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We analyze the transverse stability for a configuration of multiple gaussian bunches subject to the self-
generated plasma wakefield. Through a semi-analytical approach we first study the equilibrium configuration
for the modulated beam and then we investigate the evolution of the equilibrium configuration due to the
emittance-driven expansion of the beam front that results in a rigid backward shift. The rear-directed shift
brings the modulated beam out of the equilibrium, with the possibility for some of the bunch particles to
be lost with a consequent deterioration of the driver. We look therefore for the proper position of the single
bunches that maximize the stability without severely affecting the accelerating field behind the driver. We
then compare the results with 3D PIC simulations.

I. INTRODUCTION

Plasma wakefield acceleration, both laser driven1–4 and
particle driven5,6, has proven to be a possible alternative
to conventional accelerators for a wide range of applica-
tions, due to the intense electric fields that the plasma
can sustain.

Among the possible configurations feasible for beam
driven plasma wakefield, a renewed interest is devoted to
the use of modulated drivers in view of the forthcoming
AWAKE experiment at CERN7. The goal of the project
is to prove the possibility to employ the 400 GeV proton
bunches produced at the Super Proton Synchrotron(SPS)
as drivers for the plasma wakefield.

The success of the experiment relies on the capability
to produce short bunches whose length is approximately
L = λp/2 (being λp = 2πc/ωp the plasma wavelength
and ω2

p = 4πne2/m the plasma frequency) from the
much longer proton bunches provided at the SPS. Such
achievement can be fulfilled through the self-modulation
instability8, in which the interaction of a long bunch with
the wave itself leads to a modulation of the driver re-
sulting at the final stage in a train of bunches with the
required length and periodicity approximately λp.

One of the serious issues of such a framework, and more
in general for a configuration employing a pre-modulated
beam, is the stability of the driver. A periodicity of λp,
although provides an intense accelerating field, does not
guarantee as well a long lasting driver, which can be dete-
riorated by the transverse wake field. Dealing with such
a problem requires an appropriate analysis of the evolu-
tion of a modulated train of bunches interacting with a
plasma.

In this paper we study the proper periodicity of the
modulated driver in order to improve its stability with-
out severely affecting the resulting accelerating field. We
show that by properly placing the single bunches it is pos-
sible to reduce the deterioration of the modulated con-
figuration, providing a larger number of bunch particles
contributing to the wakefield for a longer time. This will
end up eventually in a more intense accelerating field as
compared to the case of a modulation of λp, after few
meters of propagation.

Such result suggests the necessity to rethink the proper
shape of the modulated beam. While in the case of a pre-
modulated driver it is enough to properly configure the
spacing between the bunches, for a self-modulated driver
like in the AWAKE experiment, a different approach is
necessary. A possible solution is the use of two plasma
cells9, the first intended to modulate the proton bunch
through the self-modulation instability, the second to em-
ploy the modulated structure to excite the field suitable
for the acceleration of the witness bunch.

The paper is structured as follows: in section II we
trace the model used for description of the interaction of
Gaussian bunches with a plasma, assuming a linear re-
sponse and the quasi-static approximation; in section III
we describe the evolution of the equilibrium configuration
for the bunches emerging from the model, comparing the
results with the case of flat-top bunches; in section IV
we look for the proper position of the bunches in order
to increase their stability without seriously affecting the
longitudinal electric field; in section V we present our
conclusions.

II. ANALYTICAL MODEL

The model describing the interaction of a particle beam
with plasma relies on the work of Kenigs and Jones10.

The authors consider an axi-symmetric bunch linearly
interacting with an overdense plasma with immobile ions.
Since the plasma is overdense the beam is regarded as an
external perturbation. The analysis is developed in the
co-moving frame defined by the variables ξ = βct−z and
τ = t with β = vb/c ≃ 1, vb being the beam velocity and c
the speed of light. Lastly the quasi-static approximation
is assumed, providing ∂τ ≃ 0.

The two-dimensional transverse and longitudinal fields
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arising from the interaction are then:

W (r, ξ) = (Er − βBθ) = 4πkp

∫

∞

0

∫ ξ

0

∂ρ(r′, ξ′)

∂r′

r′ I1(kpr<)K1(kpr>) sin[kp(ξ − ξ′)]dξ′dr′ (1)

Ez(r, ξ) = −4πk2p

∫

∞

0

∫ ξ

0

ρ(ξ′, r′)r′

I0(kpr<)K0(kpr>) cos[kp(ξ − ξ′)]dξ′dr′ (2)

where kp = ωp/vb is the plasma wavenumber, ρ(r, ξ) is
the bunch charge density, I1/0 and K1/0 are the modified
Bessel functions and r</> = min /max(r, r′).
We study the fields excited by a bunch with a flat-top

profile in the transverse direction:

ρ(r, ξ) = nbqb

(

r0
rb(ξ)

)2

H(rb(ξ)− r)f(ξ) (3)

with nb being the peak bunch density, qb the bunch
charge, r0 the initial bunch radius, rb(ξ) the radius of
the beam-envelope, H the Heaviside function and f(ξ)
the longitudinal bunch profile. The wakefields generated
by such a distribution are therefore:

W (r, ξ) = −4πkpnbqbr
2
0

{

I1(kpr)
∫ ξ

0 f(ξ′)
K1(kprb(ξ

′))
rb(ξ′)

sin[kp(ξ − ξ′)]dξ′ for r < rb

K1(kpr)
∫ ξ

0
f(ξ′)

I1(kprb(ξ
′))

rb(ξ′)
sin[kp(ξ − ξ′)]dξ′ for r > rb.

(4)

Ez(r, ξ) = −4πkpnbqbr
2
0

{
∫ ξ

0 f(ξ′)
1−kprb(ξ

′) I0(kpr)K1(kprb(ξ
′))

kpr2b(ξ
′)

cos[kp(ξ − ξ′)]dξ′ for r < rb

K0(kpr)
∫ ξ

0
f(ξ′)

I1(kprb(ξ
′))

rb(ξ′)
cos[kp(ξ − ξ′)]dξ′ for r > rb.

(5)

In order to self-consistently include the dynamics of the
beam, we couple the fields equation with the beam-
envelope equation for the beam radius assuming that the
transverse motion of the beam can be described by only
the motion of its boundary like in a water-bag model.
Denoting with rb = rb(ξ, τ) and with r′b = rb(ξ

′, τ), the
resulting equation is:

∂2rb
∂τ2

=
ǫ2c2

γ2r3b
−

4πkpnbq
2
br

2
0

mbγ






I1(kprb)
∫ ξ

0 f(ξ′)
K1(kpr

′

b)
r′
b

sin[kp(ξ − ξ′)]dξ′ for rb < r′b

K1(kprb)
∫ ξ

0
f(ξ′)

I1(kpr
′

b)
r′
b

sin[kp(ξ − ξ′)]dξ′ for rb > r′b

(6)

with ǫ being the normalized beam emittance, γ =

1/
√

1− β2 the beam relativistic Lorentz factor and mb

the mass of the beam particles.
From Eq.6 results that the front of the beam is not sub-

ject to the wakefield and its dynamics is governed by the
emittance-driven expansion according to the equation:

rb(ξ = 0, τ) = rb0(τ) = r0

√

1 +
ǫ2c2τ2

r40γ
2
. (7)

TABLE I: Simulation parameters for plasma and bunch.

Parameter Value

Plasma density (np) 7× 1014 cm−3

Bunch length (σ) 0.02 cm

Initial bunch radius (r0) 0.02 cm

Periodicity (∆) 0.12 cm

Peak bunch density (nb) 4× 1012 cm−3

Bunch relativistic Lorentz factor (γ) 400

Normalized bunch emittance (ǫ) 3.5 mm mrad

The purely diverging front of the bunch provides the ab-
sence of a global stable configuration for the transverse
beam profile. Moreover, since the dynamics at every
point along the bunch depends on the upstream part,
the evolution of the front of the bunch leads to a change
of the whole equilibrium configuration for the beam while
propagating in the plasma.

III. EVOLUTION OF THE EQUILIBRIUM

CONFIGURATION FOR GAUSSIAN BUNCHES

A previous work11 has analyzed the equilibrium config-
uration for a modulated bunch with longitudinal flat-top
density profile. The authors have shown that the dynam-
ics of the front of the bunch leads to a backward drift of
the whole equilibrium configuration for the modulated
beam.
We perform the same analysis for the case of bunches

with a longitudinal gaussian density profile. Since the
defocusing force driven by the emittance does not de-
pend on the explicit shape of the bunch, we can expect
a similar behavior as well for gaussian bunches.
First we consider the case of a modulated beam com-

posed by identical equidistant bunches. The bunch den-
sities are described by Eq.(3) with longitudinal profiles:

f(ξ) =

N
∑

j=1

e
−

(ξ−ξj)
2

2σ2
j =

N
∑

j=1

e−
(ξ−ξ0−j∆)2

2σ2 (8)

with N being the number of bunches, ξj the center, σj

the length and ∆ the periodicity. The complete set of
the parameters characterizing both the plasma and the
beam, with the exclusion of the beam length, is based on
the baseline of the AWAKE project and is presented in
Table I.
Although this analysis refers explicitly to the AWAKE

experiment, the mechanism that leads to the modulation
can be general. Therefore the same results hold for both
a pre-modulated and a self-modulated beam.
The equilibrium radius of the bunches is defined as the

global minimum, at every position in the bunch, of the
potential provided by the force in Eq.6, with the pre-
scription that rb(ξ, τ) ≤ rb(ξ = 0, τ).
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FIG. 1: Quasi-equilibrium configuration for a
modulated gaussian bunch with periodicity 2λp in

vacuum and in plasma (top) and for different
propagation distances in the plasma (bottom).

As expected (Fig.1), the interaction with the plasma
leads to the focusing of the modulated beam, increasing
the peak density of the bunches as compared to the case
of pure vacuum. The focusing force increases towards the
tail of the configuration due to the interference among the
transverse fields generated by the single bunches.
In order to avoid effects due to the overlapping of

the single bunches, the periodicity has been set to ∆ =
2λp. Studying the evolution of the equilibrium config-
uration for gaussian bunches while propagating in the
plasma, shows a behavior analogous to the case of flat-
top bunches. The modulated beam tends to experience
a backward shift in its equilibrium configuration, with
the displacement that is increasing with the propagation
distance. Nevertheless, as shown in Fig.2, the shift is
much smaller for gaussian bunches than that for flat-top
ones. Although the backward shift is quantitatively dif-
ferent for the two cases, the reason is the same. The
expansion of the front of the bunch corresponds to a de-
creasing bunch density and therefore a larger amount of
bunch is required to obtain the same charge for differ-
ent propagation distances. This process delays the onset
of the focusing force(Fig.3). The inhomogeneity of the
gaussian bunches tends anyway to a suppression of the
fields, therefore the backward shift is less strong respect
to flat-top bunches.
The evolution of the equilibrium configuration implies

serious consequences for the stability and the duration of
the modulated beam.
A bunch particle initially in an equilibrium position,

will find itself in an unstable one while propagating in
the plasma as a consequence of the rearrangement of the
trapping potential caused by the expansion of the front.
The displacement experienced by the initial bunch ra-

dius with respect to the new equilibrium configuration
results in a gain of transverse momenta. If the displace-
ment is large enough, the bunch particles can even escape
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FIG. 2: Shift of the 4th, 5th and 6th bunch respect to
its initial position varying the propagation distance in
the plasma. The result is compared with the shift

experienced by flat-top bunches.
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FIG. 3: Transverse field excited by a gaussian bunch for
0, 5 and 10 m of propagation in the plasma.

the trapping potential.
The more driver particles are depleted, the lower is the

wakefield amplitude, resulting in the lower efficiency of
the process.

IV. OPTIMIZATION OF THE BEAM CONFIGURATION

The framework depicted previously demands a further
analysis on the optimal configuration for a modulated
beam in order to reduce its deterioration as much as pos-
sible, while propagating in the plasma.
A train of bunches with periodicity ∆ = λp provides an

intense accelerating field behind the driver, but the sim-
ple expansion of the front of the bunch causes its degra-
dation. The more particles the bunches lose while propa-
gating in the plasma, the weaker is the final accelerating
field.
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FIG. 4: Potential surface after 10 m of propagation in
the plasma. The white line corresponds to the

equilibrium beam radius at 0 m, while the black lines
are the boundaries for which the particle stay trapped

after 10 m of plasma.

We look therefore to the proper position of the single
bunches in order to maximize the number of particles
keeping trapped while propagating in the plasma.

The trapping is studied between the initial and final
position in the plasma channel. Since the backward shift
increases with the propagation distance, improving the
trapping respect to the final stage guarantees as well an
improvement for the whole evolution.

To establish which sections of the bunches are unsta-
ble, we compare the initial configuration with that at the
end of the propagation. The bunch particles are lost if
the difference between the two is large enough to provide
the necessary transverse momentum to escape the trap-
ping potential. In Fig.4 we can see an example of the
method applied: some sections of the initial equilibrium
configuration are, at the end of the propagation distance,
out of the trapping region, meaning that those slices of
the bunches are lost.

According to this criterion we look for the matching pe-
riodicity of the configuration that guarantees the highest
number of particles trapped between the initial and final
step. The procedure is performed for one bunch at the
time, fixing the configuration upstream to the already
evaluated matching positions.

In Fig.5 we can see the relative number of particle
trapped changing the position of the last bunch of the
configuration over a plasma wavelength.

As expected the maximum number of particle trapped
is not achieved with a periodicity ∆ = λp. This is a con-
sequence of several aspects: the maximum of the Green
function for the transverse field in Eq(2) lies at ∆ = λp/2;
the gaussian profile induces a nonlinear shift of the max-
imum; the backward drift driven by the expansion of the
front of the bunch causes an additional shift of the opti-
mal position.
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FIG. 5: Relative number of particle trapped after 10 m
of propagation varying the position of the last bunch of

the configuration.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

∆(
λ p

)

 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2  3  4  5  6  7  8  9  10

N
t/N

T

Number of bunches
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Moreover, as appears from Fig.6, the displacement is
not constant for every bunch, meaning that it is not
enough to rigidly move the configuration backward, but
an analysis for every bunch is required. On the other
hand the stability of the configuration, defined as the
relative number of particle trapped, increases with the
number of bunches involved. This is a consequence of the
increasing total transverse field due to the superposition
of the single ones generated by all the upstream bunches.
Although this optimization provides an increasing final
total charge of the beam, it does not necessarily implies
as well an intense accelerating field behind the driver.
The matching position improving the total charge can
coincide with that providing a destructive interference of
the accelerating field generated by the single bunches.
This can be understood also by looking at Eq.(2), since

the Green function for the longitudinal and transverse
fields are π/2 out of phase, meaning that the maximum
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FIG. 7: Relative number of trapped particle with
average accelerating field behind the driver for a

configuration with ten bunches.

of the first will be close to the minimum of the second.

Therefore in order to obtain a configuration suitable
for particle acceleration, it is necessary to improve the
stability of the train of bunches without severely affecting
the resulting longitudinal field behind the driver.

We perform an analogous analysis as the previous one,
taking into account this time also the average of the accel-
erating field behind the driver over the propagation dis-
tance. The analysis is performed again for one bunch at
the time, fixing the configuration upstream to the match-
ing one.

Fig.7 displays clearly the behavior mentioned previ-
ously. The position that guarantees the maximum num-
ber of trapped particles does not correspond to that im-
proving also the longitudinal field behind the driver. In
order to obtain the best of the two behaviors, the match-
ing condition is set at the crossing between the lines rep-
resenting the relative number of trapped particle and the
average accelerating field behind the driver.

In order to confirm the results, we have performed a
three dimensional PIC simulation using the quasi-static
VLPL code12. We compare both the bunch densities
and the longitudinal electric field for a modulation of
λp and the newly obtained modulation. We can see
from Fig.9 that the optimized configuration preserves the
bunch densities, obtaining a final charge higher than that
in the periodic case.

The longitudinal electric field as well provides the be-
havior expected by the improved configuration(Fig10).
The modulation of λp guarantees a stronger electric field
initially. On the other hand, the optimized configura-
tion provides an improved focusing field acting on the
single bunches. This leads to an increasing peak den-
sity and therefore an increasing accelerating field. After
about 3 meters of propagation in the plasma, the acceler-
ating field behind the driver becomes stronger in the new
configuration(Fig.11) and the improved stability shows
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FIG. 8: Matching position of every bunch in order to
improve both the stability of the driver and the final
accelerating field. The result is compared with the

previous one in which only the stability was guaranteed.

guarantees a slower decrease.

V. CONCLUSION

In this work we have analyzed the stability of a train of
gaussian bunches interacting with a plasma, a configura-
tion occurring in plasma wakefield acceleration employ-
ing pre-modulated or self-modulated beams.
Through a semi-analytical model we have study the

equilibrium configuration for a series of periodic gaussian
bunches and the effects of the expansion of the front of
the bunch in its evolution. The result shows an analogy
with the backward shift occurring for flat-top bunches.
To excite focusing fields of the same intensity for increas-
ing propagation distances, it is required a longer section
of the bunch, due to the decreasing density of the front.
This provides a phase shift of the focusing field and there-
fore of the entire equilibrium configuration.
We pointed out as this backward shift leads to an in-

stability of the driver and to its deterioration while prop-
agating in the plasma.
Through a numerical analysis we have found first the

proper position of the bunches in order to improve the
relative number of particle trapped during the propaga-
tion showing that is not provided by a periodicity of λp.
We finally extended the analysis checking as well the re-
sulting accelerating field behind the driver generated by
the new configuration. The final result provides a config-
uration for a train of gaussian bunches with an improved
stability as well with a strong accelerating field behind
the driver.
The validity of the analysis have been finally tested

performing a 3D PIC simulation using the quasi-static
VLPL code, providing the effects already observed in the
simplified model. The accelerating field arising from the
modified train of bunches is initially less intense than
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FIG. 9: Density of the modulated beam for a periodicity ∆ = λp (upper line) and for the matching periodicity
(lower line) at 0, 5 and 10 m in the plasma.

FIG. 10: Longitudinal electric field generated by the modulated beam for a periodicity ∆ = λp (upper line) and for
the matching periodicity (lower line) at 0, 5 and 10 m in the plasma.
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FIG. 11: Comparison of the accelerating field behind
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that emerging from a modulation of λp, but after about 3
meters of propagation it becomes stronger, the difference
between the two increasing further for the rest of the
propagation distance.
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