

FPCP 2016 - Caltech June 6-9

Rare decays

Martino Borsato¹

¹Universidade de Santiago de Compostela on behalf of the LHCb collaboration with results from ATLAS and CMS

Rare decays

- The Standard Model is not the full story:
 - Dark matter, hierarchy problem, flavour puzzle, matter-antimatter, gravity, ...
 - We have the proof that New Physics is there!
- BSM models can cure (some of) these SM shortcomings
 - they also predict new undetected particles
- The LHC is looking for their direct production (mainly ATLAS and CMS)
- But they can also enter in "SM observables" through competing diagrams
- Measuring very-suppressed SM-processes could allow us to unveil New Physics

Outline

B_(s)→µµ CMS+LHCb and new ATLAS result
Other very rare decays in beauty and charm
Lepton Flavour (Universality) violation tests

 $B_{(s)} \rightarrow \mu \mu$

 $\mu \mu$

 $\rightarrow \mu \mu$

- The Holy Grail of rare decays
- A quest lasted 30 years and spanning 5 orders of magnitude
- Crucial role of hadron colliders: Tevatron first, now led by LHC
 - Large $pp \rightarrow b\overline{b}X$ cross section
 - µµ decay easy to identify despite harsh hadronic environment

LHCb+CMS result

- LHCb and CMS: world-best sensitivity
- Their Run 1 results combined [<u>nature:522(2015)68</u>] gave us:
 - First observation of $B_{(s)} \rightarrow \mu \mu$ with 6.2 σ (1.2 σ from SM)
 - Evidence for $B^0 \rightarrow \mu\mu$ with 3.2 σ (2.2 σ from SM)
 - Measurement ratio B^0/B_s :

 $\mathcal{R} = 0.14^{+0.08}_{-0.06}$

• ATLAS recently published analysis of full Run 1 dataset: [ArXiv:1604.04263] \rightarrow briefly discussed in this talk

$B_{(s)} \rightarrow \mu \mu$ at the LHC

• General strategy:

- Good quality displaced di-muons
- $p(\mu\mu)$ pointing back to primary vertex
- MVA selection using kinematic and geometric features
- Fit to $m(\mu\mu)$ in bins of MVA to maximise sensitivity
- ► Normalisation: $B^+ \to J/\psi K^+$ (LHCb uses also $B^0 \to K^+ \pi^-$)
- Extraction of f_s/f_d from control channels

from mass fit

$B_{(s)} \rightarrow \mu \mu$ in LHC

- Mass resolution (separation of bkg and $B_d B_s$):
 - LHCb has the best: 25 MeV/c^2 in whole accept.

140

120

100

80 60

40 20

Events / 40

ATLAS

5000

- CMS better than ATLAS (depends on η)
- Luminosity:
 - ▶ 3 fb⁻¹ for LHCb
 - ▶ 25 fb⁻¹ for ATLAS/CMS
- Trigger on muons p_T:
 - LHCb: single muon $p_T > 1.5 \text{ GeV/c}$
 - CMS: two muons with $p_T > 4(3)$ GeV/c.
 - ATLAS two muon triggers with generally somewhat higher p_T

$B_{(s)} \rightarrow \mu \mu$ backgrounds

 $B_s \rightarrow K^- \mu^+ \nu$

 $\Lambda_{\rm h} \rightarrow p \mu^+ \nu$

- Mass continuum:
 - Combinatorial background (mainly muons from the two b's) $B \rightarrow \pi^{-} \mu^{+} \nu$
- Below *B* mass:
 - Semi-leptonic with hadron misuid: $B_{s} \rightarrow K^{-} \mu^{+} \nu, \ B^{0} \rightarrow \pi^{-} \mu^{+} \nu, \ \Lambda_{b} \xrightarrow{B_{s} \rightarrow D^{-}_{s}(\rightarrow \mu \underline{\nu})\mu^{+}\nu}_{\text{Rare}}$ $\mathbb{R}_{are} \text{ penguins: } B^{0,+} \rightarrow \pi^{0,+} \xrightarrow{B_{(s)} \rightarrow \mu^{\pm}\mu\gamma}_{\mu} \mu^{\mu}, \dots$

 - Double semilept: $\mathcal{B}(B_{(s)}^{0} \to \mu^{+}\mu^{-}) = \frac{\mathcal{B}_{norm}\epsilon_{norm}f_{norm}}{N_{norm}\epsilon_{sig}f_{d(s)}} \times N_{B_{(s)}^{0} \to \mu^{+}\mu^{-}}$

Semileptonic

Rare

- Peaking background: Semileptonic
 - $B_{(s)} \rightarrow h'^+ h^- \text{ with double } \min_{B_s \rightarrow D_s(\rightarrow \mu\nu)\mu^+\nu}^{B^+,\rightarrow J/\psi\mu^+\nu}$

 $B^{+(0)} \rightarrow \pi^{+(0)} \mu^{+} \mu^{-}$ $B_{(s)} \rightarrow \mu^+ \mu^- \gamma$

 $\Lambda_h \rightarrow p \mu^+ \nu$

- dimensi DT $n_{\mu^+\mu^-}$ [MeV/c²]

ATLAS selection

- ATLAS used a double MVA selection (with Boosted Decision Trees):
- a BDT to reduce **peaking background** $B_{(s)} \rightarrow h'^+ h^-$
 - based on tracking ID, muon spectrometer and calorimeter info
 - trained on MC and validated on data
 - rejection 7× larger than first paper ($\epsilon_{sig} = 90\%$)
- a BDT to reduce **combinatorial**
 - based on kinematic, geometry and isolation
 - trained on MC samples of b/c quarks decay chains
 - cut with $\epsilon_{sig}=54\%$ and background rejection 10^3
 - ▶ Mass fit in 3 bins of BDT: same strategy as LHCb/CMS

Mass fit in BDT bins

- Simultaneous unbinned mass fit in BDT bins
 - whole stat power
 - handle on background
- For CMS+LHCb
 - combine all bins in same fitter with shared parameters
 - more stability and reliability

 f_s/f_d for $B_s \rightarrow \mu \mu$

ATLAS LHCb (hadronic decays)

40

50

 $p_{_{\rm T}}$ (GeV)

LEP (HFAG average)

CDF

30

20

 Normalising B_s Need probab either an s- c

- LHCb measured avoid model dep
- CMS used LHC

to account for possible \mathbf{p}_{T} dependence

 f_s/f_d

0.3

0.25

0.2

ATLAS

2.47 fb⁻¹ $\sqrt{s} = 7$ TeV

10

- ATLAS recently measured it [PRL 115(2015)26]
 - Using $B_d \rightarrow J/\psi K^*$ and $B_s \rightarrow J/\psi \phi$
 - ▶ pQCD calculation of BF ratio [prd 89(2014)9]
 - ▶ $p_{\rm T}$ range adapted to its $B_s \rightarrow \mu \mu$ analysis

ATLAS f_s/f_d HFAG average ATLAS *√s* = 7 TeV theory error LHCb (hadronic decays) $\sqrt{s} = 7 \text{ TeV}$ LHCb average $\sqrt{s} = 7 \text{ TeV}$ CDF √*s* = 1.96 TeV LEP (HFAG average) $\sqrt{s} = m_z$ 0.25 0.3 0.15 0.2 0.35 0.1 f_s/f_d

[PRL 115(2015)26]

ATLAS sensitivity

[<u>ArXiv:1604.04263</u>]

- ATLAS sensitivity compared:
 - Single-event sensitivities very similar to LHCb $(8.9 \pm 1.0) \times 10^{-11} \text{ for } B_s^0 \rightarrow \mu^+ \mu^ (2.21 \pm 0.15) \times 10^{-11} \text{ for } B^0 \rightarrow \mu^+ \mu^-$
 - ▶ about same number of expected signal events
 - Expected ATLAS sensitivity for SM B_s is 3.1σ
 - It is $5.0\sigma(4.8\sigma)$ for LHCb (CMS)
- ATLAS demonstrated it can play an important role
 - before the LHC the upper limit on B_s was one order of magnitude larger than the SM

ATLAS results

[ArXiv:1604.04263]

Other very rare decays

$B_{(s)} \rightarrow \mu \mu \mu \mu \mu$ at LHCb

- $B_{(s)} \rightarrow \mu \mu \mu \mu$ (non resonant) is very suppressed in the SM
 - $B_{(s)} \rightarrow \mu \mu \chi(\mu \mu)$ is less than 10^{-10}
- Significant enhancement can occur in MSSM through sgoldstinos P, S
 Demidov et al [PRD 85(2012)077701]

Batell et al[PRD 83(2011)054005]

- HyperCP evidence for $\Sigma^+ \rightarrow p \mu \mu$
 - all 3 events at

 $m(\mu\mu){=}214.3(5)~{
m MeV/c}^2$

• suggests intermediated state $\Sigma^+ \rightarrow p P^0(\mu\mu)$

[PRL 110(2013)211801]

$B_{(s)} \rightarrow \mu \mu \mu \mu \mu$ at LHCb

[PRL 110(2013)211801]

- Searched at LHCb with 1 fb^{-1}
- Normalised to $B^0 \to J/\psi K^*$
- Limits at 95%(90%) CL: $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 1.6(1.2) \times 10^{-8},$ $\mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 6.6(5.3) \times 10^{-9}.$
- Following the model in [PRD 85(2012)077701] put limit on:

 $\mathcal{B}(B_s^0 \to SP) < 1.6(1.2) \times 10^{-8},$ $\mathcal{B}(B^0 \to SP) < 6.3(5.1) \times 10^{-9}.$

• LHCb plans to measure also $\Sigma^+ \rightarrow p \mu \mu$

Rare D decays at LHCb

• Probe the effects of NP on the coupling of up-type quarks in EW processes • Very high charm x-section $\sim 5(2) \times 10^{12} D^0 (D^+)$ with 3 fb⁻¹

Lepton flavour (universality) violation

LFV: $B_{(s)} \rightarrow \mu e$

[LHCb, PRL 111(2013) 141801]

- LFV decay forbidden in SM, allowed in leptoquarks models
- LHCb measure with 1 fb^{-1} (3 on tape)
 - strategy identical to $B_{(s)} \rightarrow \mu \mu$
 - normalised to $B^{\circ} \to K^{\prime} \pi$
 - Upper limit with CLs method

▶ 95% C.L. lower bound on Pati-Salam leptoquark are 2× higher than CDF $M_{LQ}(B_s \rightarrow e\mu) > 101 \text{ TeV/c}_2^2$ and $M_{LQ}(B^0 \rightarrow e\mu) > 126 \text{ TeV/c}^2$

Heavy singlet Dirac v, PRD 62 (2000) 036010 SUSY, EPJC 41 (2005) 305 Pati-Salam PRD 10 (1974) 275

LFU tests: R_K

- Look for BSM sources of LFU violation e.g. leptoquarks or a Z' coupling more to $\mu\mu$
- $B^+ \to K^+ ll$ processes involve EW loop
- The exclusive BR bears large theoretical uncertainty
- Hadronic effects cancel-out in the ratio:

$$\mathcal{R}_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1 \pm \mathcal{O}(10^{-3})$$

• Experimental uncertainty can be reduced using a double ratio with the resonant J/ψ channel:

$$\mathcal{R}_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi (\mu^{+} \mu^{-}))} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{N_{K^{+} J/\psi (e^{+} e^{-})}}{N_{K^{+} e^{+} e^{-}}} \underbrace{\epsilon_{K^{+} J/\psi (\mu^{+} \mu^{-})}}{\epsilon_{K^{+} \mu^{+} \mu^{-}}} \underbrace{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}}$$

 \rightarrow cancel systematics

LFU tests: R_K

• LHCb result with Run 1 data:

 $\mathcal{R}_K = 0.745^{+0.090}_{-0.074} \pm 0.036$

LHCb: [PRD113(2014),151601]

> 2.6σ deviation

• Corresponds to effect expected if $B \rightarrow K^* \mu \mu$ (BR, P'_5) deviations were due to NP in $\mu \mu$ only Descotes-Genon et al - [ArXiv:1510.04239]

• Some models can explain also the 4 sigma deviation in R(D) and $R(D^*)$ Boucenna et al [ArXiv:1604.03088]

Faijfer, Kosnic [ArXiv:1511.06024] Faijfer, Kosnic [ArXiv:1511.06024]

LFU tests: R_K

- Electrons: LHCb vs B-factories
 - ▶ $\sim 3 \times$ worse efficiency on dielectrons/dimuons
 - Larger bremsstrahlung and hard recovery
 - Still LHCb has best sensitivity!
- Future for LHCb:
 - ▶ more statistics being collected in Run 2
 - more channels: R_{K^*} , R_{φ} , $R_{K\pi\pi}$,...
- Belle II and LHCb upgrade will reduce the error by an order of magnitude

LHC Run 2 has started!

 10^{8}

 10^{7}

10⁶

10⁵

10⁴

10³

10²

Events / GeV

Single muon

Charmonium

Bottomonium

Other triggers

100 200

Dimuon mass $[GeV/c^2]$

- All results presented are from LHC Run 1
- But Run 2 has already started:

2 3 4 5

10

20

LHCbPlots2015

LHCb Preliminary

2015 UP

 10^{9}

 10^{8}

10

 10^{6}

 10^{5}

 10^{4}

 10^{3}

10²

10

b.2

Dimuons per GeV/c²

- ▶ $\sim 2 \times \text{ energy} \rightarrow 2 \times \text{ bb cross section}$
- By 2018 expect 5 fb^{-1} in LHCb and 100 fb⁻¹ in ATLAS/CMS

Conclusions

- The LHC is leading the rare decay searches
- \odot ATLAS result on $B_s{\rightarrow}\mu\mu$ completed LHC Run~1 legacy
 - ▶ So far no significant deviation from SM
 - ▶ Still a lot of space for NP: eagerly waiting Run 2
- Other (very)-rare decays in *B* and *D* decays have complementary sensitivity to BSM
- \odot LFU and LFV tests with B decays are intriguing
- All measurements limited by statistics
 - ▶ LHC *Run 2* will tell us more!

BACKUP

BDT bins

ATLAS $B_{(s)} \rightarrow \mu \mu$ result in 2D

ATLAS trigger

- \odot Normal dimuon trigger (both $p_T>4~GeV/c)$ is prescaled in 2012:
 - add a "barrel" trigger
 - \blacktriangleright and a tighter asymm one (p_T > 6(4) GeV/c)
- 3 trigger categories for 2012:
 - high p_T threshold ($p_T > 6(4) \text{ GeV/c}$)
 - ▶ 1 muon in barrel and both $p_T > 4 \text{ GeV/c}$
 - normal dimuon (both $p_T > 4 \text{ GeV/c}$)

- Simultaneous ML fit on 3 BDT bins to get N_{Bs} and N_{Bd}
- Mass *s*hapes:
 - ▶ Signal from MC
 - Combinatorial: linear
 - Below B mass: exponential

$\mu\mu$: CMS vs ATLAS

- ATLAS: superconducting toroid magnets and a set of precise muon chambers —> standalone momentum measurement outside the tracker
- CMS: higher magnetic field in the silicon tracker 4T (pays in jet efficiency) but better µµ resolution