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1 Introduction

The scalar Higgs boson h(125 GeV) holds a unique position in the Standard Model (SM)
of particle physics. Via its interactions with the spin-1 weak gauge bosons and the spin-1

2
fermions (quarks and leptons), its vacuum expectation value generates the masses of SM par-
ticles. On the other hand, cosmological inflation [1–7] postulates a scalar inflaton field to drive
near-exponential expansion of the very early Universe, whose quantum fluctuations generate
the observed perturbations in the cosmic microwave background (CMB), and thereby large-
scale structure. However, the identity of the inflaton is unknown so far. It is natural to iden-
tify the inflaton with the SM Higgs boson as postulated in models of Higgs inflation [8],1 and
seek possible tests from cosmological observations and collider measurements. In this regard,
Higgs inflation would be a truly economical and predictive mechanism for the cosmological in-
flation, and provide a welcome direct link between the SM and the early-Universe cosmology.

One problem of minimal Higgs inflation in the SM is the instability or metastability of
the Higgs potential at high scales.2,3 The resolution of this problem probably calls for some
new physics beyond the SM,4 such as supersymmetry (SUSY), which can help to stabilize
the Higgs potential [30], while also predicting a fairly light Higgs boson that can be identified
as the 125 GeV scalar particle discovered at the LHC. SUSY could also serve to control the
magnitudes of quantum corrections to the parameters of the inflationary potential [31]. Since
the energy scale of inflation is around that of SUSY gauge unification, we are tempted to
embed Higgs inflation into certain SUSY grand unified theory (GUT), within a supergravity
framework. It is particularly attractive to choose no-scale supergravity (SUGRA),5 since
it emerges naturally from simple string compactifications [34], and provides flat directions
which are advantageous for cosmological applications [35].

1For a review see ref. [9] and references therein.
2For examples, see refs. [10–18] and references therein.
3In some non-Higgs inflation models, vacuum stability could be restored by adding a non-minimal Higgs-

gravity coupling (with radiative corrections) and assuming inflation is driven by new physics not directly
coupled to the SM [10, 19].

4For examples, see refs. [20–29] and references therein.
5See refs. [32, 33] and references therein.
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We have given previously an explicit realization of a no-scale supersymmetric GUT
scenario for inflation [29], in which Higgs inflation is realized in an SU(5) GUT embedded
in no-scale supergravity. In this model, the inflaton is identified as the D-flat direction
of the two Higgs doublets in the minimal supersymmetric extension of the SM (MSSM).
The predictions of this model for scalar and tensor perturbations in the cosmic microwave
background (CMB) interpolate between the predictions of quadratic chaotic inflation and the
Starobinsky model. An important feature of this model is that a fairly flat inflaton potential
can be achieved without introducing a non-minimal Higgs-gravity coupling or imposing a shift
symmetry on the Kähler potential, since the no-scale supergravity structure of this model
provides the desired flat direction. In this no-scale SUSY GUT approach to Higgs inflation,
all Higgs bosons couple minimally to gravity via the energy-momentum tensor, without any
non-minimal coupling between the Higgs fields and the Ricci scalar. Hence our no-scale Higgs
inflation approach differs in an essential way from traditional SM Higgs inflation [8, 9], other
SUSY and GUT extensions in the literature,6 and the Starobinsky-like no-scale supergravity
scenario proposed in [40].

In this work, we first show how the structure of our previous no-scale SU(5) GUT
inflationary model can be generalized to other GUT models, specifically the flipped SU(5) [41,
42] and Pati-Salam [43] GUTs. One motivation for this generalization is that the simplest
SUSY SU(5) GUT is already tightly constrained by experiments, particularly the limits
on proton decay. These cause tension with the construction of [29], which requires the
colored Higgs fields to have masses around 1013 GeV.7 In the current study, we show that the
constructions with the flipped SU(5) model or with the Pati-Salam model can disentangle the
colored Higgs mass from the scale of inflation, making model building much more flexible. In
addition, neither of the flipped SU(5) and Pati-Salam GUTs require any field in an adjoint
representation, so they can be embedded more naturally into string theory. However, our
constructions of the flipped SU(5) and Pati-Salam GUT Higgs inflation models make similar
predictions as the SU(5) no-scale model [29], also interpolating between the quadratic and
Starobinsky potentials.

After presenting the no-scale Higgs inflation models à la flipped SU(5) and Pati-Salam,
we investigate the reheating process in these GUT models. Since reheating happens after
inflation, and launches the Universe into the hot Big-Bang era, it should be treated as a part
of the complete inflation theory. However, unlike the inflationary epoch when the physics is
almost determined by the inflationary potential alone, the reheating period is quite compli-
cated and involves detailed dynamical properties of the model. While a detailed description
of the reheating process is an interesting topic in itself, our analysis here is motivated by the
imprint of the post-inflationary evolution of the inflaton on primordial fluctuations through
the number of e-folds, which are sensitive to the mechanism for reheating. The on-going
measurements of CMB observables with increasing precision are beginning to impose non-
trivial constraints on the reheating scenario within a given model of inflation.8 One special
feature of the GUT models we study is that the inflaton potential changes dramatically in
the post-inflationary era, due to GUT symmetry breaking. As a result, the original quadratic
or exponentially flat inflationary potential changes into a quartic monomial after the end of
inflation, making the Universe effectively radiation-dominated. The moment of this effective

6See e.g. refs. [36–39] and references therein.
7One way to avoid this problem is to invoke non-minimal contributions to the gauge kinetic function in

supergravity, which could modify the gauge unification condition and thus relax the proton decay bound [29].
8For examples, see refs. [44, 45].

– 2 –



J
C
A
P
0
8
(
2
0
1
6
)
0
6
8

radiation domination can be quite well determined in our models, and is well before the onset
of the reheating process. In consequence, the number of e-folds and the spectral index in
our models are essentially independent of the reheating temperature, and can be determined
relatively precisely.

This paper is organized as follows. In section 2, we construct models of Higgs inflation
in no-scale SUSY GUTs with the flipped SU(5) and Pati-Salam gauge groups, respectively.
In section 3, we first analyze the predictions from our no-scale GUT Higgs inflation models
for the scalar tilt ns and the tensor-to-scalar ratio r . We then study the reheating process
after Higgs inflation in these models, and compute their prediction for the numbers of e-folds
during inflation. We further discuss the issue of gravitino production after inflation in these
models. Finally, we draw our conclusions in section 4.

2 Higgs inflation in no-scale supersymmetric GUTs

In this section, generalizing our previous no-scale SU(5) GUT model construction [29], we
construct new models of Higgs inflation in no-scale GUTs with other GUT groups. In particu-
lar, we choose as two concrete realizations the flipped SU(5) GUT [41, 42] and the Pati-Salam
SU(4)⊗SU(2)L⊗SU(2)R GUT [43]. These GUT groups are both major alternatives to the
minimal SU(5) GUT, and can readily be embedded into the SO(10) GUT or accommodated
in string theory.

2.1 Higgs inflation in the flipped SU(5) GUT

The flipped SU(5) GUT has the gauge group SU(5)⊗U(1) at the GUT scale [41, 42], and thus
is only a partial unification. However, this framework has a number of attractive features.
Firstly, it can naturally split the masses of super-heavy colored Higgs bosons and TeV-scale
electroweak Higgs bosons. Secondly, the problematic dimension-5 operator that causes rapid
proton decay is absent in this theory. Thirdly, the construction of this model does not require
Higgs fields in an adjoint representation, and so can be embedded easily into perturbative
string theory. In addition, it is easy to incorporate a singlet modulus field T that may arise
from string compactification.

To realize Higgs inflation in the flipped SU(5) GUT, we need only the minimal field
content, namely a pair of Higgs fields (G, G) in the (10, 1) and (10,−1) representations
of SU(5)⊗U(1) that are responsible for the GUT symmetry breaking, and a pair of Higgs
fields (H, H) in the (5,−2) and (5̄, 2) representations that are responsible for SM symmetry
breaking, respectively. We express the components of the GUT Higgs multiplets as follows,

G =


0 dcG3 −dcG2 dG1 uG1

0 dcG1 dG2 uG2

0 dG3 uG3

0 νcG
0

, H =

(
Hc

Hu

)
, H =

(
Hc

H̃d

)
, (2.1)

and similarly for G.
As in [29], we introduce the following deformed no-scale Kähler potential:

K = −3 log

[
T + T ∗ − 1

3
|Φj |2 +

ζ

3

(
HH + h.c.

)]
, (2.2)
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where for convenience we have used units in which the reduced Planck mass MP (' 2.4×
1018 GeV) is unity, i.e., MP = 1. We use Φj = (G,G,H,H, · · · ) to denote the chiral fields,
where the dots represent fermions that are irrelevant to inflation model building. Also, we
adopt the shorthand notations, |G|2 ≡ 1

2 Tr(G†G) and |H|2 ≡ H†H, etc. The ζ-term in (2.2)
is a natural and slight deformation of the standard no-scale supergravity Kähler potential,
and in the following we will allow ζ to vary between 0 and 1 . When ζ = 0 , the simple no-
scale Kähler potential is recovered, and the resultant inflation model has the same predictions
as the original Higgs inflation. On the other hand, when ζ = 1 , the Kähler potential has a
shift symmetry (H, H)→ (H+a, H+a) with constant a, and the resultant inflationary model
has a quadratic potential. It is notable that the shift symmetry is absent for most of our
parameter choices, which is quite different from many models that incorporate supergravity.

In order to discuss the superpotential W of the model, we first write down the following
most general terms up to dimension 4:

W = −MGG−mHH + λGGH + λ̄GGH + α(GG)2+ β(HH)2+ γ(GG)(HH) , (2.3)

where GG ≡ 1
2GijG

ij , GGH ≡ 1
4ε
ijk`mGijGk`Hm, and similarly for GGH. Each of the

terms in (2.3) is important for our model: (i) the M and α terms collaborate to break
SU(5); (ii). the m and γ terms enable the electroweak Higgs doublets Hu and Hd to be light;
(iii) the λ and λ̄ terms make the colored Higgs fields heavy; and (iv) the β term is important
for obtaining a flat inflaton potential during inflation.

To understand these points more clearly, we consider the F -term scalar potential:

V (Φ) = eG
(
K−1
IJ

∂G
∂ΦI

∂G
∂Φ∗J

− 3

)
, (2.4)

where we use ΦI = (T, Φi) to denote the modulus T and other multiplets Φi =
(G,G,H,H, · · · ) collectively. In the above, G ≡ K + log |W|2 and K−1

IJ is the inverse
of the Kähler metric, KIJ = ∂2K/∂ΦI∂Φ∗J . As done previously, we assume the modulus T
is stabilized at 〈T 〉 = 〈T ∗〉 = 1

2 by some high scale physics (see [46, 47] for discussions of
this point). Then, at low energies, the F -term scalar potential involving (G,G) becomes

V (G) = 2GG(M − 2αGG)2 . (2.5)

Hence, we have a GUT symmetry-breaking vacuum with 〈GG〉 = M/(2α) . Using SU(5)
symmetry, we can rotate G and G such that, 〈νcG〉 = 〈ν̄cG〉 ≡ vG =

√
M/2α , and all the

other components vanish. At the same time, in order to make the electroweak Higgs doublets
(Hu, Hd) light, we impose the condition m = γv2

G . Then, the λ and λ̄ terms generate
masses for the colored Higgs fields (Hc, Hc) via the following terms in the scalar potential:

V ⊃ 4λ2v2
G|Hc|2 + 4λ̄2v2

G|Hc|2 . (2.6)

Supersymmetric GUT unification of the gauge couplings implies that vG ' 2 × 1016 GeV,
so the colored Higgs fields can be heavy, with masses MHc

= 2λvG . This is a significant
advantage over the minimal no-scale SU(5) GUT inflationary model studied in [29].

Next, we exploit the no-scale structure of the Kähler potential to analyse the inflation
potential. We identify the D-flat component ĥ = |H0

u| + |H0
d | as the inflaton, which has a

value around the Planck scale MP during inflation. This provides a large positive contribution
to the effective mass of G, leading to minimization of the potential at G = 0 . Inspecting

– 4 –
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the superpotential, we find that this happens when 〈HH〉 > M/γ , which is always satisfied
during inflation. Hence, we can just set G = 0 for the inflation analysis. In addition, we can
set all the other components of (H, H) to zero except for the inflaton field ĥ , provided that
the potential is indeed minimized when these components vanish during inflation. Checking
this stability of inflation trajectory is important, and was done in [29]. We can therefore
write the scalar potential as a function of the inflaton ĥ alone, and it takes the following
simple form:

V (h) =

(
1− β

2m ĥ
2
)2
m2ĥ2

2
(
1− 1−ζ

6 ĥ2
)2 . (2.7)

As in [29], we impose the condition β = 1
3(1 − ζ)m to remove the singularity of V (ĥ) at

ĥ2 = 6/(1 − ζ), which would otherwise lead to an exponentially steep potential. Under
this assumption, we derive the following Lagrangian for the inflaton ĥ , with a non-minimal
kinetic term and a quadratic potential:

L [ĥ] =
1− ζ(1−ζ)

6 ĥ2

2
(
1− 1−ζ

6 ĥ2
)2 (∂µĥ)2 − 1

2
m2ĥ2 . (2.8)

In order to apply the standard slow-roll formalism, in which the first two slow-roll parameters
ε and η are obtained from the inflation potential V (h) via

ε =
M2

P

2

(
V ′h
V

)2

, η = M2
P

V ′′h
V

, (2.9)

where V ′h = dV/dh and V ′′h = d2V/dh2 , with h the canonically-normalized inflaton field.

We find that the field h is connected to ĥ via

h =
√

6 arctanh
(1−ζ)ĥ√

6
(
1− 1

6ζ(1−ζ)ĥ2
) −

√
6 ζ

1−ζ
arcsin

(√
ζ(1−ζ)

6
ĥ

)
. (2.10)

There are then two interesting limits that can be studied analytically. One limit is ζ = 0 ,
which gives an exponentially-flat potential in terms of h , and hence the same predictions
for the scalar tilt ns = 1 − 6η + 2ε and the tensor-to-scalar ratio r = 16ε as the original
models of Higgs inflation [8, 9] and Starobinsky inflation. The other limit ζ = 1 yields the
quadratic chaotic inflation.9

In figure 1, we compare the predictions of this model with the recent results of the
Planck Collaboration [49], selecting the number of e-folds Ne = 59 , the value computed in
section 3. In plot (a), we impose the condition β = 1

3(1 − ζ)m , and the round (square)
dot corresponds to ζ = 0 (ζ = 1) . The horizontal strip attached to the lower round dot
describes the effect of varying ζ ∈ [0, 0.1] (from right to left), while the upper strip attached
to the square dot presents the effect of varying ζ ∈ [0.9, 1] (from left to right). In plot (b),
we also analyze the predictions of (ns, r) by using a modified condition β = 1

3(1− ζ + δ)m ,
where the parameter δ varies within the range of ±(1.2×10−3).

It is instructive to compare the flipped SU(5) model with the minimal SU(5) GUT
model presented in [29]. Since the inflation potentials in the two models are identical, the

9For another model interpolating between Starobinsky and quadratic chaotic inflation, see ref. [48].
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Figure 1. Predictions from our no-scale GUT models of Higgs inflation for the scalar tilt ns and
tensor-to-scalar ratio r , given the number of e-folds Ne = 59 from eq.(3.25), and compared with
the 68% and 95% C.L. contours from cosmological observations [49]. In plot (a), the condition β =
1
3 (1− ζ)m is imposed and the round (square) dot corresponds to ζ = 0 (ζ = 1) . The horizontal strip
attached to the lower round dot describes to the effect of varying ζ ∈ [0, 0.1] (from right to left),
while the upper strip attached to the square dot depicts the effect of varying ζ ∈ [0.9, 1] (from left to
right). In plot (b), the three dots from top to bottom correspond to ζ = (1, 0.98, 0.95) and δ = 0 ,
where β = 1

3 (1 − ζ + δ)m , and the strip attached to each dot presents the effect of varying δ over
the range of ±(1.2×10−3).

predictions for (ns, r) are the same when inputting the same number of e-folds Ne. The
same also holds for the predictions of Pati-Salam model, as will be discussed in the following
section 2.2. However, it is worthwhile to note some new features in the case of our flipped
SU(5) model of Higgs inflation.

Firstly, we recall that the mass parameter m in the inflationary potential is fixed by the
Planck normalization of the scalar spectrum to be around 1013 GeV. In the SU(5) model [29],
this is related to the colored Higgs mass MHc

= 5
9m at tree-level, so the colored Higgs boson

is rather light, and hence in tension with the non-trivial constraint from proton stability.
However, in the case of flipped SU(5) we have m = γv2

G , and the colored Higgs boson mass
is given by MHc

= 2λvG . Hence, the colored Higgs boson is naturally heavy with a mass
around 1016 GeV.

Secondly, in the case of minimal SU(5), we need to impose a discrete Z2 symmetry in
order to remove any odd power of adjoint GUT Higgs fields in the superpotential, which is
necessary to produce the desired inflation potential and avoid the colored Higgs mass being
too light. However, in the current flipped SU(5) GUT model odd powers of the GUT Higgs
field G are automatically absent due to the charge assignments, and there is no need to
impose any extra discrete symmetry.

2.2 Higgs inflation in the Pati-Salam GUT

Like the flipped SU(5) GUT, the Pati-Salam group SU(4)⊗SU(2)L⊗SU(2)R is also a partial
unification, and can also be embedded readily into SO(10). However, we will not elaborate on
this embedding since the breaking of SO(10) is irrelevant to the realization of Higgs inflation.
For the current study, we first inspect the relevant field content of the Pati-Salam GUT.
It contains a pair of GUT Higgs multiplets (G, G) in (4,1,2) and (4̄,1, 2̄) representations,

– 6 –
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respectively, together with a (6,1,1) multiplet D and a (1,2, 2̄) multiplet H. The (G, G)
multiplets can be parameterized as follows:

G =

(
ūcG1 ū

c
G2 ū

c
G3 ν̄

c
G

d̄cG1 d̄
c
G2 d̄

c
G3 ē

c
G

)
, G =

(
ucG1 u

c
G2 u

c
G3 ν

c
G

dcG1 d
c
G2 d

c
G3 e

c
G

)
. (2.11)

The D and H fields arise naturally from a 10 representation of SO(10) after its breaking to
the Pati-Salam group, namely 10→ (6,1,1) + (1,2,2) . The H fields can be parameterized
as

H =

(
H0

1 H+
2

H−1 H0
2

)
, (2.12)

which splits into the two SU(2)L Higgs doublets (H1, H2) of the MSSM after the breaking
of SU(2)R . Finally, the D field can be represented by an antisymmetric tensor of SU(4).

For the superpotential, we choose the following:

W = −MGG−mH2 + λDGG+ λ̄D̃GG+ α(GG)2 + β(H2)2 + γ(GG)H2, (2.13)

where H2 ≡ 1
2ε
ijεk`HikHj`, and D̃ij ≡ εijk`Dk`. The form of the superpotential is similar to

that in the previous flipped SU(5) model (2.3). As before, the M and α terms are responsible
for the GUT breaking. They ensure that (G, G) acquire large expectation values around the
GUT scale, which can be chosen to lie in the (ν̄cG, ν

c
G) direction, namely 〈ν̄cG〉 = 〈νcG〉 =

vG ' 2×1016 GeV. This breaks SU(4)⊗SU(2)R→SU(3)C⊗U(1)B−L. As a result, eight real
components in (ūcGi, u

c
Gi) and (ēcG, e

c
G) are eaten to give masses to gauge bosons corresponding

to broken symmetries, and the other eight components, together with (ν̄cG, ν
c
G), acquire heavy

masses ∼ M . At the same time, the λ and λ̄ terms ensure that the (d̄cG, d
c
G) components

and all components of D also receive masses ∼M .
As before, we choose the D-flat direction ĥ = |H0

1 | + |H0
2 | as the inflaton. During

inflation, only the inflaton ĥ acquires a large background value around Planck scale, while
all other fields remain at zero. Thus, the scalar potential derived from the above Kähler
potential and superpotential using (2.4) is again given by (2.7), and the rest of the analysis
is the same as for the flipped SU(5) model.

3 Reheating after Higgs inflation in no-scale GUTs

As we have seen, the inflaton in all our GUT models is a linear combination of the two neutral
components in the Higgs doublets of the MSSM. As such, it couples to various types of matter
fields rather strongly, compared with the gravitational couplings appearing in many typical
inflation models. Consequently, the reheating process can be rather efficient, and transfer
quickly the energy originally stored in the inflaton potential to other particles during the
classical oscillation of the inflaton field after the inflation. In particular, when bosons (such
as gauge bosons and sfermions) are produced in this process with a significant accumulation
of their number densities, there could be a period of exponentially fast production of these
particles due to Bose-Einstein statistics, the phenomenon known as stochastic resonance. The
produced particles in this period can be either relativistic or non-relativistic, depending on
their effective masses, which depend on the inflaton background. The Universe would enter
the radiation-dominated era once most of the inflaton potential energy was released into rel-
ativistic particles, and the collisions of these relativistic particles could then build up a quasi-
thermal equilibrium with reheating temperature Treh . Our next step is to estimate Treh .
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Figure 2. Post inflationary trajectory of no-scale Higgs inflation. This 3-dimensional plot presents
the scalar potential V (h, s) of the flipped SU(5) model as a function of (h, s) fields. The red solid
curve depicts the trajectory of the inflaton before and after passing the branch point. The blue dashed
curve denotes an (imagined) continued path under s = 0 .

The analyses of the reheating process are rather similar for the minimal SU(5) model [29]
and the flipped SU(5) and Pati-Salam GUT models introduced in section 2. We will con-
sider the minimal SU(5) case in the following as an explicit example, and comment on the
differences from the other two models whenever needed.

3.1 The motion of the inflaton after inflation

Inflation ends when the slow-roll parameter ε reaches unity, which happens around h ∼
MP. The inflaton then starts to oscillate around the minimum of the potential at h = 0 ,
with decreasing amplitude due to the cosmic expansion. At the first stage of this damped
oscillation, the potential is well described by a quadratic function for all ζ ∈ [0, 1] :

V (h) ' 1

2
M2
hh

2, (3.1)

where the mass parameter Mh ' 1.4×1013 GeV .

We introduce a scalar field s that is the order parameter of GUT symmetry breaking.
In the minimal SU(5) model, s = Re(χ) , where χ is a component of the adjoint GUT Higgs
Σ : Σ ⊃

√
2/15 diag(1, 1, 1,−3/2,−3/2)χ , as we defined in [29]. The interesting feature

here is that, in the vicinity of h = 0 , the path of the inflaton deviates from s = 0 due
to GUT symmetry breaking. Quantitatively, the scalar trajectory deviates from s = 0 at
the branch point hbr , where the trajectory s = 0 fails to be the local minimum in the s
direction. The position of hbr can be found by solving the condition,

∂2V (h, s)

∂s2

∣∣∣∣
(h,s)=(hbr,0)

= 0 . (3.2)
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In the minimal SU(5) model of [29], the scalar potential V (h, s) is obtained from the following
superpotential:

W = αH0
u(v2

G − χ2)H0
d + β(H0

uH
0
d)2 − 1

2
λv2

Gχ
2 +

1

4
λχ4 , (3.3)

and the branch point position derived from the condition (3.2) is

hbr = vG

√
2− 2

λ

α
+ 2

√
1− 2

λ

α
, (3.4)

where the couplings α, λ > 0 . The existence of a branch point requires λ
α 6 1/2 . In the

minimal SU(5) model, α ' 0.06 is fixed by the amplitude of the curvature perturbation, so
we require λ 6 0.03 , which is easily satisfied since λ is basically a free parameter at this
stage. It is important to note that the parameters above are couplings in the minimal SU(5)
model [29], and differ from the couplings defined for the new models in our previous section.

In the flipped SU(5) model presented in section 2 the location of the branch point is

hbr = 2vG

√
1− 2

α

γ
+

√
1− 4

α

γ
, (3.5)

where the couplings α, γ > 0 , and the existence of a branch point requires, α
γ 6 1/4 in this

case. Here both α and γ are free parameters, so they can easily satisfy this condition.
Similarly, we find that the branch point in the Pati-Salam model is given by

hbr = 2vG

√
1+ 2

α

γ
+

√
1+ 4

α

γ
, (3.6)

which differs from the corresponding expression (3.5) in the flipped SU(5) model, due to our
choice of couplings in the superpotentials (2.3) and (2.13). Since α, γ > 0 in this model, the
branch point (3.6) is always present. From eqs. (3.4)–(3.6), we further note that the position
of the branch point hbr is around hbr ∼ O(10−2MP). This is much smaller than the value of
the inflaton field at the end of inflation, as set by the condition ε = 1 to be O(MP) . Hence,
the stability of the inflaton trajectory is not affected by the appearance of the branch point.

In all three models, for h > hbr, the inflaton trajectory stays at the local minimum s = 0
and the scalar potential in h direction is given by eq. (3.1), whereas for h < hbr the local min-
imum of s shifts away from 0 , and gradually increases to s = vG ' 2×1016 GeV at h = 0 , so
the corresponding scalar potential deviates from eq. (3.1). As a result, during the first stage of
the post-inflationary oscillation when the oscillation amplitude of the inflaton is much greater
than hbr, the motion of the inflaton resembles oscillation in the quadratic potential (3.1).
However, as the amplitude damps, the inflaton trajectory has s 6= 0 , due to the GUT sym-
metry breaking. When h 6 hbr, the inflaton continues to oscillate around its local minimum
h = 0 , but with s = vG . The potential V (h) at this stage will be different from (3.1).

The important point here is that the potential becomes very flat when h is small and
s ' vG. In particular, the Taylor expansion of V (h) around h = 0 does not have a quadratic
term ∝ h2. The absence of a mass term can be readily understood. At the global minimum,
the mass of the inflaton (namely the MSSM Higgs boson) lies at the weak scale, which is
much smaller than the scales of inflaton and reheating under consideration. In general, V (h)
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is a complicated function of h . But for our purpose, it is a very good approximation to fit
this potential by a quartic monomial:

Vfit(h) =
M2
h

2h2
br

h4, (h < hbr). (3.7)

In figure 2, we present a three-dimensional picture of the scalar potential V (h, s) in the
flipped SU(5) model, where we have the sample inputs (α, γ) = (0.06, 0.33). The red solid
curve describes the trajectory of the inflaton before and after passing the branch point. As
a reference, the blue dashed curve depicts an (imagined) continued path under s = 0 . The
potentials in the Pati-Salam model and the minimal SU(5) are quite similar to that of the
flipped SU(5) model, as long as the couplings are chosen such that the corresponding branch
point exists.

Before considering particle production and reheating, we first study the motion of the
inflaton after inflationary epoch, switching off all interactions. As discussed above, the infla-
ton h undergoes a period of oscillations with decreasing amplitude, initially in a quadratic
potential when the amplitude Ah is larger than the branch point hbr , and then via an
effective quartic potential when Ah < hbr . The motion of the inflaton is governed by the
following equations:

3

(
ȧ

a

)2

=
1

2
ḣ2 + V (h) ,

ḧ+ 3
ȧ

a
ḣ+ V ′(h) = 0 .

(3.8)

During the first stage governed by a quadratic potential, the amplitude of the oscillating
solution for h decreases rapidly during the first few oscillations. In fact, the amplitude
decreases so fast that after just one oscillation the amplitude Ah(t) reduces to 0.04MP,
already reaching the branch point hbr for typical parameter choices. Hence, soon after
inflation the Universe enters the second stage of oscillation governed by a quartic potential.

During this stage, the oscillation of the inflaton around the local minimum h = 0 and
s = vG is no longer harmonic. For our purpose, it is a good enough approximation to
describe the motion of the inflaton as

h(t) = Ah(t) sin

[∫ t

dt′ωh(t′)

]
, (3.9)

with amplitude Ah(t) and frequency ωh(t) that vary slowly with time. Ignoring the cosmo-
logical expansion for the moment, it is easy to find the relation between Ah and ωh from
energy conservation:

ω−1
h =

1

π

∫ Ah

−Ah

dh√
2[Vfit(Ah)− Vfit(h)]

=
2Γ(5/4)√
πΓ(3/4)

hbr

MhAh
. (3.10)

As far as the cosmological expansion is concerned, we note that oscillations in the quartic
potential have an effective equation of state p = ρ/3 , which implies a(t) ∝ t1/2, Ah(t) ∝
t−1/2 and ωh(t) ∝ t−1/2.

Hence, the expansion of the Universe during this period is the same as in a conventional
radiation-dominated universe.
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3.2 Particle production

We now consider interactions and particle production. The oscillating inflaton field h may
decay perturbatively to all particles it couples to, so long as this decay is kinematically
allowed. However, it turns out that non-perturbative resonant decays can be more important
than perturbative decays in certain cases [50–54]. To see this point more explicitly, we
consider all possible channels for inflaton decays into bosonic final states, which include gauge
bosons, sfermions, 24 GUT Higgs bosons Σ, and finally the two MSSM Higgs doublets Hu,d

themselves. We can formulate the production of these particles in the standard way, treating
the inflaton and the Friedman-Robertson-Walker metric as backgrounds, and studying the
evolution of the quantum fluctuations of all decay products. We can write the equation of
motion for a given quantum field ϕ as follows:[

∂2

∂t2
+ 3

ȧ

a

∂

∂t
− 1

a2

∂2

∂xi∂xi
+M2

ϕ(h, a)

]
ϕ(t,x) = 0 , (3.11)

where M2
ϕ(h, a) is the effective mass of the quantum field ϕ , which depends on the value of

the background inflaton field and the metric. The contribution from the background metric
is negligible in most cases, so we make a mode decomposition of ϕ(t,x) as follows:

ϕ(t,x) =

∫
d3k

(2π)3

[
akϕk(t)e

+ik·x + a†kϕ
∗
k(t)e

−ik·x
]
, (3.12)

where the mode ϕk(t) satisfies the following equation:

ϕ̈k + 3
ȧ

a
ϕ̇k +

[
k2

a2
+M2

ϕ(h, a)

]
ϕk = 0 . (3.13)

We can infer the number of particles nk created by the mode ϕk by dividing the total energy
stored in this mode Ek = 1

2(|ϕ̇k|2+ε2k|ϕk|2) by the energy of each particle, εk = (k/a)2+M2
ϕ ,

yielding

nk =
1

2εk

(
|ϕ̇k|2 + ε2k|ϕk|2

)
. (3.14)

To obtain an intuitive picture how the resonance would happen, it is instructive to consider
an idealised case in which the expansion of the Universe could be ignored. In this case,
we would have a = 1 , and the background inflaton h would oscillate simply as h(t) =
Ah sinωht . Then, if the quantum field ϕ couples to the inflaton h through an interaction
term 1

2g
2h2ϕ2 with coupling constant g , the effective mass of ϕ can be written as M2

ϕ =
M2
ϕ0 +g2A2

h sin2 ωht , where Mϕ0 is the mass of ϕ in the absence of the background inflaton
field. In consequence, the mode equation for ϕk reduces to the well-known Mathieu equation:

d2ϕ(ξ)

dξ2
+ (A− 2q cos 2ξ)ϕ(ξ) = 0 , (3.15)

where ξ = ωht, A = (k2 + M2
ϕ0 + 1

2g
2A2

h)/ω2
h , and q = g2A2

h/(4ω
2
h). The behaviour of a

solution to this equation depends on the parameters A and q . As shown in figure 3, the plane
(A, q) can be divided into stable and unstable regions, where the stable regions (unshaded)
correspond to ordinary oscillating solutions, and the unstable regions (shaded) correspond
to exponentially-amplified solutions. It is the latter that give rise to resonant production of
particles.
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Figure 3. Stability-instability chart of the Mathieu equation in the plane of q = gA2
h/(4ω

2
h)

versus A − 2q = (k2 + M2
ϕ0)/ω2

h . The shaded regions represent instability bands, where the
exponentially-amplifying solutions are located, whereas the conventional perturbative solutions lie in
the unshaded regions.

In a more realistic case, the large amplitude of the first few oscillations and the cosmic
expansion of the Universe make the situation more complicated. It is possible, in general,
that the parameters (A, q) scan a large number of instability bands within a few oscillations.
As a result, the resonant production of particles can behave in a stochastic manner. For this
reason, this period of particle production is termed stochastic resonance.

With this in mind, we now consider the couplings between the inflaton field h and
various bosons into which it may decay. We consider first the SU(5) gauge bosons, which
can be parameterized via the following 5×5 matrix:

Aµ =


1√
2
λaSU(3)G

a
µ +
√

2
15V24µ X

−4/3
µ Y

−1/3
µ

X
+4/3
µ

1√
2
W3µ−

√
3
10V24µ

1√
2

(W1µ− iW2µ)

Y
+1/3
µ

1√
2

(W1µ+ iW2µ) − 1√
2
W3µ−

√
3
10V24µ

. (3.16)

We can deduce the effective masses for various gauge bosons in the inflaton background h
directly from the kinetic terms |DµH1,2|2:

M2
X = M2

Y =
5

3
g2v2

G +
1

4
g2h2, M2

W =
5

3
M2
V24 =

1

4
g2h2, (3.17)

where g is the SU(5) gauge coupling at the GUT scale.
We consider next the sfermions in the supersymmetric SU(5) model, which couple to

the background inflaton via Yukawa terms in the superpotential:

WYukawa =
1

8
yuε

ijk`mTijTk`Hm + ydTijψiHj . (3.18)
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Here Tij is a left-handed multiplet in a 10 representation, and ψi is a left-handed multiplet

in a 5 representation, which can be parameterized as follows:

T =



0 (uc3)L −(uc2)L u
1
L d1

L

0 (uc1)L u2
L d2

L

0 u3
L d3

L

0 e+
L

0

, ψ =



d1c
L

d2c
L

d3c
L

e−L
νL

, (3.19)

where Tij is antisymmetric, and for simplicity we suppress all the flavor indices. The effective
masses extracted from the scalar potential are

M2
uL =

1

4
(y2
u + y2

d)h
2, M2

uR =
1

4
y2
uh

2, M2
dR = M2

`L = M2
νR =

1

4
y2
dh

2. (3.20)

In the realistic case with three generations of fermions, the sfermion mass spectrum would
be obtained by diagonalization in flavor space and will be more complicated in general, and
depend on model assumptions. However, for the sake of illustration we do not elaborate on
details of the flavor structure.

The inflaton h also gives effective masses to the Σij (i, j = 4, 5) components of the 24
GUT Higgs multiplet Σ , as follows:

M2
Σ = λ2v4

G +
1

4
α2h4 , (3.21)

where both λ and α have mass dimension −1, as is clear from eq. (3.3). Finally, the coupling
of the inflaton to the other components of the MSSM Higgs doublets Hu and Hd can safely
be neglected, since the inflaton is moving in the D-flat direction, so its F -term couplings to
other components in Hu,d are all of higher order and thus are highly suppressed.

The above analysis shows that the effective masses of various bosons are generally of
order h during the era of inflaton oscillation, and hence are much larger than inflaton mass
Mh ∼ 1013 GeV. Hence, at this stage the perturbative decay of inflaton is kinematically for-
bidden, and the leading channel for energy transfer is through non-perturbative resonances.
Fermion production through perturbative decay may also present, but is generally subdomi-
nant.

An interesting feature of resonant production here is that the oscillation frequency ωh
of the background inflaton h field is proportional to the amplitude Ah . In consequence,
the q parameter in the Mathieu equation remains constant with q = g2A2

h/(4ω
2
h) = O(1)×

(ghbr/Mh)2. Recalling hbr ∼ O(10−2MP) and Mh ∼ 1013 GeV, we see that q is a large
number, of O(104) to O(105). Hence a broad resonance can readily appear when A − 2q
is small. Also, we note that A− 2q = (k2 +M2

ϕ0)/ω2
h , so that for a field ϕ with Mϕ0 = 0 ,

small A− 2q is easily achieved for small k2. On the other hand, for heavy particles such as
(X, Y ) gauge bosons and Σ bosons (including the s field), the A− 2q parameter increases
linearly with time, so the broad resonance is suppressed for these species. In summary, we
see that particle production via broad resonance could be efficient only for the light gauge
bosons (W, V24) and for sfermions.10

A broad resonance leads to an exponential increase of the number nk of particles in a
given mode, nk ∝ e2µkωht, where µk is a coefficient of O(0.1) that can be determined by

10For example, see also ref. [55].
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solving equation (3.13) or the Mathieu equation (3.15) by ignoring the cosmic expansion. The
resultant µk for A− 2q = 0 is a rapidly varying function of q , taking values between 0.15
and 0.35. The total number of produced particles can then be inferred by integrating over
the particle numbers of all modes. Since the zero-mode particles have the largest coefficient
µk=0 , it is reasonable to estimate the number of produced particles by considering zero
modes only, in which case we have n ∼ exp(2µ0ωht) .

The above analysis ignores processes that can decrease the number of produced particles,
including decays and scattering with other particles. These processes turn out to be very
important, and may destroy the resonant production of gauge bosons and sfermions, as we
illustrate using theW boson as an example. The decay rate of W± is of order ΓW ∼ g2〈MW 〉,
where 〈MW 〉 is the averaged W mass during an oscillation of the inflaton h , which is given
by 〈MW 〉 = 1

2g〈|h|〉. At the same time, W± pairs can annihilate through scattering, with a
cross section σW ∼ 〈MW 〉−2. As a result, the number density nW of W bosons is given by

d

dt

(
a3nW

)
= a3

(
2µ0ωhnW − ΓWnW − σWn2

W

)
. (3.22)

In the first stage of reheating during which the number density of nW is small, the scattering
process is rare and its rate is suppressed by n2

W . So, we should compare the production
rate 2µ0ωh in (3.22) with the decay width ΓW to determine whether W decay can disrupt
resonant production. From eq. (3.10) and ΓW ∼

1
2g

3〈|h|〉, and the fact that 〈|h|〉 ∝ Ah, we
see that ωh and ΓW have the same dependence on the oscillation amplitude Ah. Hence,
the decay process is a more rapid process than resonant production when

2µ0

√
π Γ(3/4)Mh

2Γ(5/4)hbr

.
1

2
g3, (3.23)

with an O(1) uncertainty in the coefficient. Since µ0Mh/hbr ∼ O(10−4) and g ∼ O(0.1),
we see that the decay of the W boson is so quick that resonant production cannot take place
efficiently. This conclusion is certainly not definitive, since the left-hand-side of (3.23) is
not parametrically small, so some O(1) uncertainty may alter this picture, and a period of
not-very-efficient resonant production may happen.

Without getting involved in these details, we see that the reheating temperature Treh of
this model may be significantly lower than in conventional SM Higgs inflation, which is esti-
mated to be around 1014 TeV [56–58], due to the quartic shape of the effective potential (3.7).
We recall that a low reheating temperature in supersymmetric GUTs may help to avoid the
over-production of gravitinos (as we discuss below) as well as unwanted topological defects.

Although a more precise estimate of the reheating temperature depends whether the
decays of gauge bosons and sfermions would disrupt their resonant production, which further
depends on numerical details, it is important and interesting to note that the number of
e-folds Ne can be determined without ambiguity. This is because Ne in our models does not
depend on the reheating temperature Treh, but is determined by the energy density ρrad when
radiation begins to dominate the Universe. Since the above analysis shows that the scalar
potential changes from a quadratic shape to a quartic one at the branching point h = hbr,
we immediately deduce, ρrad 'M2

hh
2
br , with hbr given by eqs. (3.4), (3.5), and (3.6) for the

three models, respectively. For instance, in the minimal SU(5) GUT model, we have

ρrad ' M2
hh

2
br ' 2α2v6

G

(
1− λ

α
+

√
1− 2

λ

α

)
. (3.24)
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Hence, using [59, 60], we compute the number of e-folds to be

Ne ' 62 +
1

4
log

(
Vbegin

M4
P

)
+

1

4
log

(
Vbegin

ρend

)
+

1

12
log

(
ρrad

ρend

)
− 1

12
log g∗ ' 59 , (3.25)

where Vbegin and ρend denote the energy density of the inflaton at the beginning and the
end of observable inflation, respectively, and g∗ is the effective number of degrees before
the moment of effective radiation dominance, which is O(1) and contributes little to Ne .
Finally, we deduce the number of e-folds Ne ' 59 by inputting Vbegin ' ρend '

1
2α

2v4
G

and ρrad ' 2α2v6
G with α ' 0.06 and vG ' 0.01 . For the flipped SU(5) model and the

Pati-Salam model, the result Ne ' 59 also holds well. This is because ρrad only differs
by O(1) factors among the three models, and thus has negligible difference when computing
Ne, due to the very mild logarithmic dependence log ρrad suppressed by a small coefficient
1
12 ' 0.08 as in eq. (3.25). In passing, we also note that the estimate of Ne is not affected
by the accumulated decay products even when they start to dominate the energy density,
because these particles are also light and highly relativistic, and thus the Universe is always
effectively dominated by radiation once the branch point is reached.

In the above, we have mainly presented the explicit analysis for the minimal SU(5)
model [29], but it is clear that the two principal conclusions in this section apply also to
the flipped SU(5) and Pati-Salam models given in section 2. Namely, (i). the reheating
temperature can be as high as 1014 GeV, but is probably much lower, where the uncertainty is
mainly due to the highly non-perturbative dynamics of the reheating process, which depends
on model details; (ii). the number of e-folds is determined to be Ne ' 59 , and is independent
of details of the reheating process. This is because Ne depends only logarithmically on the
scale of effective radiation dominance ρend , and ρend is roughly the GUT symmetry-breaking
scale, which is the same for all three models.

With Ne derived, we can predict the values of scalar tilt ns and tensor-to-scalar ratio
r more precisely, as represented by the yellow strips in figure 1 (section 2.1), where the
predictions of our models are compared with the latest Planck results in 2015 [49, 60].

3.3 Gravitino production

It is also desirable to study gravitino production in our models, since the ratio Y3/2 ≡ ρ3/2/ρr
between the energy densities of the gravitino ρ3/2 and radiation ρr is generally subject to

nontrivial constraints from gravitino production [61–65]. The standard calculation of Y3/2 ,
assuming instant decay of the inflaton and thermalization, yields

Y3/2 '
0.00398√

c

(
Γh
MP

)1
2

(
1 + 0.558

m2
1/2

m2
3/2

)
e−tΓ3/2 , (3.26)

where the constant c = O(1) , Γh ( Γ3/2 ) is the decay rate of the inflaton (gravitino), and

(m1/2, m3/2) are the gaugino mass at the GUT scale and the gravitino mass, respectively. It
is also assumed that the effective degrees of freedom during reheating consist of the MSSM
fields. It was shown recently [66] that the above expression is a good estimate with c = 1.2 ,
even when we take into account of perturbative gravitino production prior to thermalization.
However, as was shown above, non-perturbative resonance would probably occur in our
models, and gravitino production in the non-perturbative regime may or may not affect the
above standard estimation.
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The non-perturbative production of gravitinos can be important in our models. To esti-
mate the number density n3/2 of gravitinos produced during a non-perturbative resonance,

it is a good approximation to consider the helicity-1
2 states only, because they are produced

more efficiently than the helicity-3
2 states (which couple to other fields only through grav-

ity). The resonant production of helicity-1
2 states is similar to that of a spin-1

2 fermion, with
low-momentum states dominating, since the instability region is denser at low momentum,
as seen in figure 3. In the most efficient scenario, the produced gravitinos occupy all mo-
mentum states up to a “fermi surface” kf , while all k > kf states are essentially empty.
The physical momentum kf cannot exceed the scale of the energy density during reheating,

which is always below ρ
1/4
rad in eq. (3.24). Therefore, we derive the following upper limit on

n3/2 production through non-perturbative effects:

(n3/2)rad . ρ
3/4
rad . (3.27)

The subscript indicates that the number density is evaluated at the time of effective radiation
dominance.

In order to compare this result with the thermal production (3.26), we note that the
number density scales as a−3 with a the scale factor, and the energy density scales as a−4

due to effective radiation dominance. Hence, at the time of thermalization, namely the time
of reheating, the number density (n3/2)reh is diluted to

n3/2 ∼ (ρreh/ρrad)3/4(n3/2)rad . ρ
3/4
reh ∼ T 3

reh . (3.28)

Thus, the energy density of gravitinos is ρ3/2∼m3/2T
3
reh. Since the radiation energy density

at the time of reheating is of the order ρr ∼ T 4
reh, we divide the gravitino energy density

by the radiation energy density, and find that the non-perturbative production of gravitinos
contributes to the ratio Y3/2 = ρ3/2/ρr an amount of O(m3/2/Treh) . This contribution
could be made cosmologically acceptable by requiring the gravitino to be either heavy or
very light. A heavy gravitino with mass m3/2 > O(10− 100) TeV would have decayed into

radiation before Big-Bang nucleosynthesis (BBN), and so would be harmless. In the case
of an ultra-light gravitino with mass m3/2 � 1 GeV, the bound Y3/2 < O(10−14) can be

satisfied for Treh . O(1014) GeV.

4 Conclusions

Higgs inflation identifies the inflaton field as the observed Higgs boson, and provides a truly
economical approach to realize the cosmic inflation that could have driven the exponential
expansion of the very early Universe and generated the observed large scale structure. The
desired energy scale of successful inflation lies around the scale of supersymmetric gauge
unification, providing a strong motivatation to embed Higgs inflation into attractive no-scale
supersymmetric GUTs.

In this work, we have extended our previous study on no-scale inflation in the minimal
SU(5) [29] to a class of Higgs inflation models in no-scale supersymmetric GUTs with different
groups, namely the flipped SU(5) and Pati-Salam group, as presented in section 2. The
colored Higgs mass Mc is more flexible in these models, and can be heavier in both the
flipped SU(5) and Pati-Salam models, compared to the minimal SU(5) model. This helps
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to remove the tension between GUT models and the proton stability constraint. Then, in
section 3, we studied systematically the reheating process after Higgs inflation à la no-scale
GUT. We showed that the number of e-folds can be determined without ambiguity, due to the
quartic shape of the scalar potential in the lead-up to the reheating process. We have derived
Ne ' 59, which yields predictions for the scalar tilt and the tensor-to-scalar ratio that are
consistent with the current observational limits as shown in figure 1, and will be further tested
by more precise measurements of scalar tilt ns in the near future. Unlike Ne, we note that
the reheating temperature Treh at which particles were thermalized depends on more details
of the reheating process, in particular the efficiency of resonant production. Our simple
estimate has shown that the reheating temperature Treh in these models is generally lower
than that in the conventional SM Higgs inflation. It is desirable to estimate the reheating
temperature more precisely in these models, since Treh in supergravity inflation models is
generally subject to an important constraint from the gravitino production rate [65]. In
order to prevent over-production of gravitinos, a relatively high reheating temperature would
require the gravitino mass to be either very heavy (above 10− 100 TeV) or ultra-light (much
below 1 GeV) [67], which would have important implications for supergravity phenomenology.
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