Recent results from LHCb and future prospects

Arantza Oyanguren (IFIC – U. Valencia)

On behalf of the LHCb collaboration

PLANCK 2016 Valencia, May 2016 Solving fundamental questions with the LHCb:

What's matter?

How quarks couple?

Matter vs antimatter?

How leptons couple?

Universe symmetries?

<u>Outline:</u>

New states of matter [LHCb-CONF-2016-004] [PRL 115, 072001 (2015)] CKM matrix element Vub [Nature Phys. 10 (2015) 1038] B_d mixing and CP violation [LHCb-PAPER-2015-031] [PRL 114 (2015) 041601] [LHCb-PAPER-2016-013] Lepton universality [PRL 113 (2014) 151601] [PRL 115 (2015) 111803] Lorentz invariance & CPT [LHCb-PAPER-2016-005]

PLANCK 2016, May 25th

A. Oyanguren

LHC: Large bb cross section in pp collisions (gluon fusion)
 (~250 μb − 500 μb @ √s=7 − 14 TeV):

- LHCb: single-arm forward spectrometer (2 < η < 5):
 ~ 4% of the solid angle, ~30% of the b hadron production
- Very good performance: 3 fb⁻¹ accumulated in Run1, working well for Run2, expected 5 fb⁻¹

LHCb Integrated Luminosity

LHCb Integrated Luminosity at p-p 6.5 TeV in 2015

PLANCK 2016, May 25th

A. Oyanguren

8

New states of matter

qqqq and qqqqq states predicted from the origin of the Quark Model [M. Gell-Mann, PL8 (1964) 214]

- X(3872)(ccūū), Z(4430) (ccūd) observed
- LHCb has observed J/ ψ p resonances in $\Lambda_b \rightarrow J/\psi$ K⁻p decays: two pentaquarks states: P_c(4380)⁺ and P_c(4450)⁺ (ccuud)

[PRL 115, 072001 (2015)]

 D0 has three months ago announced a new state formed by 4 different valence quarks: b, s, u, d Tetraquark X(5568) \rightarrow B_s π [D0, arXiv:1602.07588 [hep-ex]] D0 Run II. 10.4 fb¹ events / 8 MeV/c² 70 it with background shape fixed 60 5.1 Significance 50 40 30 20 Residuals (Data-Fit) 5.55 5.6 5.9 5.65 5.75 5.85 58 [GeV/c²] $m (\mathsf{B}^{0}_{s} \pi^{\pm})$

Looking for confirmation at LHCb...

A. Oyanguren

New states of matter

• At D0: X(5568), with 10.4fb⁻¹ at $p\overline{p}$, \sqrt{s} = 1.96 TeV: Candidates: $B_s \rightarrow J/\psi \phi$ (with $J/\psi \rightarrow \mu^+\mu^-$ and $\phi \rightarrow K^+K^-$) + one $\pi \rightarrow X(5568)$ state:

$$m = 5567.8 \pm 2.9 \text{ (stat)}_{-1.9}^{+0.9} \text{ (syst) } \text{MeV}/c^2$$

$$\Gamma = 21.9 \pm 6.4 \text{ (stat)}_{-2.5}^{+5.0} \text{ (syst) } \text{MeV}/c^2$$

2000 $DO Run II, 10.4 fb^1$ 5582 ± 100 $B_s \rightarrow J/\psi \phi$ events 500

5.4

 $m (J/\psi \phi)$

5.6

5.8 [GeV/c²]

5.2

Relative production fraction to B_s : (8.6 ± 1.9 ± 1.4)%

PLANCK 2016, May 25th

 At LHCb, with 3fb⁻¹ at pp, √s= 7 and 8 TeV, we have very large B_s samples [LHCb-CONF-2016-004] (20 larger than D0 samples, better mass resolution)

A. Ovanguren

[D0, arXiv:1602.07588 [hep-ex]]

New states of matter

• Adding a pion to the B_s candidates... Fit to the $Q = m(B_s\pi^{\pm}) - m(B_s) - m(\pi^{\pm})$ distribution:

LHCb cannot confirm D0 peak

Upper Limit for the relative production fraction:

(B_s p_T >5 GeV): ρ_{LHCb} < 0.01 % at 95%CL (B_s p_T >10 GeV): ρ_{LHCb} < 0.018 % at 95%CL Cross-check: Fit to $B\pi^+$ candidates obtained with similar selection criteria

[LHCb-CONF-2016-004]

The CKM matrix Vub

The smallest CKM element (b \rightarrow u coupling) ~ 4‰

$$\bigvee_{v}^{b} \bigvee_{v}^{v} V_{CKM} = \begin{cases} Vud Vus Vub \\ Vcd Vcs Vcb \\ Vtd Vts Vtb \end{cases}$$

Key constraint in the flavour picture

http://ckmfitter.in2p3.fr, see also http://www.utfit.org

Large discrepancies between $|V_{ub}|$ from different determinations (~3 σ)

PLANCK 2016, May 25th

12

The CKM matrix Vub

[Nature Physics 10 (2015) 1038]

 Λ_b

PV

(5% accuracy from LQCD)

[PRD 92 (2015) 034503 (2015)]

 p_{\perp}

Using semileptonic decays of b-baryons:

 $\frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \overline{\nu}_{\mu})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \text{ x Ratio of form factors}$

- Use information from displaced vertex
- Select high q² region (theory more precise)
- Corrected mass:

The CKM matrix Vub

[Nature Physics 10 (2015) 1038]

Neutral B mesons oscillate between particle and antiparticle with frequency Δm (mass difference between the mass states B₁, B_H)

The time-dependent asymmetry A(t) of B_d events that changed flavour (mixed) or not (unmixed) is: [LHCb-PAPER-2015-031]

$$A(t) = \frac{N^{\text{unmix}}(t) - N^{\text{mix}}(t)}{N^{\text{unmix}}(t) + N^{\text{mix}}(t)} = \cos(\Delta m_d t)$$

Use semileptonic decays of B decays to D* or D and $\mu\nu$ X with flavour tag to determine Δm_d

t= M_B L / p(D^(*)
$$\mu$$
) x κ_{sim} (D^(*) μ)

[LHCb-PAPER-2015-031]

The most precise single measurement:

 $\Delta m_d = (505.0 \pm 2.1 \,(\text{stat}) \pm 1.0 \,(\text{syst})) \,\,\text{ns}^{-1}$

Consistent with the world average $\Delta m = (510 \pm 3) \text{ ns}^{-1}$

New Lattice results [arXiv:1602.03560] allow stronger constraints on the CKM Unitarity triangle

CP Violation

CP violation in mixing is produced in the B system if the probabilities of $B \rightarrow \overline{B}$ and $\overline{B} \rightarrow B$ are different.

This effect has only been observed, so far, in the neutral kaon system (ε_{κ} =0.2%)

Possible to measure it using B semileptonic decays $B \rightarrow D^{(*)}\mu\nu X$ since the lepton tags the flavour at decay and has large BR.

The semileptonic asymmetry is defined as:

$$a_{\rm sl} = \frac{N(\overline{B} \to f) - N(B \to \overline{f})}{N(\overline{B} \to f) + N(B \to \overline{f})}$$

Predicted to be very small in the SM:

$$a^d_{
m sl}=(-4.7\pm0.6) imes10^{-4}$$
 (for the B_d system) Ar $a^s_{
m sl}=(2.22\pm0.27) imes10^{-5}$ (for the B_s system) ^{Le}

Artuso, Borissov, Lenz [arXiv:1511.09466]

CP Violation

[PRL 114 (2015) 041601]

The untagged CP assymetry is convenient at LHCb to have large statistics:

$$A(t) = \frac{N(f,t) - N(\bar{f},t)}{N(f,t) - N(\bar{f},t)} = A_{\mathrm{D}} + \frac{a_{\mathrm{sl}}}{2} - \left(\frac{a_{\mathrm{sl}}}{2} + A_{\mathrm{P}}\right)\cos(\Delta m t)$$

 $A_{D} \equiv$ Detection asymmetry: measured using calibration samples (K, μ , π) $A_{P} \equiv$ Production asymmetry: - almost not contributing for the B_s system (large Δm_{s}) - measured simultaneously with a_{sl} for B_d (time-dependent)

CP Violation

[PRL 113 (2014) 151601]

In the SM all leptons are expected to behave in the same way. For instance,

 Precise theory prediction due to cancellation of hadronic form factor uncertainties

- Models with new Z' bosons can make $R_{k} < 1$
- Experimentally, use the B \rightarrow K J/ ψ (\rightarrow ee) and B \rightarrow K J/ ψ (\rightarrow µµ) to perform a double ratio

For $1 < q^2 < 6 \text{ GeV}^2$

$$R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst})$$

[PRL 113 (2014) 151601]

 \rightarrow Consistent (but lower) than the SM at 2.6 σ

Boost the measurement of other obsevables: R_{K^*} , R_{Λ^*} , R_{ϕ} ...

PLANCK 2016, May 25th

A. Oyanguren

• Another test of lepton universality:

Ratio of semi-tauonic and semi-muonic branching fractions:

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})}$$

Sensitive to charged Higgs bosons

SM predictions very precise : (V_{cb} and form factors (partially) cancel)

 $\begin{array}{l} \text{R(D)}_{\text{SM}} = 0.300 \pm 0.008 \\ \text{R(D*)}_{\text{SM}} = 0.252 \pm 0.003 \end{array}$

Based on HQET form factors: [H. Na et al., PRD 92, 054410 (2015)] [Fajfer, Kamenic, Nišandižć: PRD85, 094025 (2012)] and experimental measurements (HFAG)

 $\overline{B}\{\begin{array}{c} b \\ \overline{a} \\$

BaBar measured an excess of $B \rightarrow D^{(*)}\tau v$ (3σ away from SM) [PRD 88 (2013) 072012]

LHCb started with $B \rightarrow D^* \tau v$, cleaner mode $\tau^- \rightarrow \mu^- \bar{\nu}_{\mu} \nu_{\tau}$ to reduce experimental uncertainties

[PRL 115 (2015) 111803]

• Information from the missing mass squared $m_{miss}^2 = (P_B - P_D + P_\mu)^2$ and muon energy

- Lorentz invariance and CPT are exact symmetries in the SM
- May be broken in Quantum Theories aiming to describe Planck-scale physics
- CPT symmetry implies equal mass and width for the B⁰ and $\overline{B^0}$ mesons any difference can be characterized by the CPT observable

$$z = \frac{\delta m - i\delta\Gamma/2}{\Delta m + i\Delta\Gamma/2}$$

with Δm and $\Delta \Gamma$ being the mass and width different between the mass states

$$|B_L\rangle = p\sqrt{1-z}|B\rangle + q\sqrt{1+z}|\overline{B}\rangle$$
$$|B_H\rangle = p\sqrt{1+z}|B\rangle - q\sqrt{1-z}|\overline{B}\rangle$$

and δm and $\delta \Gamma$ the mass and width difference of flavor B and B states

If $\delta m \text{ or } \delta \Gamma \neq 0$ (i.e. $z \neq 0$) \rightarrow CPT violation

Since Δm and $\Delta \Gamma$ are very small, z is very sensitive to CPT-violating effects

PLANCK 2016, May 25th

A. Oyanguren

- CPT violation implies Lorentz invariance breaking
- In a low-energy effective field theory, like the Standard Model Extension (SME), the z parameter is expressed in terms or the four-velocity of the B meson (β^{μ})

with Δa_{μ} (SME parameter) the vacuum expectation value (real) describing the coupling with the B mesons.

[PRD 55 (1997) 6760, PRD 58 (1998) 116002]

 \rightarrow z is almost real and depends on momentum and direction in space of the B meson in absolute coordinate system [PRD61(2000)016002]

• Re(z) can be measured using $B^0 \rightarrow J/\psi K_S^0$ and $B_s^0 \rightarrow J/\psi K^+ K^-$ [LHCb-PAPER-2016-005] Angle of B meson with F

Re(z)

0.2

-0.2 -0.4

0.4

0.2

-0.2 -0.4

0

$$\mathcal{R}e(z) \approx \frac{\gamma}{\Delta m} \Big[\Delta a_0 + \cos(\chi) \Delta a_Z \Big]$$

Angle of B meson with Earth rotational axis. B mesons mostly along beam $\cos(\chi) \approx -0.34$

$$+\sin(\chi)\left[\Delta a_{Y}\sin(\Omega \hat{t}) + \Delta a_{X}\cos(\Omega \hat{t})\right]\right]$$

 $B^0 \rightarrow J/\psi K_s^0$

 $B^0_s \rightarrow J/\psi K^+ K^-$

8

12

16

Sidereal frequency

LHCb

 $\hat{t} \begin{bmatrix} hr_{sid} \end{bmatrix}$

Small Δm Large boost at LHCb < $\beta\gamma$ > ~ 20

Re(z) as function of sidereal phase $t \rightarrow t$

No sidereal variation is observed

Δ

• Δa_{μ} values obtained for the B and B_s systems, more precise than results from BaBar (O(10³)) and DO (O(10)) experiments

B^0 system						
$\Delta a_{\parallel} = (-0.10 \pm 0.82 \pm 0.54) \times 10^{-15} \text{GeV}$						
$\Delta a_{\perp} = (-0.20 \pm 0.22 \pm 0.04) \times 10^{-13} \text{GeV}$						
$\Delta a_X = (+1.97 \pm 1.30 \pm 0.29) \times 10^{-15} \text{GeV}$						
$\Delta a_Y = (+0.44 \pm 1.26 \pm 0.29) \times 10^{-15} \text{GeV}$						

• First direct measurement of the z parameter in the B_s system, no Lorentz invariance-assumption

 A wide range of frequencies scanned around the sidereal frequency (0.03 − 2.10 day_☉⁻¹)

Prospects

• Already results with 13 TeV (2015) data on production cross sections

Prompt charm production

[JHEP 10 (2015) 172]

[JHEP 03 (2016) 159]

[LHCb-CONF-2016-002]

• Largely benefits from a larger bb cross section (Run1 x2) and an improved trigger: Larger farm, online full event reconstruction, real time calibration and alignment

A. Oyanguren

Summary

• Excellent performances of LHCb, plenty of results with Run1 (more than 300 publications), including very challenging channels (with v's in the final state).

• Deviations from SM in some channels and obsevables, focus on them with Run2 data

2016 Run2 already ongoing, with larger bb cross section
 (×2) and improved trigger.

Thank you!

Backup

32

Backup

[LHCb-PUB-2014-040]

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (rad)$	0.068	0.035	0.012	~ 0.01
	$A_{\rm sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
$\operatorname{penguin}$	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	5%	3.2%	$\mathbf{0.6\%}$	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
$\operatorname{penguin}$	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
$\operatorname{penguin}$	$\mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B^0_s \to \mu^+\mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
$\operatorname{triangle}$	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0°	negligible
angles	$eta(B^0 o J/\psi K_{ m S}^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	_
$C\!P$ violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1	_