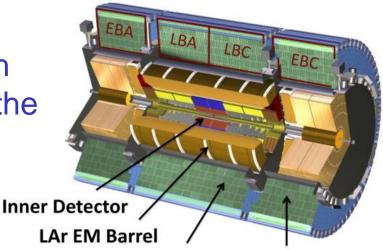
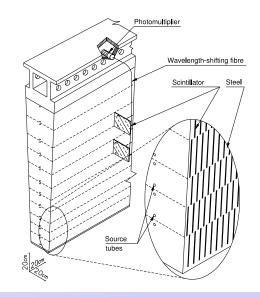


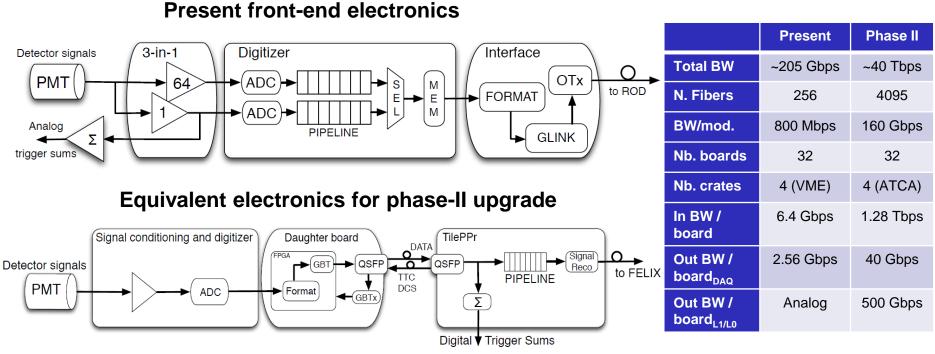
CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Timing distribution and Data Flow for the ATLAS Tile Calorimeter Phase II Upgrade

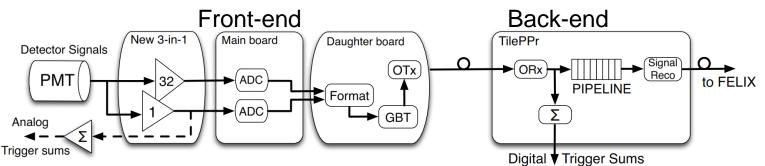

Fernando Carrió Argos on behalf of the ATLAS Tile Calorimeter Group


Tile Calorimeter

- Segmented calorimeter of steel plates and plastic scintillator which covers the most central region of the ATLAS experiment
 - 4 partitions: EBA, LBA, LBC, EBC
 - Each partition has 64 modules
 - One drawer hosts up to 48 Photo Multiplier Tubes (PMTs)
 - Light produced by a charged particle passing through a plastic scintillating tile is transmitted to the PMTs
 - Signals coming from PMTs are digitized and stored in the front-end electronics upon the reception of a Level-1 accept
 - Around 10,000 readout channels

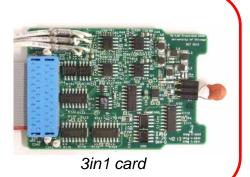


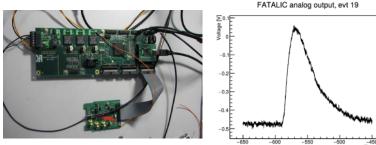
Tile Barrel Tile Extended Barrel


- LHC plans to increase the instantaneous luminosity by a factor 5-7 around 2027
- Major replacement of the readout electronics
 - Higher reliability and robustness of electronics reducing single point failures
 - New readout architecture to provide digital trigger information at low latency for L0/L1 trigger systems with improved granularity
 - Pipelines, de-randomizers memories, TTC distribution moved to the back-end electronics
 - Higher radiation tolerance of electronics

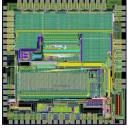
Demonstrator project and plans

- Evaluation the new readout schema and trigger system interfaces
 - TileCal demonstrator module is operative in our labs at CERN
- Plans for the demonstrator project
 - Test beam in 2015 and 2016
 - Possible insertion of one demonstrator module into the ATLAS at the end of 2016
 - Insertion of more modules during LS2 depending of the demonstrator results and performance
- Readout architecture for Phase II but keeping backward compatibility with the current system
 - Tile PreProcessor will interface the current TTC system (or FELIX) with the new frontend electronics
 - Back-end electronics will send Level 1 selected events to the current RODs
 - Provide analog trigger signals to the present trigger system

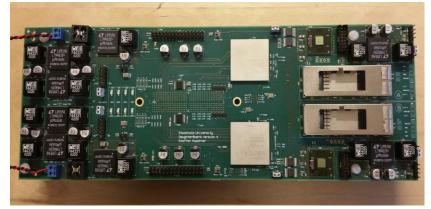


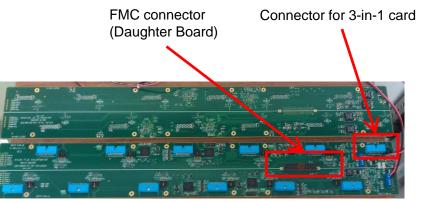

FE- Very front-end boards

- 3-in-1 Cards: Based on current 3in1
 - Provides 3 analog signals: 2 x LG + 1 x HG
 - Calibration circuitry
 - Improved noise and linearity
 - Design ready and qualified
 - Selected option for the Demonstrator as this option provides analog signals to the current trigger system


- FATALIC: Combined ASIC solution
 - Current conveyor and three shaping stages
 - 3 different gain ratios (1, 8, 64)
 - Integrated 12-bit pipelined ADCs
 - Tested during the last Test Beam \rightarrow Shows good performance

- **QIE:** Charge Integrator and Encoder
 - Current splitter with four ranges and gated integrator
 - 6-bit flash ADC at 40 MHz operation
 - 17 bit dynamic range in 10 bits
 - Integration in a FEB and DAQ development during the Q2 of 2016
 - To be tested during the next Test Beam (June 2016)

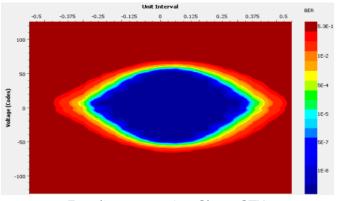

QIE chip


Daughter Board + Main Board

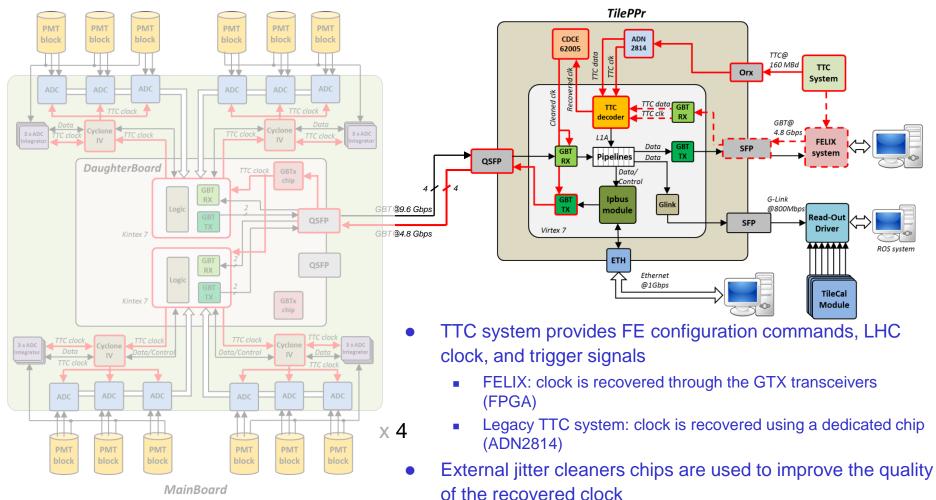
- High speed communication between front- and back-end electronics
 - Preserves 2-fold redundancy
 - Reception of timing and control commands
 - Transmission of digitized data to the BE
 - 12 channels x 2 gains every 25 ns
- Daughter Board v4
 - 2 Xilinx Kintex 7 FPGA
 - 2 QSFP module
 - 2 x 40 Gbps (up to 10 Gbps per lane)
 - 2 GBTx chips
 - One GBTx per QSFP+
 - Allows remote programming and operation from the BE
- Main Board
 - **Demonstrator** \rightarrow Version for modified 3-in-1 cards
- Functionalities
 - Digitize signals coming from 12 modified 3-in-1 cards
 - High and Low gain
 - 12 bits, 40 MSPs
 - Digital control of the front-end boards using Altera Cyclone IV
 - Routes the digitized data from the ADCs to the DB
 - 400 pin FPGA Mezzanine Connector (FMC)
 - 2 x LVDS at 560 Mbps per ADC
 - Low power voltage distribution
 - Divided into two halves for redundancy

Daughter Board v4

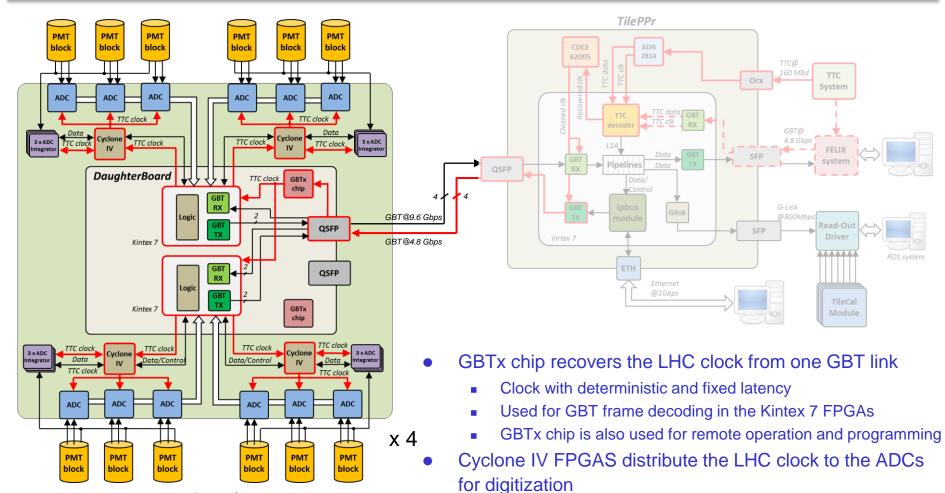
Main Board for 3-in-1 cards


TilePPr prototype

- Represents 1/8 of the final TilePPr module for the ATLAS Phase II Upgrade
- Double mid-size AMC form factor
 - ATCA carrier / µTCA
- Virtex 7 + 4 QSFPs (Readout)
 - Readout and operation of 1 complete TileCal module
 - Timing and command distribution to the FE
 - Interface with FELIX system
 - Energy and time reconstruction algorithms
- Kintex 7 + Avago MiniPOD TX (Trigger)
 - Evaluation of the interfaces with trigger systems and latencies between systems
 - Trigger data preprocessing algorithms
- DDR3 memories, FMC, GbE ports, PCIe, ...
- System has been successfully tested
 - BERT showed no errors during 115 hours
 - 5.10⁻¹⁷ for a confidence level of 95%
 - 16 links at 9.6 Gbps with PRBS31 pattern

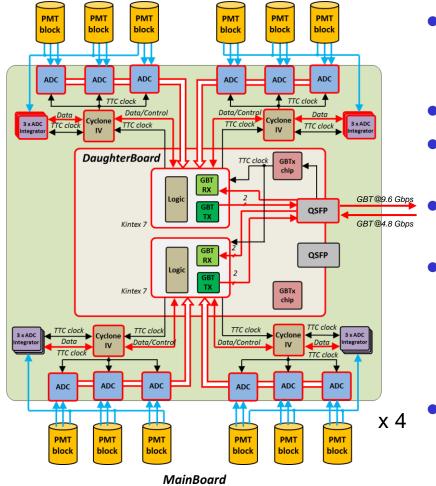

TilePPr prototype

Eye diagram at 9.6 Gbps (GTX)


MainBoard

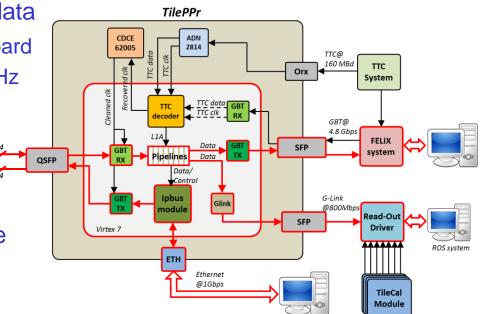
- Clock is sent to the FE embedded with the data/commands
 - Downlink @ 4.8 Gbps
 - Transceivers configured in deterministic and fixed latency mode

Timing FE - Demonstrator


MainBoard

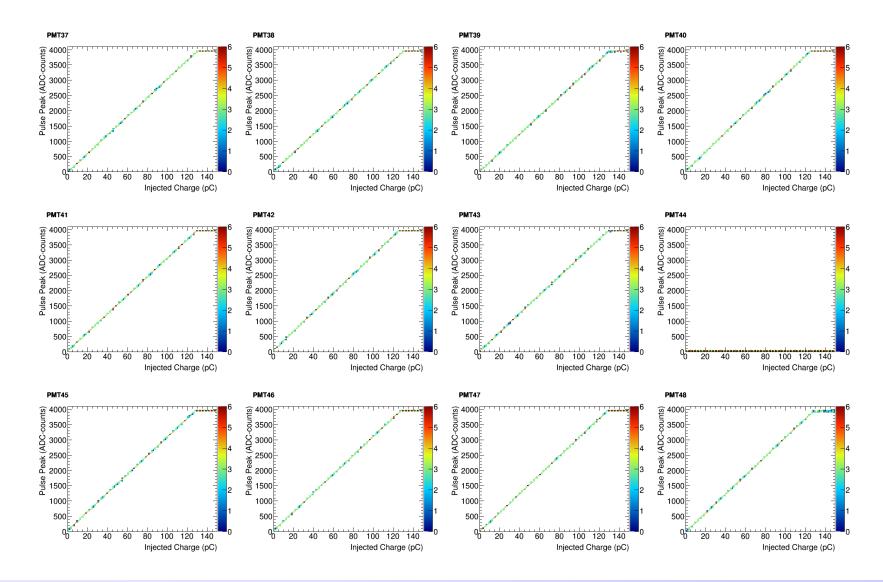
- Capability of phase shifting in fine steps
- Commands are received through the other three GBT links in the uplink GBT@9.6Gbps

Dataflow FE - Demonstrator


- Front-end electronics transmits the digitized data to the back-end electronics for every bunch crossing
- No memory buffers in the front-end
- Each Kintex 7 FPGAs deserializes the data coming from 6 ADCs at 560 Mbps
 - Event data is packed in a GBT frame with other monitoring info (HV, FE status, etc)
- Commands are decoded in the Kintex 7 FPGA and distributed to the MainBoard
 - Front-end boards settings
 - ADC configuration
 - HV electronics configuration
 - Analog sums of the low gain signals coming from the PMTs are transmitted to the current trigger system for decision
 - In order to keep backward compatibility with the legacy trigger system

Dataflow BE - Demonstrator

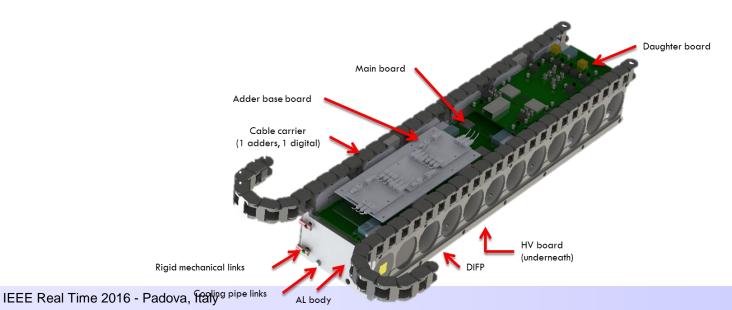
- Continuous decoding and reception of data CDCE ADN 4 GBT links @9.6 Gbps per DaughterBoard 2814 62005 TTC@ 160 MBc ттс Orx 12 bits x 12 channels x 2 gains @ 40 MHz System TTC data Data is stored in circular pipelines GBT@ 4.8 Gbps FELIX Samples with 2 gains x 48 channels SFP system Pipelines Data QSFP (1 TileCal module) Data/ Control 12.5 µs depth memories Ipbus G-Link @800Mbps module **Read-Out** Driver Selected event data is transmitted to the Virtex 7 ETH readout systems after a Level-1 trigger Ethernet @1Gbps signal is received TileCal
- Three independent readout paths
 - FELIX system prototype: Phase II
 - 1 GBT link@4.8Gbps
 - 32 samples x 2 gains @ ~20 kHz
 - Legacy Read-Out Drivers: Backward comp.
 - 1 G-Link@800 MBps
 - 7 samples x 1 gain @100kHz
 - IPbus protocol via Ethernet: Monitoring
 - 32 samples x 2 gains

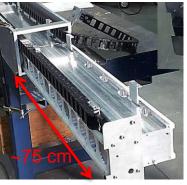


- Remote control / monitoring
 - Front-end boards configuration
 - **High Voltage electronics**
 - **FPGAs status**
 - **Temperatures**

Charge injection linearity test

- R&D projects for ATLAS Phase II Upgrade includes the implementation of a new readout architecture:
 - Complete redesign of the front-end and back-end electronics for Phase II Upgrade
 - New trigger and readout strategies with new trigger algorithms
 - No buffers in the front-end electronics → all data readout at LHC frequency
 - LHC clock is distributed embedded with the downlink data
- Tile Demonstrator electronics project
 - Possibility of installing a TileCal demonstrator at the end of this year
 - Functional prototypes of front- and back-end electronics
 - Implemented redundancy in all front-end elements




BACK-UP

Mini-drawers/Mechanics

- New design was made to replace the present super-drawers
 - Improve the operation, maintainability and handling
 - Internal cooling
 - Flexible cable trays
- Each module (drawer) will host 4 mini-drawers
 - 12 front-end boards and 12 PMTs
 - 1 Main Board + 1 Daughter Board with 2 QSFP+ modules
 - 1 HV regulation board: 1 out of 2 different options
 - 1 adder base board + 3 adder cards (only for the demonstrator)

Mini-drawer with cable carriers

TilePPr prototype

P

Xilinx Spartan 6

- Slow control capabilities (Clock management)
- Read back status of the system(IPMI port)

Module Management Controller (MMC)

- Power connection management
- IPMI protocol

AMC connector

- 12 V power connection
- Slow control path
- High-speed communication path with the carrier board / µTCA crate (GbE, PCIE, custom protocols)

2 x CDR IC

- ADN2814
- Clock/data from TTC

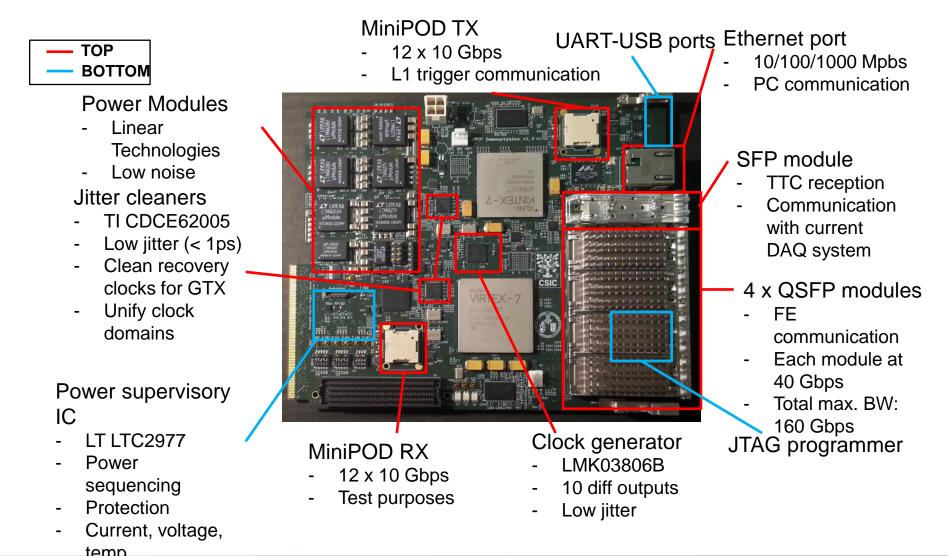
FMC connector DDR3 512MB

 Expansion functionalities: ADC boards, test boards, ...

Xilinx Kintex 7 FPGA

- XC7K420T

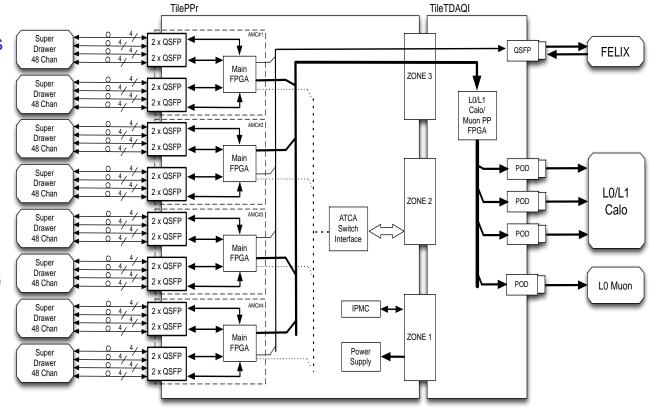
DDR3 512MB


- 28 GTX transceiver @ 10 Gbps
- Data preprocessing
- Communication with Level 1 trigger system

Xilinx Virtex 7 FPGA

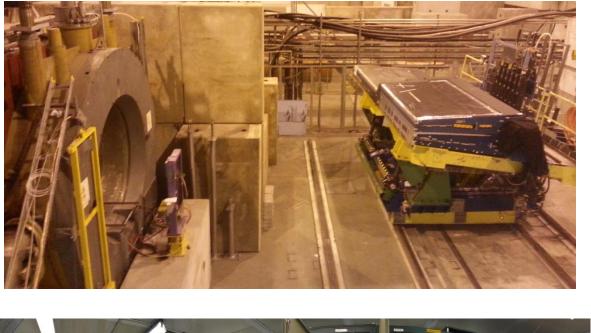
- XC7VX485T
 - 48 GTX transceiver @ 10 Gbps
 - Communication with FE electronics
- Data processing

TilePPr prototype

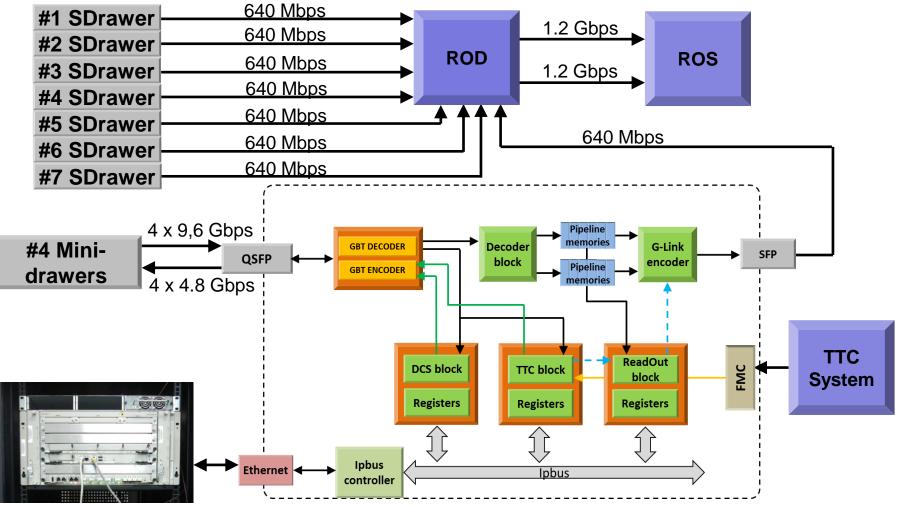


temp. IEEE Real Time 2016 - Padova, Italy

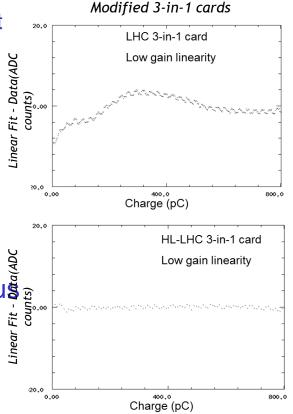
TileCal PreProcessors


- 32 TilePPr boards in ATCA format
 - ATCA carrier + 4 AMCs
 - Xilinx Kintex UltraScale
 - Implementation of L0 buffers
 - Real-time energy and time reconstruction algorithms
- 32 TileTDAQ-I
 - Rear Transition Module (ATCA)
 - Xilinx Kintex UltraScale
 - Preprocessed trigger data
 - Interface with L0Calo, L0Muon and FELIX system

Test Beam setup

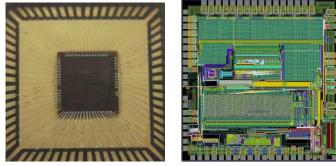


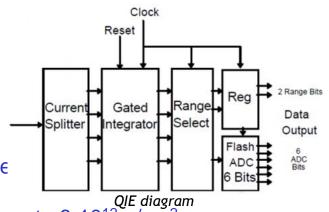

Firmware block diagram per Mini-drawer



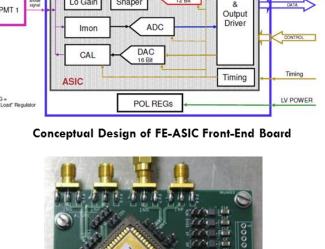
Front-End Board 1: Modified 3-in-1 cards

- Design based on the original 3-in-1 cards
 - **Discrete COTS components**
- Selected for the Demonstrator project
 - Unique option which can provide analog output to the Level-1 trigger
- Reception and shaping of PMT signals
 - Fast signal processing
 - 7 pole LC shape: 50 ns FWHM shaping time
 - Bi-gain readout: gain ratio of 16
 - Digitization in Main Boards using 12-bit ADC
 - Slow signal processing
- Integrator to read out Cesium controls
 Charge injection calibration and controls
 Better linearity and lower noise than previous
- Status:
 - Prototype tested using COTS components
 - Passed radiation tests




Front-End Board 2: QIE

- Charge (Q) Integrator and Encoder (QIE) chip from Fermilab
- Current splitter with multiple ranges and gated integrator with on-board flash ADC
 - Needs 4 clock cycles to acquire data
 - 40 MHz operation
 - 17 bit dynamic range in 10 bits
 - 6 bit ADC value
 - 2 bit range (4 different gain ranges)
 - 2 bits CAPID
 - Dead-timeless digitization
 - No pulse shaping
 - Also includes
 - Charge injection for calibration
 - Integrator for calibration with source
- Status:
 - 20 chips in hand, another 40 coming
 - Passed noise, dynamic response and TDC te
 - TID test up to 50 kRad showed good results
 - No Single Event Upsets in Shadow Register up to 6.10¹² p/cm²



Front-End Board 3: FATALIC

- Combined ASIC solution: FATALIC 3 + TACTIC
 - FATALIC 4 will include both ASICs
 - IBM CMOS 130 nm technology
- FATALIC 3 main features:
 - Current conveyor
 - Shaping stage with 3 different gain ratios (1, o, 64)
 - 80 MHz operation
- TACTIC ADC main features:
 - 12-bit pipelined ADC
 - 40 MHz operation
- Status:
 - First prototypes of FATALIC 1 and 2 validated
 - **Testing FATALIC version 3**
 - Designing second version of TACTIC

ADC

12 Bit

ADC

Data

Selector

Preamp

Hi Gain

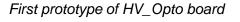
Preamp

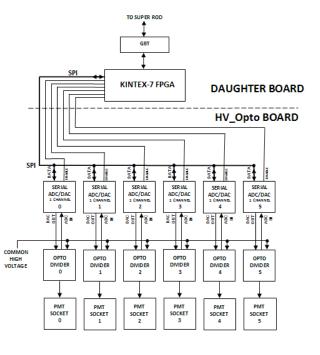
Lo Gain

Active

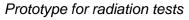
Shaper

Active

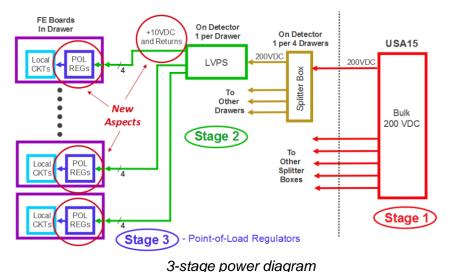

Shaper

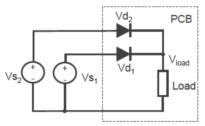


Digital @ 40 MH:


High Voltage power distribution

- High Voltage system provides high voltage to the PMTs based on COTS components
- Front-end regulation board (HV Opto) based on the present design
 - Controlled by the daughter-board (Kintex 7) using SPI protocol
 - Switching on/off individual PMTs
 - Control of HV settings
 - Communication with the Detector Control System via the sROD using the GBT protocol
- Status
 - First HV Opto has been produced
 - Radiation testing in March 2014
 - Regulated HV distributed via 100 m long multi-conductor cables





Low Voltage power supplies

- Three stage power distribution schema
- Stage 1: bulk 200V_{DC} PS in USA15 (offdetector)
 - Provide power to four drawers (16 minidrawers)
- Stage 2: LVPS boxes in front of drawers (on-detector)
 - New design includes 8 separate bricks which provides only +10V up to 20A
 - Each brick feeds half mini-drawer
 - Redundancy is possible using diodes OR
 - Requires a factor 2 in the current output
- Stage 3: Point-of-Load regulators
 - Point-to-point connection from brick to Main Boards
 - Diode OR provides power to the Main Board in case one brick dies
 - Completed TID tests on 5 COTS regulators
 - Non-Ionizing Energy Loss (NIEL) and Single Event Upset (SEU) tests in March 2014

Redundancy

V8.0.1 brick