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Abstract. The current LHCb trigger system consists of a hardware level, which reduces the
LHC inelastic collision rate of 30 MHz to 1 MHz, at which the entire detector is read out. In a
second level, implemented in a CPU farm, the event rate is reduced to about 5 kHz. The major
bottleneck in LHCb’s trigger efficiencies for hadronic heavy flavour decays is the hardware
trigger. The LHCb experiment plans a major upgrade of the detector and DAQ system in
the LHC shutdown of 2018. In this upgrade, a purely software based trigger system is being
developed, which will have to process the full 30 MHz of inelastic collisions delivered by the LHC.
Both the current trigger system and its planned upgrade are discussed in these proceedings.

1. Introduction
The LHCb detector at the LHC is a precision experiment dedicated to beauty and charm physics,
covering a rapidity range of 2 < η < 5 [1]. Ref. [2] summarizes the performance of the LHCb
detector in Run 1 (2010 – 2012). The trigger system during Run 1 [3, 4] consisted of a fixed
latency hardware level which reduced the visible bunch crossing rate to 1 MHz. At this rate, the
whole detector was read out and a flexible software High-Level Trigger (HLT) was run to further
reduce the rate to about 5 kHz, which was written to offline storage. This configuration allowed
LHCb to record the largest beauty and charm hadron samples, at a very high signal purity.

For the second data taking period (Run 2, 2015 – 2018), the detector will be mostly unchanged
with respect to Run 1, while the trigger software will undergo an incremental update. The
software trigger will be split in two separate instances, the first one running synchronous with
the LHC collisions while the second stage will be run asynchronously. This split allows to to
perform a real-time calibration and alignment of the detector. The software trigger is thus able
to select events based on a reconstruction with a quality almost identical to the offline processing.

The LHCb experiment plans major upgrades in preparation for the third LHC data taking
period (Run 3, 2019++). As part of the detector upgrade, all of the front-end devices will be
replaced in order to read the detector out at the full bunch crossing rate of 40 MHz [5]. Removing
the readout bottleneck allows the complete event reconstruction at the full collision rate and
hence an unprecedented trigger performance, especially for hadronic modes.

This note discusses the LHCb trigger system and its performance in Run 1 as well as the
prospects and preparations for Run 2 and 3.

2. Run 1: Trigger Performance in 2009 – 2012
The trigger system of the LHCb experiment in Run 1 consists of two levels: the first level,
implemented in hardware (L0), and the High Level Trigger (HLT), implemented in a CPU farm
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of about 29 000 logical cores. The LHCb trigger system and its performance during 2011 data
taking has been described in detail in Ref. [4]. Here, the adjustments of the system for 2012 and
its performance are discused. The LHCb detector was originally designed for an instantaneous
luminosity of L = 2 · 1032 cm−2s−1. During the running period of 2012, this design luminosity
was doubled to L = 4 · 1032 cm−2s−1, which was possible thanks to the excellent performance of
both the detector hardware and the trigger system. In these conditions, the average number of
visible interactions per bunch crossing is µ = 1.6. One novel feature of the Run 1 trigger was
that of event deferral: 20% of all L0 accepted events were stored on disk to be processed by the
HLT during the LHC inter-fill time, which made an effective 25% of extra CPU available.

The trigger efficiency is evaluated using events that are reconstructed using the full offline
software and selected with the final analysis selection for the respective channel. Thus, the
trigger efficiency contains only the additional inefficiency due to simplifications used in the
trigger, possible alignment inaccuracies, worse resolution than the offline reconstruction or
harder cuts imposed by rate and processing time limitations. The method to evaluate the
trigger performance and its implementation are discussed in Refs. [4, 6].

The rate of visible collisions in LHCb is about 13 MHz, which then is reduced by the L0
trigger to 1 MHz, at which the full detector is read out. The L0 trigger is implemented in
custom hardware and has a latency of 4µs. It triggers on high transverse momentum (pT)
muons and on large transverse energy (ET) deposition in the calorimeter.

The High Level Trigger consists of two stages, HLT1 and HLT2. The first stage, HLT1,
performs a partial event reconstruction and an inclusive selection of signal candidates. At the
reduced rate of 80 kHz, HLT2 performs a full event reconstruction with only minor adjustments
as compared to the offline reconstruction sequence. After this reconstruction, a set of inclusive
and exclusive selections reduces the trigger rate to 5 kHz, which are saved for later offline analysis.
The rates discussed above are average rates from the 2012 run of the LHC, in 2011 the HLT1
output rate was approximately 40 kHz and the HLT2 output rate was 3 kHz.

2.1. Hadron trigger performance
The L0 hardware trigger performance for hadronic modes is shown in Fig. 1. It is most efficient
on two prong beauty decays (∼40%), and least for four prong charm decays (∼20%). The other
modes lie in between.

Hadronic signals are generally selected in the HLT most efficiently by the inclusive beauty
and charm trigger lines for both levels of the HLT. The HLT1 line selects good quality track
candidates based on their pT and displacement from the primary vertex. This trigger line gets
the dominant part of the HLT1 bandwidth allocated. It is the dominant trigger line for most
physics channels that do not contain leptons in the final state. The performance of HLT1 for
hadronic signatures is shown in Fig. 2 as a function the pT of the decaying charm or beauty
hadron.

A multivariate selection is used to trigger B decays into charged hadrons in an inclusive
selection based on two- three- and four-prong vertices. These trigger lines are based on a BDT
classifier that uses discretized input variables [7] which ensures a fast and robust implementation.
A crucial input to the BDT is the corrected mass, which takes the missing momentum transverse
to the direction of flight into account. This allows the trigger to select heavy flavour decays even
when some final state particles are not reconstructed. Fig. 3 shows the efficiency for the inclusive
HLT2 trigger lines on a set of hadronic beauty decays.

2.2. Lepton trigger performance
The L0 hardware trigger selects muons based on their track segment reconstructed in the Muon
chambers. The corresponding efficiency is shown in Fig. 4 for the decay B− → J/ψK− with J/ψ
(µ+µ−). The single muon trigger contributes the dominant part to the efficiency. The largest
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Figure 1. L0 hadron
trigger performance:
Trigger efficiency for
beauty and charm decay
modes, listed in the
legend.
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Figure 2. HLT1 inclu-
sive trigger performance:
efficiency for various
channels as a function
of pT of the decaying
hadron.
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hadron.
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Figure 4. L0 muon trig-
ger performance: Trig-
ger efficiency for selected
B− → J/ψK− candi-
dates.
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Figure 6. HLT2 muon
trigger performance.

inefficiency originates in the tight muon identification requirements inside the L0 reconstruction
algorithm. The L0 dimuon trigger selects a small fraction of additional candidates at lower
transverse momenta. The combined efficiency for both L0 muon triggers, integrated over pT, is
89%.

In the first part of the HLT, muons are selected both by an inclusive single track line
(analogous to the hadron line discussed above) and by dimuon triggers. The dominant
inefficiency for these lines originates in the online muon identification algorithms. The
performance of HLT1 at selecting muonic signatures is shown in Fig. 5 as a function of pT
of the B+ candidate.

In HLt2, several trigger lines select events with one or two identified muons. The muon
identification procedure is identical to the one used in offline analysis. Single muon candidate
events are selected with very tight pT and vertex separation requirements. Dimuon candidate
events are selected with either mass or vertex separation requirements, or with a combination
of both. The efficiency of the HLT2 muon selections is shown in Fig. 6.

3. Run 2: Trigger preparation for 2015 – 2018
In 2015, the collision energy will be increased compared to 2012 (from 8 TeV to 13 TeV), and the
bunch spacing will reach the design value of 25 ns. In these conditions the 2012 instantaneous
luminosity of 4 × 1032 cm−2s−1 can be achieved at a lower pile-up (1 interaction/crossing
instead of 1.6). The yield will further benefit from increased cross-sections for b- and c-hadron
production. The requirements on the High Level Trigger will be partly relaxed by increasing the
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output rate for storing data to tape (12.5 kHz). A part of this data will be saved in a reduced
data format for analysis without offline processing. On the other hand, the maximum read-out
rate will be still limited to 1 MHz, and the new conditions will be challenging for the L0 trigger.

The computing resources will be adjusted to the 2015 conditions by doubling the Event Filter
Farm CPU power and increasing the disk space for deferral. Changes will also be introduced
in the architecture: both HLT levels will be split in two separate physical processes, allowing
the second stage to run asynchronously. This allows a more efficient use of disk space and of
the deferral mechanism, ultimately leading to an increase in the resources available for the High
Level Trigger processing. A real time alignement and calibration can be performed on the output
of HLT1 and used to improve the quality of the reconstruction in HLT2.

The track reconstruction sequence will be improved such that it allows to adopt multi-track
trigger selections already in the first stage of the High Level Trigger.

4. Run 3: Trigger strategy from 2018 onwards
The LHC will provide LHCb with an instantaneous luminosity of 2 × 1033cm−2s−1. This
implies signal rates of about 300 kHz of beauty hadrons and 800 kHz for charm hadrons that
are reconstructible inside the detector [8]. This represents a fundamental change in trigger
requirements of LHCb. It is no longer the case that the trigger must reject background from
signal, it must now categorise signal according to physics requirements. Such a strategy requires
significantly more information in the trigger than can be provided by low-latency, hardware
based solutions.

With the removal of the L0 hardware trigger, LHCb will be the first hadron collider
experiment to deploy a trigger exclusively in software, using off-the-shelf hardware. The
upgraded LHCb trigger will select and categorise events at the full collision rate. The advantages
of such a system are clear. Software is easily modified, allowing an unprecedented flexibility as
and when the LHCb physics programme changes. It also has the advantage that computing
power is readily upgradeable and benefits from the ability to purchase more CPU power for the
same price at a later stage. The deferral technique used in Run 1 will be leveraged in Run 2 and
Run 3. Subdetector alignment and calibration will be performed while events are buffered toFigure 3. Simulated B!K⇤µµ events. The reconstructed 2-body mass is shown in red and the corrected

mass (see text for definition) is shown in black.

Figure 4. Efficiencies as a function of topo output rate for several benchmark decay modes. Red lines
indicate the efficiency during Run 1. Green lines indicate twice the Run 1 efficiency. Blue lines indicate
three prospective output rates at 10, 25 and 50 kHz respectively.

estimated to be 13 ms. The upgrade tracking sequence is made possible by the advanced design of
the upgraded tracking system [9, 10].

3.2 The inclusive beauty trigger

After the tracking sequence, the remaining timing budget is available to apply offline-quality trigger
selections. In Run 1 we demonstrated that complex, multivariate trigger selections were possible

– 4 –

Figure 7. Efficiencies as a function of the output rate for several benchmark decay modes. Red
lines indicate the efficiency during Run 1. Green lines indicate twice the Run 1 efficiency. Blue
lines indicate three prospective output rates at 10, 25 and 50 kHz respectively.
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disk, permitting the use of offline-quality reconstruction, and reducing the need for reprocessing
of data at a later stage.

In the Run 3 trigger, all tracks will be made available at the earliest stages of the trigger and
the full tracking sequence will be performed upfront [9]. In the trigger tracking sequence the
same algorithms as in the offline sequence are used, but the sequencing and configuration are
modified to reconstruct the most valuable tracks first and perform some basic candidate selection
using these. Slower more specialised reconstruction algorithms only need to be executed later
in the HLT algorithm flow.

After the tracking sequence, the remaining timing budget is available to apply offline-quality
trigger selections. An inclusive, multivariate beauty signal selection is then performed directly
on the 30 MHz of inelastic collision data. The performance of the inclusive trigger selections
is summarised in Fig. 7. This inclusive trigger selection is complemented by a set of exclusive
trigger selections, that are designed to maximize the efficiencies for specific core modes or to
minimize systematic uncertainties. One example are trigger selections that do not bias the decay
time of the selected mesons.

5. Summary
The LHCb trigger system has performed extraordinarily well in the first running phase of the
LHC. It is designed to select charm and beauty hadrons in a large range of decay modes. The
flexible design of the HLT, fully deployed in software, allows to quickly adjust to changes in
running conditions and physics goals. Inclusive selections in the full trigger chain allow an
efficient trigger for basically any beauty decay to charged tracks. Several innovative concepts
have enabled this performance: the deferred triggering allows to optimise the trigger usage for
mean instead of peak usage of the available computing resources. Multivariate selections allow
the inclusive selection of beauty decays into charged tracks with high efficiency.

For the upcoming Run 2, several improvements of the trigger system are planned: the two
software trigger levels will be decoupled which allows calibrations between them and thus a
performance much closer to the one achieved offline. The use of event buffering for alignment
and calibration permits selections that would otherwise only be available in the offline analysis
environment.

The upgraded LHCb trigger represents a turning point in the design of hadron collider trigger
systems. The approach to trigger purely in software running on commercially available hardware
allows an inexpensive, flexible and scalable design. The upgraded trigger will perform offline-
quality tracking at the full collision rate, which allows a number of very efficient inclusive and
exclusive trigger selections. Subject to output bandwidth requirements, gains of up to a factor
of four in efficiency are possible for several LHCb benchmark modes.
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