ

)
=

[
n∏
i=1

ddpi
(2π)d−1

δ+(p2
i )

]
(2π)dδ(d)

(
pµ1 + . . .+ pµn −Qµ

)
. (2.1)

Throughout the paper, we will use yik to denote twice the dot-product of two momenta, scaled
by the total momentum squared Q2. For example,

yik =
2pi · pk
Q2

=
sik
Q2

and yiQ =
2pi ·Q
Q2

. (2.2)

We also introduce the combination
Yik,Q =

yik
yiQykQ

(2.3)

for later convenience.

2.2 Matrix elements

We use the color and spin space notation of ref. [64] where the renormalized matrix element
for a given process with n particles in the final state, |Mn〉, is a vector in color and spin space,
normalized such that the squared matrix element summed over colors and spins is given by

|Mn|2 = 〈Mn|Mn〉 . (2.4)

The renormalized matrix element has the following formal loop expansion

|Mn〉 = |M(0)
n 〉+ |M(1)

n 〉+ |M(2)
n 〉+ . . . , (2.5)
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where the superscript denotes the number of loops. We will always consider matrix elements
computed in conventional dimensional regularization (CDR) with MS subtraction. We intro-
duce the following notation to indicate color-correlated squared matrix elements (obtained by

the insertion of color charge operators between 〈M(`1)
n | and |M(`2)

n 〉):

〈M(`1)|M(`2)〉 ⊗ T i ·T k = 〈M(`1)|T i ·T k |M(`2)
n 〉 ,

〈M(`1)|M(`2)〉 ⊗ {T i ·T k,T j ·T l} = 〈M(`1)|{T i ·T k,T j ·T l}|M(`2)〉 .
(2.6)

The color charge algebra for the product
∑

a(T i)
a(T k)

a ≡ T i ·T k is

T i ·T k = T k ·T i , if i 6= k and T 2
i = Ci , (2.7)

where Ci is the quadratic Casimir operator in the representation of particle i. We use the
customary normalization TR = 1/2, and so CA = 2TRNc = Nc in the adjoint and CF =
TR(N2

c − 1)/Nc = (N2
c − 1)/(2Nc) in the fundamental representation.

2.3 Ultraviolet renormalization

In massless QCD renormalized amplitudes |Mn〉 are obtained from the corresponding unrenor-
malized amplitudes |An〉 by replacing the bare coupling αBs with the dimensionless renormalized
coupling αs ≡ αs(µ) computed in the MS scheme and evaluated at the renormalization scale µ,

αBs µ
2ε
0 SMS

ε = αsµ
2ε

[
1− αs

4π

β0

ε
+
(αs

4π

)2
(
β2

0

ε2
− β1

2ε

)
+ O(α3

s )

]
, (2.8)

where

β0 =
11CA

3
− 4nfTR

3
, β1 =

34

3
C2

A −
20

3
CATRnf − 4CFTRnf , (2.9)

and SMS
ε = (4π)ε exp(−εγE) corresponds to MS subtraction, with γE = −Γ′(1) the Euler–

Mascheroni constant. Although the factor (4π)ε exp(−εγE) is often abbreviated as Sε in the
literature, we reserve the latter to denote

Sε =
(4π)ε

Γ(1− ε) , (2.10)

which emerges in the integration of the angular part of the phase space in d = 4−2ε dimensions.
If the loop expansion of the unrenormalized amplitude is written as

|Am〉 = (4παBs )
q
2

[
|A(0)

m 〉+
αBs
4π
|A(1)

m 〉+

(
αBs
4π

)2

|A(2)
m 〉+ O(α3

s )

]
, (2.11)

(with q = m − 2, where m is the number of massless final-state partons in the Born pro-
cess) then using the substitution in eq. (2.8) the relations between the renormalized and the
unrenormalized amplitudes are given as follows:

|M(0)
m 〉 = C(µ, µ0, q; ε)|A(0)

m 〉 , (2.12)
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|M(1)
m 〉 = C(µ, µ0, q; ε)

αs

4π

[(
µ2

µ2
0

)ε (
SMS
ε

)−1

|A(1)
m 〉 −

q

2

β0

ε
|A(0)

m 〉
]

(2.13)

and

|M(2)
m 〉 = C(µ, µ0, q; ε)

(αs

4π

)2
[(

µ2

µ2
0

)2ε (
SMS
ε

)−2

|A(2)
m 〉 −

q + 2

2

β0

ε

(
µ2

µ2
0

)ε (
SMS
ε

)−1

|A(1)
m 〉

+
q

2

(
q + 2

4

β2
0

ε2
− β1

ε

)
|A(0)

m 〉
]
,

(2.14)

where

C(µ, µ0, q; ε) = (4παs)
q
2

(
µ2

µ2
0

) q
2
ε (
SMS
ε

)− q
2
. (2.15)

The role of the factors of (µ2/µ2
0)ε is to change the regularization scale to the renormalization

scale so that the renormalized amplitudes in eqs. (2.12)–(2.14) only depend on µ. Furthermore,
after the IR poles are canceled in a fixed order computation, we may set ε = 0, therefore, the
factors of (µ2/µ2

0)ε and SMS
ε in C(µ, µ0, q; ε) do not give any contribution, so we may perform

the replacement
C(µ, µ0, q; ε)→ (4παs)

q
2 . (2.16)

3 Jet production in CoLoRFulNNLO

We consider the production of m jets from a colorless initial state as in, e.g., Higgs boson decay
or electron-positron annihilation into hadrons. In perturbative QCD the cross section for this
process is given by an expansion in powers of the strong coupling αs. At NNLO accuracy we
retain the first three terms in this expansion

σ = σLO + σNLO + σNNLO + . . . . (3.1)

The leading order contribution is simply given by the integral of the fully differential Born cross
section dσB

m of m final-state partons over the the available m-parton phase space defined by
the observable J , (often called jet function)

σLO[J ] =

∫
m

dσB
mJm . (3.2)

Here and in the following Jm denotes the value of the infrared-safe observable J evaluated on
a final state with m partons.

3.1 The NLO correction

The NLO correction is a sum of the real radiation and one-loop virtual terms,

σNLO[J ] =

∫
m+1

dσR
m+1Jm+1 +

∫
m

dσV
mJm , (3.3)
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both divergent in four dimensions. These two contributions can be made finite simultaneously
by subtracting and adding back a suitably defined approximate cross section dσ

R,A1
m+1 ,

σNLO[J ] =

∫
m+1

[
dσR

m+1Jm+1 − dσ
R,A1
m+1Jm

]
d=4

+

∫
m

[
dσV

m +

∫
1

dσ
R,A1
m+1

]
d=4

Jm . (3.4)

Several prescriptions are available for the explicit construction of the approximate cross section
[42,47,64–66]. Specifically in the CoLoRFulNNLO framework, it is written as

dσ
R,A1
m+1 =

1

2s
dφm+1(Q2)A1|M(0)

m+1|2 , (3.5)

where the approximate matrix element for processes with m + 1 partons in the final state is
given by [42,43],

A1|M(0)
m+1|2 =

m+1∑
r=1

[
m+1∑
i=1
i 6=r

1

2
C(0,0)
ir −

(
S(0,0)
r −

m+1∑
i=1
i 6=r

CirS(0,0)
r

)]
. (3.6)

On the right-hand side of eq. (3.6), C(0,0)
ir and S(0,0)

r denote counterterms which regularize the

~pi||~pr collinear limit and the pµr → 0 soft limit in arbitrary dimensions. The role of the CirS(0,0)
r

soft-collinear counterterm is to make sure that no double subtraction takes place in the over-
lapping soft-collinear phase space region. These counterterms were all defined explicitly in
refs. [42, 43]. In our convention the indices of C(0,0)

ir are not ordered, C(0,0)
ir = C(0,0)

ri . As the
sums in eq. (3.6) over i and r are likewise not ordered, the factor of 1

2
is needed so that we

count each collinear limit precisely once. Finally, the meaning of the superscript (`1, `2) is the
following: The corresponding counterterm involves the product of an `1-loop unresolved kernel
(an Altarelli–Parisi splitting function or a soft eikonal current) with an `2-loop squared matrix
element (in color or spin space). Specifically, (0, 0) means that in these subtraction terms a tree
level collinear or soft function acts on a tree level reduced matrix element. Such superscripts
will appear also for other counterterms throughout the paper.

Importantly, the approximate matrix element in eq. (3.6) takes into account all color and spin
correlations in infrared limits, and hence it is a completely local and fully differential regulator
of the real emission matrix element over the m+ 1-particle phase space. The complete locality
of the subtraction is a necessary condition for the regularized real contribution,

σNLO
m+1[J ] =

∫
m+1

[
dσR

m+1Jm+1 − dσ
R,A1
m+1Jm

]
d=4

, (3.7)

to be well-defined in four dimensions. As pointed out long ago [64], when the subtraction
terms are not fully local, for instance because spin correlations in gluon decay are neglected,

the evaluation of the difference
∫
m+1

[
dσR

m+1Jm+1 − dσ
R,A1
m+1Jm

]
d=4

usually involves double an-

gular integrals of the type
∫ 1

−1
d(cos θ)

∫ 2π

0
dφ cosφ/(1− cos θ) where φ is the azimuthal angle.

These integrals are ill-defined. If their numerical integration is attempted, one can obtain any
answer whatsoever (including the correct one) depending on the details of the integration pro-
cedure. (The correct answer is obtained by performing the integral analytically before going

5



to four dimensions:
∫ 1

−1
d(cos θ) sin−2ε θ

∫ 2π

0
dφ sin−2ε φ cosφ/(1 − cos θ) = 0.) Thus non-local

subtractions alone are not sufficient to define correctly σNLO
m+1[J ]. Rather, the definition must be

supplemented by the precise specification of an integration procedure which must be shown to
give the correct numerical values for all integrals that are finite away from d = 4, but whose
four-dimensional value is ill-defined. As in CoLoRFulNNLO the subtractions are completely
local, eq. (3.7) is well-defined in four dimensions as it is and may be computed with whatever
numerical procedure is most convenient. These remarks apply also to the regularized double
real and real-virtual cross sections in eqs. (3.14) and (3.15) which enter the NNLO correction.

Turning to the virtual contribution, the Kinoshita–Lee–Nauenberg (KLN) theorem ensures
that the integral of the approximate cross section precisely cancels the divergences of the virtual
piece for infrared-safe observables, so adding back what we have subtracted from the real
correction, the virtual contribution becomes finite as well. We have performed the integration
of the various subtraction terms analytically in ref. [42] and here we only quote the result,
which can be written as, ∫

1

dσ
R,A1
m+1 = dσB

m ⊗ I
(0)
1 ({p}m; ε) , (3.8)

where the ⊗ product is defined in eq. (2.6) and the insertion operator is in general given by [42]1

I
(0)
1 ({p}m; ε) =

αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε m∑
i=1

[
C

(0)
1,i (yiQ; ε)T 2

i +
m∑
k=1
k 6=i

S
(0),(i,k)
1 (Yik,Q; ε)T i ·T k

]
. (3.9)

The variables Qµ, yiQ and Yik,Q were defined in section 2.1. The kinematic functions C
(0)
1,i (yiQ; ε)

and S
(0),(i,k)
1 (Yik,Q; ε) have been computed as Laurent expansions in ε in ref. [42]. They are

needed up to finite terms in a computation at NLO accuracy and up to O(ε2) in a computation
at NNLO accuracy. We present these kinematic functions explicitly up to O(ε) in appendix A,
which is sufficient for checking the cancellation of the ε-poles at NNLO analytically. We note
that there is no one-to-one correspondence between the unintegrated subtraction terms in
eq. (3.6) and the kinematic functions that appear in eq. (3.9). The latter are obtained from the
former by integrating over the unresolved momentum as well as summing over all unobserved
quantum numbers (color and flavor), and organizing the result in color and flavor space. Loosely

speaking, the integrated form of C(0)
ir enters C

(0)
1,i and that of S(0)

r enters S
(0),(i,k)
1 . We are, however,

free to assign the integrated form of CirS(0)
r to either of the integrated counterterms. This final

organization was performed differently in ref. [42] and in this paper. In ref. [42] we grouped the

integrated form of CirS(0)
r into S

(0),(i,k)
1 , while here we find it more convenient to group it into

C
(0)
1,i . Before moving on, let us present the universal pole structure of I

(0)
1 ({p}m; ε) for arbitrary

number m of final-state partons:

I
(0)
1 ({p}m; ε) =

αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε m∑
i=1

(
− 1

ε2

m∑
k=1
k 6=i

T i ·T k +
1

ε
γfi

)
y−εik + O(ε0) . (3.10)

1The expansion parameter in ref. [42] was chosen αs/S
MS
ε implicitly, with the harmless factor 1/SMS

ε sup-

pressed. For the sake of clarity we reinstate the factor 1/SMS
ε here, as well as in all other insertion operators in

eqs. (3.34), (3.35), (3.37) and (3.39) below.
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It is straightforward to check that the poles of this expression coincide with those of the I({p}; ε)
operator of ref. [64], hence

∫
1

dσ
R,A1
m+1 as given in eq. (3.8) correctly cancels all ε-poles of the

virtual cross section dσV
m. Thus the regularized virtual contribution,

σNLO
m [J ] =

∫
m

[
dσV

m +

∫
1

dσ
R,A1
m+1

]
d=4

Jm , (3.11)

is finite and integrable in four dimensions.

3.2 The NNLO correction

The NNLO correction to the cross section is a sum of three contributions, the tree level double
real radiation, the one-loop plus a single radiation and the two-loop double virtual terms,

σNNLO[J ] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m

dσVV
m Jm , (3.12)

which are all divergent in four dimensions. In the CoLoRFulNNLO method, we render these
terms finite by the rearrangement

σNNLO[J ] =

∫
m+2

dσNNLO
m+2 +

∫
m+1

dσNNLO
m+1 +

∫
m

dσNNLO
m , (3.13)

where,

dσNNLO
m+2 =

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}
d=4

, (3.14)

dσNNLO
m+1 =

{[
dσRV

m+1 +

∫
1

dσ
RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)
A1
]
Jm

}
d=4

, (3.15)

dσNNLO
m =

{
dσVV

m +

∫
2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫
1

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)
A1
]}

d=4
Jm .

(3.16)

The right-hand sides of eqs. (3.14) and (3.15) are integrable in four dimensions by construction
[41,43,44], while the integrability in four dimensions of eq. (3.16) is ensured by the KLN theorem.

Equation (3.14) includes the double real (RR) contribution that is singular whenever one or
two partons become unresolved. In order to regularize the two-parton singularities, we subtract
an approximate cross section,

dσ
RR,A2
m+2 =

1

2s
dφm+2(Q2)A2|M(0)

m+2|2 , (3.17)

where the double unresolved approximate matrix element for processes with m + 2 partons in
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the final state is [43]

A2|M(0)
m+2|2 =

m+2∑
r=1

m+2∑
s=1

{
m+2∑
i=1
i 6=r,s

[
1

6
C(0,0)
irs +

m+2∑
j=1
j 6=i,r,s

1

8
C(0,0)
ir;js

+
1

2

(
CS(0,0)

ir;s − CirsCS(0,0)
ir;s −

m+2∑
j=1
j 6=i,r,s

Cir;jsCS(0,0)
ir;s

)

− CSir;sS(0,0)
rs − 1

2
CirsS(0,0)

rs + CirsCSir;sS(0,0)
rs

+
m+2∑
j=1
j 6=i,r,s

1

2
Cir;jsS(0,0)

rs

]
+

1

2
S(0,0)
rs

}
.

(3.18)

The functions C(0,0)
irs , C(0,0)

ir;js , CS(0,0)
ir;s and S(0,0)

rs in eq. (3.18) are subtraction terms which regu-
larize the ~pi||~pr||~ps triple collinear, the ~pi||~pr, ~pj||~ps double collinear, the ~pi||~pr, pµs → 0 one
collinear, one soft (collinear+soft) and the pµr → 0, pµs → 0 double soft limits. The rest of
the counterterms appearing in eq. (3.18) account for the double or triple overlap of limits,
hence multiple subtractions are avoided in overlapping double unresolved regions. The role of
each specific counterterm is suggested by the notation. For instance, CirsCS(0,0)

ir;s accounts for
the triple collinear limit of the collinear+soft counterterm, with the rest of the counterterms
having similar interpretations. All functions appearing in eq. (3.18) were defined explicitly in
ref. [43]. The factors of 1

6
, 1

8
, etc., in eq. (3.18) appear so that each limit is counted precisely

once, since the collinear indices of counterterms and the sums over them are not ordered in our
convention.

After subtracting the double unresolved approximate cross section, the difference

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm (3.19)

is still singular in the single unresolved regions of phase space. To regularize it, we also subtract

dσ
RR,A1
m+2 =

1

2s
dφm+2(Q2)A1|M(0)

m+2|2 , (3.20)

where A1 has been defined in eq. (3.6). To avoid double subtraction in overlapping single and
double unresolved regions of phase space, we must also consider

dσ
RR,A12
m+2 =

1

2s
dφm+2(Q2)A12|M(0)

m+2|2 , (3.21)

where the iterated single unresolved approximate matrix element reads

A12|M(0)
m+2|2 =

m+2∑
t=1

[
m+2∑
k=1
k 6=t

1

2
CktA2|M(0)

m+2|2 +

(
StA2|M(0)

m+2|2−
m+2∑
k=1
k 6=t

CktStA2|M(0)
m+2|2

)]
, (3.22)
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with the three terms above given by [43],

CktA2 =
m+2∑
r=1
r 6=k,t

[
CktC(0,0)

ktr + CktCS(0,0)
kt;r − CktCktrCS

(0,0)
kt;r − CktCrktS

(0,0)
kt

+
m+2∑
i=1

i 6=r,k,t

(
1

2
CktC(0,0)

ir;kt − CktCir;ktCS
(0,0)
kt;r

)]
+ CktS(0,0)

kt , (3.23)

StA2 =
m+2∑
r=1
r 6=t

{
m+2∑
i=1
i 6=r,t

[
1

2

(
StC(0,0)

irt + StCS(0,0)
ir;t − StCirtCS(0,0)

ir;t

)

− StCirtS(0,0)
rt − StCSir;tS(0,0)

rt + StCirtCSir;tS(0,0)
rt

]
+ StS(0,0)

rt

}
, (3.24)

CktStA2 =
m+2∑
r=1
r 6=k,t

[
CktStC(0,0)

krt +
m+2∑
i=1

i 6=r,k,t

(
1

2
CktStCS(0,0)

ir;t − CktStCSir;tS(0,0)
rt

)

− CktStCkrtS(0,0)
rt − CktStCrktS(0,0)

kt + CktStS(0,0)
rt

]
+ CktStS(0,0)

kt . (3.25)

The notation in eqs. (3.23)–(3.25) above serves to suggest the interpretation of the various

terms. For instance, CktC(0,0)
ktr in eq. (3.23) accounts for the ~pk||~pt single collinear limit of the C(0,0)

ktr

triple collinear counterterm, while, for example, StC(0,0)
irt in eq. (3.24) represents the counterterm

appropriate to the pµt → 0 soft limit of C(0,0)
irt . Clearly, A12|M(0)

m+2|2 cancels the single unresolved

singularities of the double unresolved subtraction term A2|M(0)
m+2|2 by construction. Moreover,

very importantly, A12|M(0)
m+2|2 cancels at the same time the double unresolved singularities of

the single unresolved subtraction term A1|M(0)
m+2|2, as shown in [43]. Hence the overlap of single

and double unresolved subtractions is properly taken into account. All of the counterterms
appearing in eqs. (3.23)–(3.25) were defined in ref. [43] explicitly. As before, the collinear
indices and sums over them in eqs. (3.22)–(3.25) are not ordered, so factors of 1

2
appear at

various instances. The combination of terms appearing in eq. (3.14) was shown to be integrable
in all kinematic limits in ref. [43]. Thus, the regularized double real contribution to the m-jet
cross section is finite and can be computed numerically in four dimensions for any infrared-safe
observable.

Turning to eq. (3.15), it describes the emission at one loop of one additional parton, the
real-virtual (RV) contribution. In addition to explicit ε-poles coming from the one-loop matrix
element, the RV contribution has kinematical singularities when the additional parton becomes
unresolved. The explicit poles are cancelled by the integral of the single unresolved subtraction
term in the double real emission contribution to the full NNLO cross section, which is simply
given by eqs. (3.8) and (3.9) after the obvious replacement of m→ m+ 1∫

1

dσ
RR,A1
m+2 = dσR

m+1 ⊗ I
(0)
1 ({p}m+1; ε) . (3.26)

9



As shown above in eq. (3.10) the combination,

dσRV
m+1 +

∫
1

dσ
RR,A1
m+1 (3.27)

is finite in ε. Nevertheless, eq. (3.27) is still singular in the single unresolved regions of phase
space and requires regularization. We achieve this by subtracting two suitably defined approx-

imate cross sections, dσ
RV,A1
m+1 and

(∫
1

dσ
RR,A1
m+2

)A1

. First, we consider

dσ
RV,A1
m+1 =

1

2s
dφm+1(Q2)A12<〈M(0)

m+1|M(1)
m+1〉 , (3.28)

which matches the kinematic singularity structure of dσRV
m+1. The general definition of the

real-virtual counterterm is [44]

A12<〈M(0)
m+1|M(1)

m+1〉 =
m+1∑
r=1

[
m+1∑
i=1
i 6=r

1

2
C(0,1)
ir +

(
S(0,1)
r −

m+1∑
i=1
i 6=r

CirS(0,1)
r

)]

+
m+1∑
r=1

[
m+1∑
i=1
i 6=r

1

2
C(1,0)
ir +

(
S(1,0)
r −

m+1∑
i=1
i 6=r

CirS(1,0)
r

)]
.

(3.29)

The basic organization of this subtraction in terms of unresolved limits is identical to the tree
level single unresolved counterterm in eq. (3.6). However in eq. (3.29) we have terms with tree
level collinear or soft functions multiplying (in color or spin space) one-loop matrix elements
(those with the (0, 1) superscript), as well as terms with one-loop collinear or soft functions
multiplying tree level matrix elements (denoted with the (1, 0) superscript). This reflects the
structure of infrared factorization of one-loop QCD matrix elements [59–62]. The functions
appearing in eq. (3.29) are defined explicitly in ref. [44].

Then we consider the counterterm,(∫
1

dσ
RR,A1
m+2

)
A1 =

1

2s
dφm+1(Q2)A1

(
|M(0)

m+1|2 ⊗ I
(0)
1

)
, (3.30)

which regularizes the kinematic singularities of
∫

1
dσ

RR,A1
m+2 . This counterterm is given by [44]

A1

(
|M(0)

m+1|2 ⊗ I
(0)
1

)
=

m+1∑
r=1

[
m+1∑
i=1
i 6=r

1

2
C(0,0⊗I)
ir +

(
S(0,0⊗I)
r −

m+1∑
i=1
i 6=r

CirS(0,0⊗I)
r

)]

+
m+1∑
r=1

[
m+1∑
i=1
i 6=r

1

2
CR×(0,0)
ir +

(
SR×(0,0)
r −

m+1∑
i=1
i 6=r

CirSR×(0,0)
r

)]
.

(3.31)

The structure of this subtraction in terms of unresolved limits is again the same as the tree
level single unresolved counterterm in eq. (3.6). However we have two types of terms for each
limit, labeled by the different superscripts. The reason is the following. This counterterm is
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constructed from factorization formulæ describing the behavior of the product of a QCD squared
matrix element times the I

(0)
1 insertion operator of eq. (3.9) in the collinear and soft limits. (The

existence of a universal collinear factorization formula for the product |M(0)
m+1|2 ⊗ I

(0)
1 is not

guaranteed by the factorization properties of QCD matrix elements. The requirement that
such a formula exists puts highly non-trivial constraints on the form of I

(0)
1 , i.e., on the specific

definition of the single unresolved approximate cross section. See section 4.1.1 of ref. [44] for a
discussion of this point.) These factorization formulæ were computed in ref. [44] and turn out
to be sums of two pieces. Both pieces involve the product of a tree level collinear or soft function
times a tree level matrix element. One piece is further multiplied by the I

(0)
1 insertion operator

appropriate to the reduced matrix element, while the other is multiplied with a well-defined
scalar (in color space) remainder function R. The superscripts on the various terms in eq. (3.31)
are meant to reflect this structure. The combination of terms appearing in eq. (3.15) is both
free of ε-poles and integrable in all kinematically singular limits [44]. Hence, the regularized
real-virtual contribution to the m-jet cross section is finite and can be computed numerically
in four dimensions for any infrared-safe observable.

Finally, the two-loop double virtual (VV) contribution to the NNLO corrections appears in
eq. (3.16). The VV contribution has explicit infrared poles that cancel against the poles of the
four integrated counterterms, which are shown in eq. (3.16). The integral of the real-virtual
counterterms (the last two terms of eq. (3.16)) was computed in refs. [45, 46, 48] and can be
written as ∫

1

dσ
RV,A1
m+1 = dσV

m ⊗ I
(0)
1 ({p}m; ε) + dσB

m ⊗ I
(1)
1 ({p}m; ε) (3.32)

and ∫
1

(∫
1

dσ
RR,A1
m+2

)
A1 = dσB

m ⊗
[

1

2

{
I

(0)
1 ({p}m; ε), I

(0)
1 ({p}m; ε)

}
+ I

(0,0)
1,1 ({p}m; ε)

]
. (3.33)

The insertion operator I
(0)
1 is given in eq. (3.9), while I

(1)
1 and I

(0,0)
1,1 have the following color

decompositions:

I
(1)
1 ({p}m; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε]2∑
i

[
C

(1)
1,i (yiQ; ε)CAT

2
i +

∑
k 6=i

S
(1),(i,k)
1 (Yik,Q; ε)CAT iT k

+
∑
k 6=i

∑
l 6=i,k

S
(1),(i,k,l)
1 (Yik,Q, Yil,Q, Ykl,Q; ε)

∑
a,b,c

fabcT
a
iT

b
kT

c
l

]
(3.34)

and

I
(0,0)
1,1 ({p}m; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε]2∑
i

[
C

(0,0)
1,1,i (yiQ; ε)CAT

2
i +

∑
k 6=i

S
(0,0),(i,k)
1,1 (Yik,Q; ε)CA T iT k

]
.

(3.35)
Again, there is no one-to-one correspondence between the unintegrated double unresolved sub-
traction terms in eqs. (3.29) and (3.31) and the kinematic functions that appear in eqs. (3.34)
and (3.35). The latter are obtained from the former after integration over unresolved momenta
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and summation over unobserved colors and flavors. This remark applies also to the rest of the
insertion operators to be discussed below.

The integral of the iterated single unresolved counterterm (the third term of eq. (3.16)) was
evaluated in ref. [49] yielding the result∫

2

dσ
RR,A12
m+2 = dσB

m ⊗ I
(0)
12 ({p}m; ε) . (3.36)

The insertion operator has five contributions according to the possible color structures,

I
(0)
12 ({p}; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε]2
{

m∑
i=1

[
C

(0)
12,i(yiQ; ε)T 2

i +
m∑
j=1
j 6=i

C
(0)
12,ij(yiQ, yjQ, Yij,Q; ε)T 2

j

]
T 2
i

+
m∑

j,l=1
l 6=j

[
S

(0),(j,l)
12 (Yjl,Q; ε)CA +

m∑
i=1

CS
(0),(j,l)
12,i (yiQ, Yij,Q, Yil,Q, Yjl,Q; ε)T 2

i

]
T j ·T l

+
m∑

i,k=1,
k 6=i

m∑
j,l=1,
l 6=j

S
(0),(i,k)(j,l)
12 (Yik,Q, Yij,Q, Yil,Q, Yjk,Q, Ykl,Q, Yjl,Q; ε){T i ·T k,T j ·T l}

}
.

(3.37)

Finally, the integration of the collinear-type contributions to the double unresolved coun-
terterm (the second term of eq. (3.16)) was performed in ref. [50]. The soft-type contributions
to the same integral were presented in ref. [51]. We find∫

2

dσ
RR,A2
m+2 = dσB

m ⊗ I
(0)
2 ({p}m; ε) , (3.38)

where the structure of the insertion operator I
(0)
2 is identical to I

(0)
12 in color space,

I
(0)
2 ({p}; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε]2
{

m∑
i=1

[
C

(0)
2,i (yiQ; ε)T 2

i +
m∑
j=1
j 6=i

C
(0)
2,ij(yiQ, yjQ, Yij,Q; ε)T 2

j

]
T 2
i

+
m∑

j,l=1
l 6=j

[
S

(0),(j,l)
2 (Yjl,Q; ε)CA +

m∑
i=1

CS
(0),(j,l)
2,i (yiQ, Yij,Q, Yil,Q, Yjl,Q; ε)T 2

i

]
T j ·T l

+
m∑

i,k=1,
k 6=i

m∑
j,l=1,
l 6=j

S
(0),(i,k)(j,l)
2 (Yik,Q, Yij,Q, Yil,Q, Yjk,Q, Ykl,Q, Yjl,Q; ε){T i ·T k,T j ·T l}

}
.

(3.39)

The kinematic functions entering the various insertion operators in eqs. (3.9), (3.34), (3.35),
(3.37) and (3.39) have been expanded in ε. The coefficients of the poles in these Laurent
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expansions have been computed fully analytically. The resulting expressions are rather lengthy
and involve, in addition to logarithms, dilogarithms and trilogarithms of rational arguments in
the variables yiQ and Yjk,Q. For the finite parts, we computed analytically all terms that diverge
logarithmically on the boundaries of the phase space (i.e., when yiQ → 0 and/or Yjk,Q → 0),
while the remaining regular contributions were computed numerically. We stress that our
method is generic and we can construct counterterms for processes with an arbitrary number
m of jets in the final state. The only missing ingredients are the corresponding two-loop matrix
elements, and current only the two-loop matrix elements for two and three-jet production
are available. Since the poles of all integrated counterterms are known analytically, we can
demonstrate explicitly that the regularized double virtual contribution to the m-jet cross section
is finite and free of ε-poles. For m = 2 this was done in ref. [63], while the m = 3 case will be
discussed in the next section.

4 Electron-positron annihilation into three jets

We consider e+e− → 3 jet production through the exchange of a photon or a Z boson of mo-
mentum Q in the s channel. Through NNLO in QCD, this production cross section receives
contributions from the following partonic subprocesses:

LO γ∗/Z∗(Q)→ q(p1) + q̄(p2) + g(p3) tree level

NLO γ∗/Z∗(Q)→ q(p1) + q̄(p2) + g(p3) + g(p4) tree level
γ∗/Z∗(Q)→ q(p1) + q̄(p2) + q′(p3) + q̄′(p4) tree level
γ∗/Z∗(Q)→ q(p1) + q̄(p2) + q(p3) + q̄(p4) tree level
γ∗/Z∗(Q)→ q(p1) + q̄(p2) + g(p3) one-loop

NNLO γ∗/Z∗(Q)→ q(p1) + q̄(p2) + g(p3) + g(p4) + g(p5) tree level
γ∗/Z∗(Q)→ q(p1) + q̄(p2) + q′(p3) + q̄′(p4) + g(p5) tree level
γ∗/Z∗(Q)→ q(p1) + q̄(p2) + q(p3) + q̄(p4) + g(p5) tree level
γ∗/Z∗(Q)→ q(p1) + q̄(p2) + g(p3) + g(p4) one-loop
γ∗/Z∗(Q)→ q(p1) + q̄(p2) + q′(p3) + q̄′(p4) one-loop
γ∗/Z∗(Q)→ q(p1) + q̄(p2) + q(p3) + q̄(p4) one-loop
γ∗/Z∗(Q)→ q(p1) + q̄(p2) + g(p3) two-loop

where we show the four-momenta of the particles in parentheses. The tree level matrix elements
for the production of five jets were first obtained in refs. [67–69], while the one-loop corrections
to four jet production have been computed in refs. [59, 70–72]. The two-loop matrix elements
for γ∗/Z∗ → qq̄g are also available both in squared matrix element form [73] and as helicity
amplitudes [74]. In the CoLoRFulNNLO framework the subtraction terms correctly account
for all spin and color correlations in the various infrared limits. Hence, we also need the three-
parton and four-parton matrix elements including color and/or spin correlations. When there
are only three partons in the final state, the color correlations factorize completely (see eq. (4.6)
below), so computing the color-correlated three-parton matrix elements is trivial at any loop
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order. This is no longer the case for the four-parton matrix elements. In our computation, we
only need the four-parton color-correlated matrix elements at tree-level and these are given in
ref. [75]2. The required spin-correlated matrix elements on the other hand are rather easy to
implement starting from helicity amplitudes.

The sum of the three-, four- and five-parton contributions is finite for any infrared-safe
observable, but the four- and five-parton contributions to three-jet observables contain infrared
singularities associated with unresolved real emission, which must be subtracted and cancelled
against the infrared singularities coming from loop integrals in the three- and four-parton final
states. We accomplish this cancellation with the CoLoRFulNNLO method as outlined in the
previous section.

4.1 e+e− → 3 jet production at NLO

It is instructive to spell out the computation of the NLO correction in some detail. The four-
parton real emission contribution to the differential cross section for three-jet production is

dσR
4 =

1

2s
dφ4(Q2)

∑
q

(
1

2!
|M(0)

qq̄gg|2 +
∑
q′ 6=q

|M(0)
qq̄q′q̄′ |2 +

1

(2!)2
|M(0)

qq̄qq̄|2
)
. (4.1)

The integral over the phase space is divergent in four dimensions because of the singularities in
the regions where one parton is collinear and/or soft. In order to regularize those singularities,
we subtract

dσ
R,A1
4 =

1

2s
dφ4(Q2)

∑
q

(
1

2!
A1|M(0)

qq̄gg|2 +
∑
q′ 6=q

A1|M(0)
qq̄q′q̄′|2 +

1

(2!)2
A1|M(0)

qq̄qq̄|2
)
, (4.2)

where the approximate matrix elements are defined in eq. (3.6). The counterterms are explicitly
defined in refs. [42,43] in a form that is immediately suitable for inclusion in a general purpose
computer code. By generating sequences of phase space points tending to each infrared limit,
we have checked that the sum of subtractions correctly reproduces the real emission differential
cross section point-by-point in any single unresolved region of phase space. As a consequence
the difference

dσNLO
4 ≡ dσR

4 J4 − dσ
R,A1
4 J3 , (4.3)

is integrable in four dimensions and the regularized real contribution can be computed using
whatever numerical procedure is most convenient.

Turning to the three-parton virtual contribution, we have

dσV
3 =

1

2s
dφ3(Q2)

∑
q

2<〈M(0)
qq̄g|M(1)

qq̄g〉 . (4.4)

2Note a misprint in eqs. (B.11)–(B.13) of ref. [75]: the 2, 3 and 4 indices of the M ik
0 , M ik

x and M ik
xx matrices

should be cyclicly permuted, (2, 3, 4)→ (4, 2, 3).
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Equation (4.4) contains explicit ε-poles coming from the one-loop matrix element. These poles
are cancelled by adding back the approximate cross section that we have subtracted from the
real correction in integrated form which can be written as in eq. (3.8) (with m = 3)∫

1

dσ
R,A1
4 = dσB

3 ⊗ I
(0)
1 ({p}3; ε) . (4.5)

The insertion operator I
(0)
1 is given in eq. (3.9). For three-jet production, as there are only

three partons in the final state, the color connections that appear in the generic case in eq. (3.9)
factorize completely,

T 1 · T 2 =
CA

2
− CF and T 1 · T 3 = T 2 · T 3 = −CA

2
. (4.6)

Thus,

I
(0)
1 ({p}3; ε) =

αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε{
CF

[
C

(0)
1,q(y1Q; ε) + C

(0)
1,q(y2Q; ε)− 2S

(0),(1,2)
1 (Y12,Q; ε)

]
+ CA

[
C

(0)
1,g(y3Q; ε) + S

(0),(1,2)
1 (Y12,Q; ε)− S

(0),(1,3)
1 (Y13,Q; ε)− S

(0),(2,3)
1 (Y23,Q; ε)

]}
.

(4.7)

Using eq. (3.10) (or the expressions in appendix A), it is straightforward to check that

I
(0)
1 ({p}3; ε) =

αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε{
2CF + CA

ε2
+

1

ε

[
(CA − 2CF) ln y12 − CA(ln y13 + ln y23)

+
11

6
CA + 3CF −

2

3
nfTR

]
+ O(ε0)

} (4.8)

and that the combination

dσNLO
3 ≡

[
dσV

3 +

∫
1

dσ
R,A1
4

]
J3 (4.9)

is free of ε-poles. Thus eq. (4.9) is finite in four dimensions and the regularized virtual contri-
bution can be computed using standard numerical techniques for any infrared-safe observable.

4.2 e+e− → 3 jet production at NNLO

Turning to the NNLO correction, we consider first the double real emission contribution to the
differential cross section for three-jet production,

dσRR
5 =

1

2s
dφ5(Q2)

∑
q

(
1

3!
|M(0)

qq̄ggg|2 +
∑
q′ 6=q

|M(0)
qq̄q′q̄′g|2 +

1

(2!)2
|M(0)

qq̄qq̄g|2
)
. (4.10)

The integral over the phase space is divergent in four dimensions because of infrared singularities
in regions of phase space where one or two partons are collinear and/or soft. In order to

15



regularize those singularities, we subtract approximate cross sections dσ
RR,A2
5 , dσ

RR,A1
5 and

dσ
RR,A12
5 as explained in section 3.2. The counterterms are defined in ref. [43] explicitly, in a

form directly suited for implementation into a general purpose computer code. We have checked
in all kinematic limits that the difference

dσNNLO
5 ≡ dσRR

5 J5 − dσ
RR,A2
5 J3 − dσ

RR,A1
5 J4 + dσ

RR,A12
5 J3 (4.11)

is integrable in four dimensions by generating sequences of phase space points tending to each
infrared limit. Hence the double real emission differential cross section is regularized point-by-
point in phase space. The complete locality of the subtractions then ensures that the integral
of eq. (4.11) is well-defined and finite in four dimensions for any infrared-safe observable and
can be computed with any suitable numerical technique.

The real-virtual contribution to the differential cross section is

dσRV
4 =

1

2s
dφ4(Q2)

∑
q

(
1

2!
2<〈M(0)

qq̄gg|M(1)
qq̄gg〉+

∑
q′ 6=q

2<〈M(0)
qq̄q′q̄′ |M

(1)
qq̄q′q̄′〉

+
1

(2!)2
2<〈M(0)

qq̄qq̄|M(1)
qq̄qq̄〉

)
.

(4.12)

Equation (4.12) contains explicit ε-poles coming from the one-loop matrix element and further-
more it is divergent in phase space regions where a parton becomes unresolved. The explicit
poles are cancelled by the integral of the single unresolved subtraction term in the double real
emission contribution to the full NNLO cross section,

∫
1

dσ
RR,A1
5 . The calculation in ref. [42]

for general m assures us that the combination

dσRV
4 +

∫
1

dσ
RR,A1
5 (4.13)

is finite in ε. (Of course, this can be checked explicitly using eq. (3.10) or the expressions in
appendix A as well.) However, eq. (4.13) is still singular in the single unresolved regions of phase

space. We regularize these singularities by subtracting the approximate cross sections dσ
RV,A1
4

and
( ∫

1
dσ

RR,A1
5

)
A1 as discussed in section 3.2. The explicit definitions of the counterterms in

ref. [44] can be straightforwardly implemented into a computer code in a general way. It is
then easy to check numerically that the combination

dσNNLO
4 ≡

[
dσRV

4 +

∫
1

dσ
RR,A1
5

]
J4 −

[
dσ

RV,A1
4 +

(∫
1

dσ
RR,A1
5

)
A1

]
J3 (4.14)

is both free of ε-poles and integrable in all kinematically singular limits in four dimensions (as
usual, by generating sequences of phase space points tending to all infrared limits). Thus, since
the subtractions are fully local, the regularized real-virtual contribution to the 3-jet differential
cross section is well-defined and finite and can be computed numerically in four dimensions for
any infrared-safe observable.

Finally, the double virtual contribution to the differential cross section reads

dσVV
3 =

1

2s
dφ3(Q2)

∑
q

(
|M(1)

qq̄g|2 + 2<〈M(0)
qq̄g|M(2)

qq̄g〉
)
, (4.15)
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and contains explicit ε-poles coming from the two-loop matrix element and the square of the
one-loop matrix element. The structure of these poles was presented explicitly in ref. [73] which
we reproduce here using our conventions for the notation:

|M(1)
qq̄g|2 + 2<〈M(0)

qq̄g|M(2)
qq̄g〉 = 2<〈M(0)

qq̄g|M(1)
qq̄g〉 ⊗ 2<I(1)

qq̄g(ε)− |M(0)
qq̄g|2 ⊗ 2

(
<I(1)

qq̄g(ε)
)2

+ |M(0)
qq̄g|2 ⊗

[
e−εγE

Γ(1− 2ε)

εΓ(1− ε)
(
β0 + 2εK

)
<I(1)

qq̄g(2ε)

− β0

ε
<I(1)

qq̄g(ε) +
Sε

SMS
ε

1

2ε

(
2Hq(nf) +Hg(nf)

)]
+ O(ε0) ,

(4.16)

where the universal constants are

K =

(
67

18
− π2

6

)
CA −

10

9
TRnf , (4.17)

Hq(nf) = CACF

(
13ζ3

2
+

245

216
− 23π2

48

)
+ C2

F

(
−6ζ3 −

3

8
+
π2

2

)
+ CFnfTR

(
π2

12
− 25

54

)
, (4.18)

Hg(nf) = C2
A

(
ζ3

2
+

5

12
+

11π2

144

)
− CAnfTR

(
205

54
+
π2

36

)
− CFnfTR +

20

27
n2

f T
2
R , (4.19)

and the three-parton insertion operator is

I
(1)
qq̄g(s12, s13, s23, µ

2; ε) =
αs

4π

Sε

SMS
ε

[
1

ε2

3∑
i=1

3∑
k=1
k 6=i

(
µ2

−sik

)ε
T i ·T k −

1

ε
(2γq + γg)

]
, (4.20)

with

γq =
3

2
CF and γg =

β0

2
. (4.21)

The signs of the imaginary parts of the (−sik)−ε factors are fixed by the usual sik+iε prescription
on the Feynman-propagators,(

µ2

−sik

)ε
=

(
µ2

|sik|

)ε [
1 +

(
iπε− π2

2
ε2
)

Θ (sik) + O(ε3)

]
. (4.22)

Hermitian conjugation flips the sign of the imaginary parts. We note that the poles of this
operator are closely related to those of the I

(0)
1 ({p}3; ε) operator of eq. (4.8):

I
(0)
1 ({p}3; ε) = −2<I(1)

qq̄g(s12, s13, s23, µ
2; ε) + O(ε0) . (4.23)

The infrared poles of the double virtual cross section cancel against the poles of the four
integrated approximate cross sections in the sum (see eq. (3.16))

dσNNLO
3 ≡

{
dσVV

3 +

∫
2

[
dσ

RR,A2
5 − dσ

RR,A12
5

]
+

∫
1

[
dσ

RV,A1
4 +

(∫
1

dσ
RR,A1
5

)
A1
]}
J3 . (4.24)
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To indicate how this cancellation takes place, we use eqs. (3.32), (3.33), (3.36) and (3.38) to
write the regularized double virtual cross section in the form

dσNNLO
3 =

{
dσVV

3 + dσB
3 ⊗

[
I

(0)
2 (ε)− I

(0)
12 (ε) + I

(1)
1 (ε) + I

(0,0)
1,1 (ε) +

1

2

{
I

(0)
1 (ε), I

(0)
1 (ε)

}]
+ dσV

3 ⊗ I
(0)
1 (ε)

}
J3 .

(4.25)

The insertion operators appearing in eq. (4.25) above are given in terms of kinematic functions

in eqs. (3.9), (3.34), (3.35), (3.37) and (3.39). We note that I
(0)
1 appears in eq. (4.25) multiplied

by itself in the anti-commutator on the first line as well as by the virtual cross section on the
second line. Since both I

(0)
1 and dσV

3 contain up to 1/ε2 poles, I
(0)
1 must be calculated to O(ε2)

to correctly account for all finite parts in eq. (4.25). In order to compute just the poles, it

suffices to expand I
(0)
1 to O(ε) only, as in appendix A.

We have computed the pole parts of all insertion operators analytically, which turn out to
be very lengthy expressions already at O(ε−2). (The reader can get an idea of the complexity

by using the formulas in appendix A to compute the poles of
{
I

(0)
1 (ε), I

(0)
1 (ε)

}
.) However, the

ε-poles of the following combination of operators

J2 ≡ I
(0)
2 − I

(0)
12 + I

(1)
1 + I

(0,0)
1,1 +

1

4

{
I

(0)
1 , I

(0)
1

}
(4.26)

form a remarkably simple expression:

J2({p}3; ε) =
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε
1

2ε

[(
β0 + 2εK − ε2β0

π2

4

)
I

(0)
1 ({p}3; 2ε)

− β0I
(0)
1 ({p}3; ε)− αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε (
2Hq(nf) +Hg(nf)

)]
+ O(ε0) .

(4.27)

It is easy to convince oneself that only the universal pole parts of the I
(0)
1 operator (given in

eq. (3.10) for general m) enter the computation of the poles of J2. Furthermore, looking at the

explicit definition of I
(0)
1 in eq. (3.9), we see that the J2 operator in eq. (4.27) can be written by

simply counting the radiating partons in the event (two quarks and one gluon in our example).
This additive nature of J2, which is also valid for two-jet production, hints that in general

J2({p}m; ε) =
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε
1

2ε

[(
β0 + 2εK − ε2β0

π2

4

)
I

(0)
1 ({p}m; 2ε)

− β0I
(0)
1 ({p}m; ε)− αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε m∑
i=1

Hfi(nf)

]
+ O(ε0) ,

(4.28)

although presently we do not have a proof for the validity of this formula. Using eqs. (4.16)

and (4.27) together with the explicit expressions for I
(0)
1 in appendix A, it is not difficult to
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check explicitly that the combination

dσNNLO
3 =

[
dσVV

3 + dσB
3 ⊗

(
J2({p}3; ε) +

1

4

{
I

(0)
1 ({p}3; ε), I

(0)
1 ({p}3; ε)

})
+ dσV

3 ⊗ I
(0)
1 ({p}3; ε)

]
J3 ,

(4.29)

is free of ε-poles, although to perform the algebra for the 1/ε2 and 1/ε poles still requires some
effort. Hence eq. (4.29) is finite in four dimensions and we can compute the regularized double
virtual differential cross section for any infrared-safe observable numerically.

5 Event shapes old and new

The CoLoRFulNNLO method provides a robust subtraction scheme for computing NNLO cor-
rections to processes with a colorless initial state (for the moment) and any number of final
state jets, provided all necessary matrix elements are known. We have implemented the method
in a general purpose, automated parton-level Monte Carlo code which can be used to compute
any infrared-safe observable at NNLO accuracy in e+e− → 3 jets. To demonstrate the validity
of our code, we compute NNLO corrections to six standard event shape variables (thrust, heavy
jet mass, total jet broadening, wide jet broadening, C-parameter and the two-to-three jet tran-
sition variable y23 in the Durham algorithm) and compare our predictions to those available
in the literature [5, 6]. We also present here for the first time the computation of jet cone
energy fraction (JCEF) at NNLO accuracy. Predictions from CoLoRFulNNLO at this order
in perturbation theory for oblateness and energy-energy correlation (EEC) were presented in
ref. [7].

5.1 Definition of event shapes

Thrust [76, 77] is defined as

T = max
~n

(∑
i |~n · ~pi|∑
i |~pi|

)
, (5.1)

where the three-vectors ~pi denote the three-momenta of the partons and ~n defines the direction
of the thrust axis, ~nT , by maximizing the sum on the right-hand side. For massless particles
thrust is normalized by the center-of-mass energy,

∑
i |~pi| = Q. In general 1/2 ≤ T ≤ 1, with

T = 1/2 for spherically symmetric events, and T → 1 in the case of two back-to-back jets (the
dijet limit). For three-particle events, we have 2/3 ≤ T ≤ 1.

Heavy jet mass [78–80] is defined by dividing the event into two hemispheres, HL, HR, by a
plane orthogonal to an axis which can be chosen to be the thrust axis ~nT . Then the hemisphere
invariant mass is

M2
i

s
=

1

E2
vis

(∑
j∈Hi

pj

)2

, i = L,R , (5.2)

19



where Evis is the total visible energy measured in the event, which is equal to the center-of-mass
energy in perturbation theory with massless partons, Evis = Q. The heavy jet mass is

ρ = max

(
M2

L

s
,
M2

R

s

)
. (5.3)

In the dijet limit, we find ρ → 0. For three-particle events we have 0 ≤ ρ ≤ 1/3. At leading
order in perturbation theory the distributions of heavy jet mass ρ and τ ≡ 1− T are identical.

Jet broadening [81, 82], like heavy jet mass, is also defined through the two hemispheres
HL, HR. First, hemisphere broadening is given by

Bi =

∑
j∈Hi
|~pj × ~nT |

2
∑

j∈Hi
|~pj|

, i = L,R . (5.4)

The total and wide jet broadening are then defined as

BT = BL +BR and BW = max(BL, BR) . (5.5)

In the dijet limit, both BT and BW vanish, while for spherically symmetric events BT = 2BW =
π/8. For three-parton events we have BT , BW ≤ 1/(2

√
3) ' 0.288.

The C-parameter [83, 84] is defined through the eigenvalues λ1, λ2, λ3, of the infrared-safe
momentum tensor,

Θρσ =
1∑
i |~pi|

∑
i

pρi p
σ
i

|~pi|
, ρ, σ = 1, 2, 3 , (5.6)

where i runs over all final state particles. As Θ is a symmetric non-negative tensor with unit
trace, the eigenvalues λi are real and non-negative, with

∑
i λi = 1. Therefore, 0 ≤ λi ≤ 1,

with i = 1, 2, 3. The value of the C-parameter is then defined as

Cpar = 3 (λ1λ2 + λ2λ3 + λ3λ1) . (5.7)

In the dijet limit the C-parameter vanishes, while for spherical events Cpar = 1, so 0 ≤ Cpar ≤ 1.
For events with three-partons in the final state we have 0 ≤ Cpar ≤ 3/4.

Jet transition variables specify how an event changes from a n-jet to a (n+ 1)-jet configura-
tion. For example, given a jet resolution parameter ycut, the two-to-three jet transition variable
y23 [85–88] is defined as the value of ycut for which an event changes from a two-jet to a three-jet
configuration, within some jet algorithm. Here we focus on the Durham algorithm [88], which
clusters particles into jets by computing the variable,

yij =
2 min(E2

i , E
2
j )(1− cos θij)

E2
vis

, (5.8)

for each pair (i, j) of particles. The pair with the lowest value of yij is replaced by a pseudo-
particle whose four-momentum is computed in the E recombination scheme, i.e., it is simply
the sum of the four-momenta of particles i and j. This procedure is iterated until all pairs have
yij > ycut and the remaining pseudo-particles are the jets.
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Finally, jet-cone energy fraction [89] is defined as the energy deposited within a conical shell
of the opening angle χ between a particle and the thrust axis ~nT , whose direction is defined to
point from the heavy jet mass hemisphere to the light jet mass hemisphere,

dΣJCEF

d cosχ
=
∑
i

∫
Ei
Q

dσe+e−→i+Xδ

(
cosχ− ~pi · ~nT

|~pi|

)
. (5.9)

In principle 0o ≤ χ ≤ 180o, but hard gluon emissions typically contribute only to the region
90o ≤ χ ≤ 180o, which is plotted in the data [90].

5.2 Event shapes revisited

In this section we present the predictions of the CoLoRFulNNLO method for the event shapes
considered also in refs. [5, 6]. To begin, we write the perturbative expansion of the differential
distribution of an event shape observable O at the default renormalization scale (not to be
confused with the regularization scale of section 2.3) µ0 =

√
Q2 (the total center-of-mass

energy) as
1

σ0

dσ

dO
=
αs

2π
A(O) +

(αs

2π

)2

B(O) +
(αs

2π

)3

C(O) + O(α4
s ) , (5.10)

where αs = αs(µ0) and σ0 is the leading-order perturbative prediction for the total cross section
of the process e+e− → hadrons. The LO and NLO perturbative coefficients A(O) and B(O)
for thrust, heavy jet mass, total and wide jet broadening, C-parameter and the jet transition
variable y23 in the Durham algorithm were computed a long time ago [91], while predictions
for the NNLO coefficients C(O) were presented in [5, 6]3. However, experiments measure the
distributions normalized to the total hadronic cross section, σ, thus physical predictions should
be normalized to that. At the default renormalization scale µ0, distributions normalized to
the total hadronic cross section can be obtained from the expansion in eq. (5.10) above by
multiplying with the inverse of

σ

σ0

= 1 +
αs

2π
At +

(αs

2π

)2

Bt + O(α3
s ) (5.11)

where [92–94]

At =
3

2
CF and Bt = CF

[(
123

8
− 11ζ3

)
CA −

3

8
CF +

(
4ζ3 −

11

2

)
nfTR

]
. (5.12)

The renormalization scale dependence of a three-jet event shape distribution normalized to the
total hadronic cross section can be computed as

1

σ

dσ(µ)

dO
=
αs(µ)

2π
Ā(O;µ) +

(
αs(µ)

2π

)2

B̄(O;µ) +

(
αs(µ)

2π

)3

C̄(O;µ) + O(α4
s (µ2)) , (5.13)

3Since these distributions have 1/O singularities, it is more convenient to present results for the quantities
OC(O) and this was done in refs. [5, 6] as well as in this paper in figures 1–3.
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where

Ā(O;µ) = A(O) ,

B̄(O;µ) = B(O) +
(
β0 ln ξR − At

)
A(O) ,

C̄(O;µ) = C(O) +
(

2β0 ln ξR − At

)
B(O) +

(
1

2
β1 ln ξR + β2

0 ln2 ξR + A2
t −Bt

)
A(O) ,

(5.14)

with ξR ≡ µ/µ0. Using three-loop running, the scale dependence of the strong coupling is given
by

αs(µ)

2π
=

2

β0t

[
1− β1

β2
0t

ln t+

(
β1

β2
0t

)2(
ln2 t− ln t− 1 +

β0β2

β2
1

)]
, (5.15)

with t = ln(µ2/Λ2
QCD). The first two coefficients in the expansion of the β function,

µ2 d

dµ2

αs(µ)

4π
= −

(
αs(µ)

4π

)2 ∞∑
n=0

βn

(
αs(µ)

4π

)n
, (5.16)

are presented in eq. (2.9), while [95]

β2 =
2857

54
C3

A −
(

1415

27
C2

A +
205

9
CACF − 2C2

F

)
TRnf +

(
158

27
CA +

44

9
CF

)
T 2

Rn
2
f . (5.17)

In order to compare to published predictions, we use αs(mZ) = 0.118, corresponding to ΛQCD =
208 MeV.

We present physical predictions at the first three orders in perturbation theory for the dis-
tributions of the six event shapes in figures 1–3. In the upper panels we show our fixed-order
predictions as well as those of the publicly available code EERAD3 [96]4, together with the mea-
sured data by the ALEPH collaboration. We present our predictions at LO and NLO accuracy
as smooth curves and as histogram at NNLO to represent the numbers of the numerical inte-
gration as precisely as possible. We observe a very good numerical convergence of our method
at NNLO. The bands in the upper panel correspond to the variation of the renormalization
scale in the range ξR ∈ [0.5, 2]. In order to make the scale dependence at NNLO accuracy more
visible, we show the relative scale uncertainty on the middle and bottom panels of each figure.
It is remarkable that the relative scale dependence is below 5 % for most of the distributions in
the ranges that are most relevant for measuring the strong coupling. Nevertheless, there is still
a sizable difference between the NNLO predictions and the data for most of the distributions,
which we attribute to parton shower (or resummation) and to hadronization effects.

The dependence on the renormalization scale increases significantly beyond kinematical
regions of three-parton contributions, for instance for τ > 1/3 or Cpar > 3/4 and thus those are
not shown on the ratio plots. At these three-parton kinematical limits large logarithms appear
inside the physical region which have to be resummed similarly to the large logarithms that
appear for small values of the event shapes (at the boundary of the physical region) [97].

4We are grateful to G. Heinrich for providing the predictions of EERAD3 for us.
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Figure 1: Perturbative predictions for the thrust (τ) and heavy jet mass (ρ) distributions at
LO, NLO and NNLO accuracy. The bands represent the renormalization scale uncertainty of
our predictions corresponding to the range ξR ∈ [0.5, 2] around the central value of µ0 =

√
Q2.

The lower panels show the ratio of the (updated but unpublished – see text) predictions of [6]
(SW) and EERAD3 [96] (GGGH) to CoLoRFulNNLO (this work). The bands on the lower panels
show the relative scale uncertainty of our NNLO results.
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Figure 2: Same as figure 1 for total (BT ) and wide (BW ) jet broadening.
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Figure 3: Same as figure 1 for the C-parameter (Cpar) and the two-to-three jet transition
parameter (y23) in the Durham clustering algorithm.
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As mentioned above, predictions for these six event shapes were presented in refs. [5,6]. In
order to quantify the level of agreement across the available perturbative predictions, we also
show the ratio of the (updated but unpublished – see below) results of ref. [6] (denoted by
SW) and those of EERAD3 (denoted by GGGH) normalized to ours in the middle and bottom
panels of each figure. Since the published predictions of [6] are known to be affected by an issue
with the phase space generation in the code used to compute those results [98], we have made
comparisons to updated but unpublished results which where provided to us by S. Weinzierl5.
The general conclusion one may draw is that our predictions are in agreement with the updated
predictions of SW except for very small and large (beyond the kinematic limits at LO) values of
the event shapes, up to the estimated statistical uncertainties. A qualitatively similar statement
can be made about the comparison to the GGGH predictions, although the deviations from
our results at small values of event shapes are in general more pronounced than for the SW
predictions. This is especially apparent for the C-parameter distribution below Cpar = 0.1.

The level of agreement among the perturbative predictions can be seen better by looking
at the NNLO coefficients directly, as shown in figure 4. In the figures the upper panels show
the distributions of the NNLO coefficients OC(O), while the middle and bottom panels once
more present the ratios of the results of SW and those of GGGH normalized to ours. Again we
observe a good numerical convergence of our method: the relative uncertainties of the Monte
Carlo integrations are shown as shaded bands around the lines at one on the lower panels.
The peaks which appear in the relative uncertainties are artifacts of the distributions changing
sign with the absolute uncertainties remaining small. The scattered error bars represent the
statistical uncertainties of the Monte Carlo integrations of the other two predictions.

Examining the plots in figure 4, we see that the agreement is generally quite good be-
tween the predictions of SW and CoLoRFulNNLO and reasonably good between GGGH and
CoLoRFulNNLO. However the precise comparison to GGGH predictions is hampered by the
somewhat large integration uncertainties and bin-to-bin fluctuations of those results. Also,
significant deviations among the three predictions are visible for small and large values of the
event shapes. For example for τ = 1− T the differences between the CoLoRFulNNLO results
and the other two computations grow up to a factor of two for τ > 1/3. However, in this
region, the contribution from three-particle final states vanishes and the thrust distribution
is determined by a four-jet final state. Thus, C(τ) is determined by the NLO corrections to
four-jet production, which have been known for a long time [8, 9] and can also be computed
with modern automated tools such as MadGraph5 aMC@NLO [99]. We have checked that our
predictions are in complete agreement with those of MadGraph5 aMC@NLO. The same is true for
the tails of the other distributions beyond their respective kinematic limits. For small values
of the event shapes we have checked that our predictions agree with the resummed predictions
obtained from SCET [17,20,100] expanded to O(α3

s ).

5We are grateful to S. Weinzierl for providing us with these updated predictions.
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Figure 4: The OC(O) coefficients of the thrust, heavy jet mass, total and wide jet broadening,
C-parameter and two-to-three jet transition variable y23 distributions. Lower panels show the
ratio of the (updated but unpublished – see text) predictions of [6] (SW) and EERAD3 [96]
(GGGH) to CoLoRFulNNLO (this work). The shaded bands on the lower panels represent the
relative statistical uncertainties of our predictions due to Monte Carlo integrations.
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√
Q2. The lower panel shows

the relative scale dependence at NNLO accuracy.

5.3 Jet cone energy fraction

The jet cone energy fraction defined in eq. (5.9) is a particularly simple and excellent observable
for the determination of the strong coupling. The smallness of hadronization corrections, detec-
tor corrections as well as perturbative corrections allows a specially wide fit range to be used for
the extraction of αs [90]. JCEF was computed at NLO accuracy for the first time in ref. [89].
Here we present the first result for the JCEF distribution at NNLO accuracy in perturbative
QCD for collider energy of

√
Q2 = 91.2 GeV. In figure 5 we show physical predictions for JCEF,

as well as the measured data by the DELPHI collaboration. As previously, the uncertainties
due to the variation of the renormalization scale in the range [0.5, 2] times our default scale
choice (the total center-of-mass energy) are shown as bands on the upper panel. We indicate
the relative scale uncertainty at NNLO on the bottom panel. To better appreciate the impact
of the NNLO corrections, we show in figure 6 the distribution of the NNLO coefficient C(χ)
directly. Also for these distributions, we observe a good numerical convergence of our code.

6 Conclusions and outlook

In this paper we presented the CoLoRFulNNLO framework to compute higher order radiative
corrections to jet cross sections in perturbative QCD. CoLoRFulNNLO is a completely local
and fully differential subtraction scheme based on the known infrared factorization properties
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Figure 6: The distribution of the NNLO coefficient for jet cone energy fraction (JCEF). The
error bars represent the statistical uncertainty of the Monte Carlo integrations.

of QCD matrix elements in soft and collinear limits. Since the subtraction terms explicitly
take all color and spin correlations into account, the regularized real emission terms (both
double real and real-virtual) are well-defined and can be computed in four dimensions with
whatever numerical procedure is deemed most convenient. We have shown analytically that
explicit infrared ε-poles coming from loop amplitudes cancel against the integrated forms of
subtraction terms both in the real-virtual contribution (for any number of jets) and double
virtual contribution (with up to three jets in the final state).

We have also reported on the computation of NNLO corrections to three-jet event shape
observables in electron-positron collisions using CoLoRFulNNLO. We observe a very good nu-
merical convergence of our method, which we attribute at least in part to the complete locality
of the subtraction terms.

We compared both our physical predictions as well as the NNLO contribution only with
similar predictions published earlier (in ref. [96] denoted by GGGH and in ref. [6] denoted by
SW) for thrust, heavy jet mass, total and wide jet broadening, the C-parameter and the two-
to-three jet transition variable y23 in the Durham jet clustering algorithm. We find agreement
with the updated (unpublished) predictions of SW within the statistical uncertainty of the
numerical integrations except for very small and large values of the event shapes, beyond the
kinematic limits at LO. The measured data in these regions are limited by statistics and so the
phenomenological relevance of the differences is negligible. The same is true for the comparison
to the physical predictions of GGGH, however the deviations from our results for small values
of event shapes are generally more pronounced than for the predictions of SW. This is especially
apparent for small values of the C-parameter, below Cpar = 0.1. When comparing our physical
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predictions at the NNLO accuracy to experimental data, we still find large differences. An
important source of discrepancy is the neglected large logarithmic contributions which require
all-order resummation. Work towards matching the fixed-order predictions to resummed ones
is in progress.

Finally, we have shown for the first time perturbative predictions for jet cone energy fraction
at NNLO, thereby providing a new observable from which the value of the strong coupling can
be extracted at this accuracy. This observable has the remarkable property that the NNLO
corrections are very small and the fairly good agreement between data and predictions already
at NLO become only marginally better with the inclusion of the NNLO corrections. This
stability of the perturbative predictions makes JCEF a good candidate for the extraction of the
strong coupling.

We emphasize that our framework is not restricted to three-jet production, but it can
be easily applied to study differential distributions for four- or more jet production once the
necessary two-loop matrix elements become available. CoLoRFulNNLO is completely worked
out for processes with colorless initial states at present. The inclusion of initial state radiation
is a conceptually straightforward although substantial task and is work in progress.
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Note added

After the completion of this manuscript, we were provided new predictions of EERAD3 by
G. Heinrich. In the present version of this paper, we have made comparisons to these un-
published new predictions.
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A The I
(0)
1 insertion operator up to O(ε)

We present the Laurent expansion of the kinematic functions that appear in the I
(0)
1 ({p}m; ε)

insertion operator in eq. (3.9) up to and including O(ε) terms. An expansion to this order is
sufficient for demonstrating the cancellation of the ε-poles at NNLO. We have also computed
the O(ε2) coefficients of the expansions analytically, however they are quite lengthy and we do
not display them here.

The C
(0)
1,i (x, ε) are obtained as the following combination of terms

C
(0)
1,q(x, ε) = [C

(0)
ir ]qg(x, ε)− [CirS

(0)
r ](ε) , (A.1)
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The integrated soft kinematic function S
(0),(i,k)
1 (Y, ε) is simply given by

S
(0),(i,k)
1 (Y, ε) = [S

(0)
1 ](i,k)(Y, ε) , (A.7)
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B Asymptotic form of the J2 insertion operator

We defined the J2 insertion operator in eq. (4.26) and exhibited its pole structure for three
hard partons in the final state in eq. (4.27). That is sufficient to check the cancellation of the
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double virtual ε-poles at NNLO. However, in the numerical integrations over the three-parton
phase space one also needs the finite part, which is rather lengthy and in fact, we have only
computed its asymptotic expansion for small kinematic invariants analytically. Here we record
this expansion and comment on the remaining regular part, which we compute numerically.

For the Born process e+e− → qq̄g the J2 operator can be written in the following explicit
form:
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which then also defines the finite part Fin
(
J2(ε)

)
unambiguously. We decompose the finite

part into an asymptotic piece which collects all logarithmic contributions that become singular
on the borders of the three-parton phase space and a piece which is regular over the whole
phase space, i.e. finite on the borders:

Fin
(
J2(ε)

)
= Fin

(
Jasy

2 (ε)
)

+ Fin
(
J reg

2 (ε)
)
. (B.2)

The asymptotic part can be written as
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We stress that this form as well as the explicit expressions for the asymptotic functions presented
below are known to be appropriate only for e+e− → 3 jet production. The analytic expressions
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for the asymptotic parts of the kinematic functions read as follows:
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36(1− x)
+

9247

450

)
ln(Y )

+
CA

CF

[
− 4

3
π2 ln2(Y ) +

35 ln2(Y )

3
− 16ζ(3) ln(Y ) +

22

9
π2 ln(Y ) + 8 ln2(2) ln(Y )

− 224

9
ln(2) ln(Y ) +

9629 ln(Y )

1350

]
+ nf

TR

CF

[
4 ln2(Y )

9
+

28

9
π2 ln(Y )− 16 ln2(2) ln(Y )

+
448

9
ln(2) ln(Y )− 7474 ln(Y )

135

]
, (B.7)

and

CSasy
2,g (x, Y ) = 8

(
1

(1− x)5
+ 1

)(
2Li3(1− x) ln(Y ) + Li2(1− x) ln(x) ln(Y )

+ 2Li3(x) ln(Y ) + ln(1− x) ln2(x) ln(Y )− π2

6
ln(x) ln(Y )− 2ζ(3) ln(Y )

)
− 8

(
Li3(1− x) ln(Y )− Li2(1− Y ) ln(x) ln(Y )− Li3(1− Y ) ln(x)

− 2Li3(Y ) ln(x)− ln(x) ln(1− Y ) ln2(Y ) +
π2

3
ln(x) ln(Y )− 2ζ(3) ln(Y )

)
− 4

3

(
2Li2(1− Y ) ln(x) + ln(x) ln2(Y )

)
−
(

34

3(1− x)5
− 2

(1− x)4

+
2

(1− x)3
+

4

(1− x)2
+

8

1− x −
16

3

)
Li2(1− x) ln(Y )− 320

3

(
2

(2− x)6

− 1

(2− x)5

)
Li2

(
1− x

2

)
ln(Y ) +

(
4

3(1− x)4
+

2

3(1− x)3
+

4

9(1− x)2

+
1

3(1− x)

)
π2 ln(Y ) +

(
163

18(1− x)5
− 7

3(1− x)4
− 55

18(1− x)3
+

16

9(1− x)2

+
35

3(1− x)
− 100

9

)
ln(x) ln(Y )−

(
96

(2− x)6
− 272

3(2− x)5
+

56

3(2− x)4

+
4

3(2− x)3

)
ln

(
x

2

)
ln(Y ) +

4

1− Y ln(x) ln(Y ) +

(
79

18(1− x)4
− 107

36(1− x)3

− 64

27(1− x)2
+

15

4(1− x)

)
ln(Y ) +

(
176

3(2− x)5
− 20

3(2− x)4
− 154

27(2− x)3

− 37

27(2− x)2
− 5

18(2− x)

)
ln(Y )

+ nf
TR

CA

[
640

3

(
2

(2− x)6
− 1

(2− x)5

)
Li2

(
1− x

2

)
ln(Y )

− 8

3(1− x)5
Li2(1− x) ln(Y )−

(
2

3(1− x)5
− 4

3(1− x)4
− 2

9(1− x)3

+
8

9

)
ln(x) ln(Y ) +

(
192

(2− x)6
− 544

3(2− x)5
+

112

3(2− x)4

36



+
8

3(2− x)3

)
ln

(
x

2

)
ln(Y ) +

(
2

(1− x)4
+

5

3(1− x)3
+

26

27(1− x)2

+
5

9(1− x)

)
ln(Y )−

(
352

3(2− x)5
− 40

3(2− x)4
− 308

27(2− x)3

− 74

27(2− x)2
− 5

9(2− x)

)
ln(Y )

]
. (B.8)

We do not have analytic expressions for the regular part. However, computing this piece
numerically on a grid over the three-parton phase space, we find that it is in fact flat across
the whole phase space (within the uncertainty of the numerical integrations). Hence it can be
described by a single number whose numerical value we find to be

Fin
(
J reg

2 (ε)
)

=

[
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε]2(
− 650

)
(B.9)

for Nc = 3, TR = 1/2 and nf = 5.
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[49] P. Bolzoni, G. Somogyi, and Z. Trócsányi, “A subtraction scheme for computing QCD
jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction
terms,” JHEP 1101 (2011) 059, arXiv:1011.1909 [hep-ph].

[50] V. Del Duca, G. Somogyi, and Z. Trocsanyi, “Integration of collinear-type doubly
unresolved counterterms in NNLO jet cross sections,” JHEP 1306 (2013) 079,
arXiv:1301.3504 [hep-ph].

[51] G. Somogyi, “A subtraction scheme for computing QCD jet cross sections at NNLO:
integrating the doubly unresolved subtraction terms,” JHEP 1304 (2013) 010,
arXiv:1301.3919 [hep-ph].

[52] R. Boughezal, C. Focke, X. Liu, and F. Petriello, “W -boson production in association
with a jet at next-to-next-to-leading order in perturbative QCD,” Phys. Rev. Lett. 115
no. 6, (2015) 062002, arXiv:1504.02131 [hep-ph].

[53] J. Gaunt, M. Stahlhofen, F. J. Tackmann, and J. R. Walsh, “N-jettiness Subtractions
for NNLO QCD Calculations,” JHEP 09 (2015) 058, arXiv:1505.04794 [hep-ph].

[54] J. M. Campbell and E. N. Glover, “Double unresolved approximations to multiparton
scattering amplitudes,” Nucl.Phys. B527 (1998) 264–288, arXiv:hep-ph/9710255
[hep-ph].

[55] S. Catani and M. Grazzini, “Collinear factorization and splitting functions for
next-to-next-to-leading order QCD calculations,” Phys. Lett. B446 (1999) 143–152,
arXiv:hep-ph/9810389 [hep-ph].

[56] V. Del Duca, A. Frizzo, and F. Maltoni, “Factorization of tree QCD amplitudes in the
high-energy limit and in the collinear limit,” Nucl. Phys. B568 (2000) 211–262,
arXiv:hep-ph/9909464 [hep-ph].

[57] F. A. Berends and W. T. Giele, “Multiple Soft Gluon Radiation in Parton Processes,”
Nucl. Phys. B313 (1989) 595.

[58] S. Catani and M. Grazzini, “Infrared factorization of tree level QCD amplitudes at the
next-to-next-to-leading order and beyond,” Nucl. Phys. B570 (2000) 287–325,
arXiv:hep-ph/9908523 [hep-ph].

[59] Z. Bern, L. J. Dixon, and D. A. Kosower, “One loop amplitudes for e+ e- to four
partons,” Nucl. Phys. B513 (1998) 3–86, arXiv:hep-ph/9708239 [hep-ph].

[60] D. A. Kosower, “All order collinear behavior in gauge theories,” Nucl.Phys. B552
(1999) 319–336, arXiv:hep-ph/9901201 [hep-ph].

[61] D. A. Kosower and P. Uwer, “One loop splitting amplitudes in gauge theory,”
Nucl.Phys. B563 (1999) 477–505, arXiv:hep-ph/9903515 [hep-ph].

[62] Z. Bern, V. Del Duca, W. B. Kilgore, and C. R. Schmidt, “The Infrared behavior of one
loop QCD amplitudes at next-to-next-to leading order,” Phys.Rev. D60 (1999) 116001,
arXiv:hep-ph/9903516 [hep-ph].

41

http://dx.doi.org/10.1007/JHEP01(2011)059
http://arxiv.org/abs/1011.1909
http://dx.doi.org/10.1007/JHEP06(2013)079
http://arxiv.org/abs/1301.3504
http://dx.doi.org/10.1007/JHEP04(2013)010
http://arxiv.org/abs/1301.3919
http://dx.doi.org/10.1103/PhysRevLett.115.062002
http://dx.doi.org/10.1103/PhysRevLett.115.062002
http://arxiv.org/abs/1504.02131
http://dx.doi.org/10.1007/JHEP09(2015)058
http://arxiv.org/abs/1505.04794
http://dx.doi.org/10.1016/S0550-3213(98)00295-8
http://arxiv.org/abs/hep-ph/9710255
http://arxiv.org/abs/hep-ph/9710255
http://dx.doi.org/10.1016/S0370-2693(98)01513-5
http://arxiv.org/abs/hep-ph/9810389
http://dx.doi.org/10.1016/S0550-3213(99)00657-4
http://arxiv.org/abs/hep-ph/9909464
http://dx.doi.org/10.1016/0550-3213(89)90398-2
http://dx.doi.org/10.1016/S0550-3213(99)00778-6
http://arxiv.org/abs/hep-ph/9908523
http://dx.doi.org/10.1016/S0550-3213(97)00703-7
http://arxiv.org/abs/hep-ph/9708239
http://dx.doi.org/10.1016/S0550-3213(99)00251-5
http://dx.doi.org/10.1016/S0550-3213(99)00251-5
http://arxiv.org/abs/hep-ph/9901201
http://dx.doi.org/10.1016/S0550-3213(99)00583-0
http://arxiv.org/abs/hep-ph/9903515
http://dx.doi.org/10.1103/PhysRevD.60.116001
http://arxiv.org/abs/hep-ph/9903516


[63] V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano, and Z. Trócsányi, “Higgs boson
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