BB

CERN-PRE 90-065

SW9104

CRN-PN / 90-27

CERN LIBRARIES, GENEVA

CM-P00052114

GAMOW-TELLER BETA DECAY OF A = 48-51 POTASSIUM ISOTOPES AND SHELL MODEL DESCRIPTION

G. WALTER

Work in collaboration with : P. Baumann, M. Bounajma, Ph. Dessagne, A. Huck, G. Klotz, A. Knipper, Ch. Miehé, J. Rachidi, M. Ramdane (CRN, Strasbourg) G. Marguier (IPN, Lyon) C. Richard-Serre (IN2P3/CERN-ISOLDE) A. Dobado and A. Poves (Univ. Autonoma, Madrid)

Contribution to the Workshop "Nuclear Structure of Light Nuclei Far From Stability: Experiment and Theory" OBERNAI (France) November 27-29, 1989

CENTRE DE RECHERCHES NUCLEAIRES STRASBOURG

IN2P3

CNRS

UNIVERSITE LOUIS PASTEUR

Contribution to the Workshop
"Nuclear Structure of Light Nuclei Far From
Stability: Experiment and Theory"
OBERNAI (France) 27-29 Nov. 1989

Gamow-Teller Beta Decay of A = 48-51 Potassium Isotopes and Shell Model Description

G.Walter

Work in collaboration with: P.Baumann, M.Bounajma, Ph.Dessagne, A.Huck, G.Klotz, A.Knipper, Ch.Miehé, J. Rachidi, M.Ramdane* (CRN, Strasbourg) G.Marguier (IPN, Lyon) C.Richard-Serre (IN2P3/CERN-ISOLDE) A.Dobado and A.Poves (Univ.Autonoma, Madrid).

The determination of the GT beta decay of n-rich K isotopes ($N\geq28$) is of interest for the study of particle-hole states in the sd and fp shells. In this mass region, two particular features are noteworthy when undertaking an experimental investigation :

- High production yields may be obtained for mass-separated beams $% \left(1\right) =1$ resulting from target fragmentation, allowing accurate measurements of the β branches.
- Information from reaction studies on 48 Ca targets are available [(p,p') for 48 Ca, (d,p), (n,n) and (n, γ) for 49 Ca and (t,p) for 50 Ca]. These data corroborate the decay studies and allow a detailed comparison with theoretical predictions.

The present study 1) was made with a Uranium carbide target bombarded either by a 600 MeV proton or a 900 MeV 3He beam from the CERN synchrocyclotron. K isotopes were ionized with a high degree of selectivity by means of a tungsten surface ionization source. Gamma radiation and delayed neutrons following the decay of $^{48-51}$ K isotopes have been studied in singles and coincidence mode. For these measurements, a 33% Ge(Li) counter was associated with large area (2880cm²) plastic scintillators designed for neutron detection. The start of the time of flight is given by a thin cylindrical β detector which surrounds the collection point, the stop signal

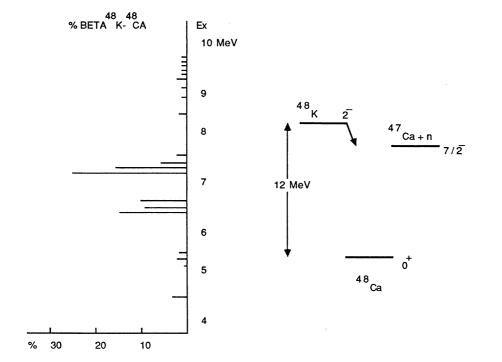


Fig. 1 Experimental values for beta branching strength in the beta decay of ⁴⁸K

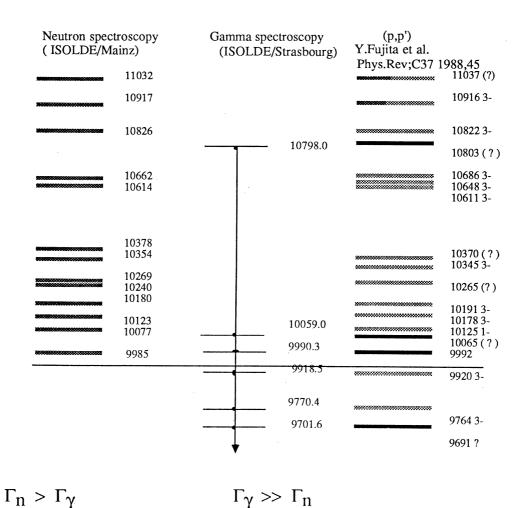
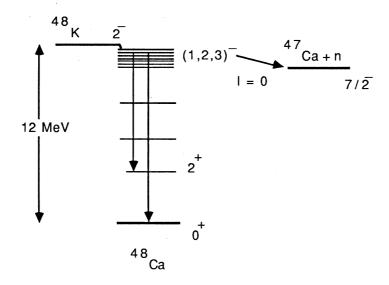


Fig. 2 Unbound levels in ⁴⁸Ca (excitation energy in keV) observed in delayed neutron spectroscopy (ref.2), gamma spectroscopy (ref.1) and (p,p') reaction (ref.3)


corresponding to the detection of events in the large scintillators. These scintillators, curved for isochronous flight paths (l=100 cm) and centered at the collection point, allow neutron detection with a large solid angle (280 msr) and a good time resolution (1.1ns FWHM). In the discussion of experimental results with theoretical estimates of Poves and Dobado, we will also include the neutron spectroscopy data, obtained by the Mainz group with He³ counters²).

In the present contribution, we will give an overall comparison between the experimental distribution of β strength, established by these experiments, and the shell model estimates. Before, we discuss briefly some of the salient features of the N=29-32 K decays.

$48K \rightarrow 48Ca \beta decay$

The 48 K decay is a unique example of β^- decay with high Q value (Q β = 12.09 MeV), populating more than 30 levels in the daughter nucleus with, for most of them, a spin and parity value established by different experiments. This spectroscopic information is valuable to understand the β decay. A schematic representation of the distribution of the β strength is given in Fig.1 which reveals the selective population of 48 Ca levels around 7 MeV excitation energy and locates thereby the center of gravity of p-h states. When compared to previous investigations 12 , 13), we note in the present work higher values for β branches populating high excited states (especially for the 7301 keV level). This result is related to the increase in sensitivity for detection of high energy γ rays resulting from the use of high efficiency Ge detectors. If now we consider the upper part of the excitation range in 48 Ca around the neutron separation energy (S_n = 9.94 MeV), which corresponds to an important fraction of the G.T. strength, we can compare the level scheme corresponding to levels established by neutron 2 and by γ spectroscopy 1) with the one established from (p,p') analysis 3) (Fig.2). In this last case, the comprehensive study by Fujita et al 3) has led to J $^{\pi}$ assignments for almost all levels.

On the basis of the excitation energy and decay properties, a one to one relation can be established in most cases between the levels populated in the 48 K β decay, corresponding to p-h configurations, and those observed in pp'. For the states revealed by delayed neutron spectroscopy, we find $J^{\pi}=3^{-}$ counterparts in the pp' work while the levels resulting from the γ measurements correspond most likely to $J^{\pi}=1^{-}$ in pp' and give rise to E1 γ -decays. Then the situation appears to be the following: from 48 K ($J^{\pi}=2^{-}$), GT β transitions populate $J^{\pi}=1^{-}$, 2^{-} , 3^{-} levels in 48 Ca. Subsequent neutron decay to 47 Ca g.s.($J^{\pi}=7/2^{-}$) with odd 1 values are forbidden and even ones are mostly I=0. Therefore the neutron decay selects $J^{\pi}=3^{-}$ states in the daughter nucleus and unbound I^{-} (or 2^{-}) levels are revealed by their radiative decay. In Fig.3, we have represented the B(GT) strength distribution corresponding to 3^{-} states in 48 Ca. The enveloppe of this distribution shows a resonance like structure, centered around 10.5 MeV. This resonance (Low Energy Octupole Resonance-LEOR) was previously observed by Fujita et al 3) by pp' reaction. The 48 K \rightarrow 48 Ca GT transitions give the first example of the observation of such a resonance in a β decay study.

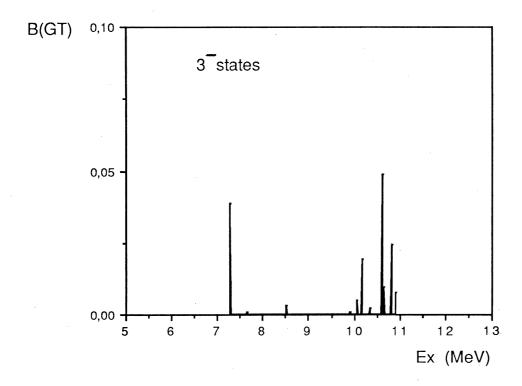


Fig. 3 B(GT) strength distribution for the beta decay of 48 K. Only the strength corresponding to final states with $J^{\pi} = 3^{-}$ (assignments from ref.3) is reported on the plot.

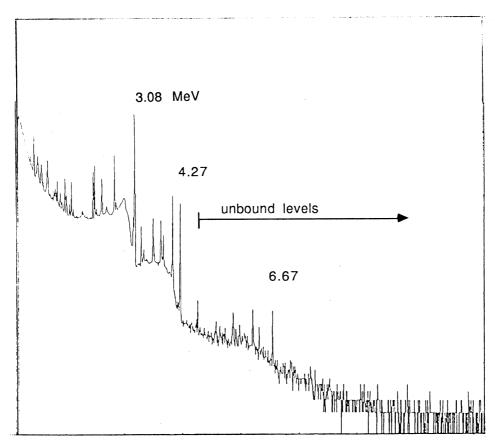


Fig. 4 Gamma spectrum in the decay $^{49}\text{K} \rightarrow ^{49}\text{Ca}$

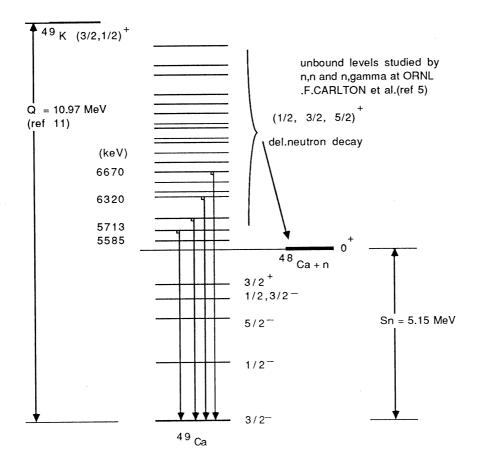


Fig. 5 Gamma decay of unbound states in ⁴⁹Ca

Previous investigations of 49 K(β^-) 49 Ca were made at ISOLDE4) and have established the main β transitions. Our motivation in the present study was to search for weaker decays at high excitation energy with an improved γ sensitivity and to compare the results with data available on the 49 Ca level structure. In this connection the situation is completely different from the preceding case. From previous works, 49 K ground state is known to have $J^{\pi}=1/2^+$ or $3/2^+$. In these conditions, all the states $[J^{\pi}=(1/2^+-5/2^+)]$ populated at high excitation energy by GT transitions can decay directly to 49 Ca g.s.($J^{\pi}=3/2^-$) by E1 transitions. As a result, the γ emission from unbound states is favoured and several unbound levels, located above the neutron separation energy ($S_n=5.15$ MeV), are established through their radiative decay. In the γ spectrum (Fig.4) prominent lines allow to locate 4 levels at 5585, 5713, 6320 and 6670 keV populated by allowed GT transitions. Their position is reported in Fig.5 with other unbound levels established from the 49 K $\rightarrow ^{49}$ Ca study and observed only through neutron emission. In the β decay experiment, energy calibration at high energy was achieved using the 6129 keV line in 16 O [13 C(α ,n) 16 O* source] after recoil corrections.

Many properties $(E_x, J^\pi, \Gamma_n \text{ and } \Gamma_\gamma)$ of ^{49}Ca energy levels are known from (n,n) resonance and (n,γ) capture studies performed at the ORELA facility (Oak Ridge)⁵⁾. It is of particular interest to use this information and check if $5/2^+$ states in ^{49}Ca are populated by allowed transitions in the β decay and therefore if the $J^\pi = 1/2^+$ assignment for ^{49}K g.s. can be rejected. To adress this question, we compare in Table 1 information on ^{49}Ca levels obtained from resonance (or capture) and from ^{49}K β decay though we do not expect a strong overlapping between the configurations involved in the different processes.

We note that the high resolution resonance and capture work allows a determination of the partial widths, Γ_n and Γ_γ , whereas from γ and delayed neutron measurements, only the ratio of the two partial widths, Γ_n/Γ_γ , can be deduced. The absolute value of the excitation energy measured in the two different experiments can differ by an amount which is difficult to evaluate. At $E_x = 6670$ keV a level is observed in both experiments, yet from the ratio Γ_n/Γ_γ obtained in our work and the Γ_n value from ORELA an unrealistic value for Γ_γ is deduced (exceeding by a factor 500 the upper estimates for an E1 transition). We come then to the conclusion that the "level" at 6670 keV is, at least, a doublet. For the level at 5583 (or 5585) keV, the two experiments can be in agreement, within the error barrs. More interesting is the level we observe at 5713 ± 2 keV, very close to the weak neutron resonance at 5707 keV, measured at Oak Ridge. In this case, we calculate a radiative width, Γ_γ , equal to 75 meV, corresponding to 4.4 10⁻⁴ W.u., value in the range of the observed E1 transitions. If we assume that the two observations correspond to the same level, we can assign $J^\pi = 3/2^+$ to J^{\pm} ground state. The systematics of J^{\pm} energy difference in K isotopes is given in Table 2. Present results would indicate that J^{\pm} corresponds to ground state for all K isotopes, except J^{\pm}

TABLE 1. Unbound levels in ⁴⁹Ca

(n,n) and (n,γ) [ORELA/Oak Ridge] Ref.5		delayed neutron and β,γ [CERN/ISOLDE] this work		
E _x (keV))	E _X (keV)		
6670	$J^{\pi} = 5/2^{+}$ $\Gamma_n = 160 \text{ keV}$	6670 ± 2	$\Gamma_{\rm n}/\Gamma_{\gamma} = 148 \pm 34$	
5583	$J^{\pi} = 1/2^{+} \Gamma_{n} = 4.3 \text{ keV}$ $\Gamma_{\gamma} = 2.5 \text{ eV}$	5585 ± 2	$\Gamma_{\rm n}/\Gamma_{\gamma} = 4000 \pm 2000$	
		6320 ± 2	$\Gamma_{\rm n}/\Gamma_{\gamma} = 296 \pm 100$	
5707	$J^{\pi} = 5/2^{+}$ $\Gamma_n = 80 \text{ eV}$	5713 ± 2	$\Gamma_{\rm n}/\Gamma_{\gamma} = 1060 \pm 300$	

TABLE 2. $1/2^+ - 3/2^+$ energy difference in K isotopes

A	41	43	45	47	49
E _x (1/2 ⁺) ₁ MeV	0.98	0.56	0.47	0.0	?
E _x (3/2 ⁺) ₁ MeV	0.0	0.0	0.0	0.36	(0.0)

It would be highly desirable to explore the low energy structure of 49 K in order to confirm the 1/2-3/2 level crossing at A=49.

The decay scheme of 50 K (Fig.6) has been established on the ground of n- γ and γ - γ coincidences. If we take into account the P_n value of Carraz et al.⁴⁾ (P_n = 29 ± 3 %), a large fraction of the decay remains unobserved after analysis of the n and γ spectra. The sum of intensities feeding bound excited levels in 50 Ca comes only to 11.6 % of the total β decay leaving 60 ± 10 % for the β transition to 50 Ca g.s. It should be noted that a large direct production yield of 50 Ca, from the ion source, precluded a measurement of this ground state branch by comparing parent and daughter activity.

The low energy level structure of 50 K is expected to be described by the J^{π} = $^{(0-3)^-}$ multiplet, resulting from the $1d_{3/2} \times 2p_{3/2}$ coupling. The large β branching ratio to 50 Ca, 0^+ , ground state (corresponding to log ft = 5.8) is then quite anomalous for a forbidden transition. This anomaly can be understood by using the shell model predictions $^{6)}$ for 50 K. In this calculation, Poves indicates the level ordering of the $^{(0-3)^-}$ multiplet and J^{π} = $^{0^-}$ is given for 50 K g.s. Accordingly, only 1^- states are connected in 50 Ca by GT transitions and the low density of 50 Ca states populated in the experiment can be explained.

As regard to the ${}^{50}{\rm K}(0^{\text{-}}){\rm g.s.} \to {}^{50}{\rm Ca}(0^{+}){\rm g.s.}$ decay, the high transition rate is related to pseudoscalar matrix elements. In this particular case, ($\Delta J=0$, $\Delta \pi$ yes), only rank zero matrix elements of the two components of the axial current contribute to the transition rate and strong meson-exchange enhancement is expected⁷). For light nuclei (A≤40), a number of ($\Delta J=0$, $\Delta \pi$ yes) cases have been studied previously and the comparison of the experimental β rate with shell model estimates has revealed a considerable enhancement of the experimental beta decay rate, attributed to meson exchange currents⁷). It should be noted that, all the transitions studied so far as: ${}^{16}{\rm C}(0^+) \to {}^{16}{\rm N}(0^-)$, ${}^{16}{\rm N}(0^-) \to {}^{16}{\rm O}(0^+)$, ${}^{16}{\rm N}(0^-)$, ${}^{16}{\rm N}(0^-) \to {}^{16}{\rm N}(0$

A more precise determination of the $(0^- \rightarrow 0^+)$ transition rate is then contemplated.

Comparison of experimental values of B(GT) with shell model estimates

The neutron-gamma coincidence experiments allow to establish the level scheme in the daughter nucleus up to 10 MeV and the corresponding β strength function is put in terms of reduced GT transition probability. Experimental $^{48\text{-}51}\mathrm{K}$ B(GT) distributions are not discussed here in detail. A summary of the results is given in Fig.7a where experimental strength within each 200 keV energy interval is summed up and plotted as histogram in the 4 cases.

One observation is evident from Fig.7a. If we consider the center of gravity of the first maximum in the B(GT) distribution (which should correspond mainly to $f_{5/2} \rightarrow f_{7/2}$ transitions), it appears that comparing A=48, 50 and 49, 51 we observe a shift of these structures, roughly

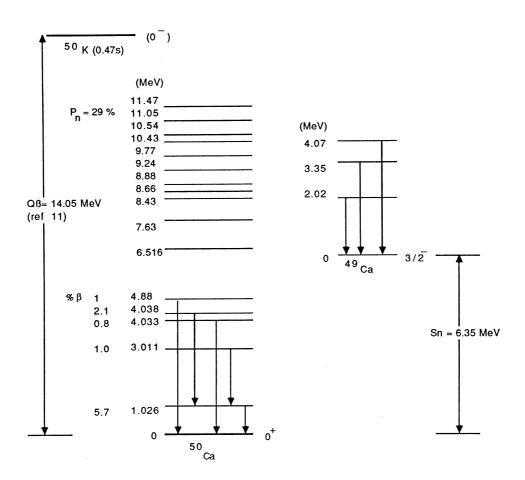


Fig. 6 Decay scheme of $50K \rightarrow 50Ca$

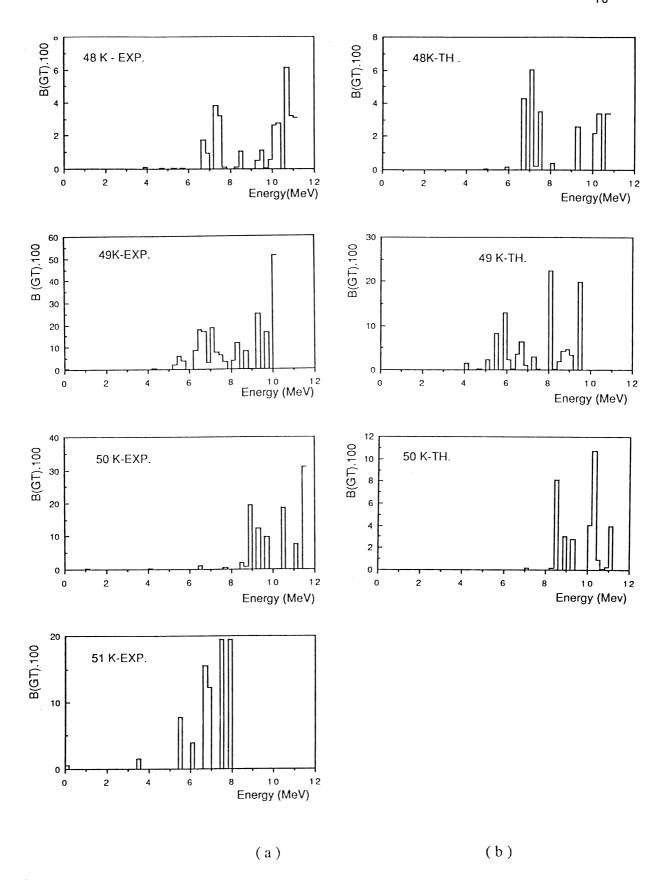


Fig. 7 B(GT) strength distribution for the β decay of K isotopes Experimental (7a) and theoretical (7b) strengths within 200 keV intervals

equal to the Q β variations (Q β respectively equal to 12.0, 11.0, 14.05 and 12.6 for A = 48, 49, 50 and 51). In other words, the energy difference between the parent state and the more important ones connected by GT decay, is almost constant and equal to 4.5 MeV. This value is to be compared to the energy difference between 50 Ca g.s. and the first 1+state in 50 Sc, resulting from the $^{67/2} \times ^{65/2}$ coupling, $\Delta E = 3.1$ MeV.

A comparison of experimental values of B(GT) with shell model calculations is given in Fig.7a and 7b where the corresponding quantities have been calculated for $^{48-50}K\rightarrow ^{48-50}Ca$ by Poves and Dobado⁶). The calculation will not be described here, two features should be noted:

- the valence space for K g.s. and p-h states in Ca is limited to $(sd)^{-1}$ (fp)A-40+1 with 1 hole in $2s_{1/2}$ or $1d_{3/2}$, 8 or 7 particles in $1f_{7/2}$ and the remaining particles in $2p_{3/2}$ or $1f_{5/2}$
- the calculation gives the energy difference between the K g.s. and the Ca p-h state which is converted in excitation energy in the final nucleus by using experimental Q_{β} values.

The calculation reproduces quite well the main trends of the GT distribution and illustrates the predictive power of shell model evaluations far from stability. In particular J^{π} values for 48-50K have been found in agreement with predictions. It should be noted that from Fig.7a and 7b, the quenching of the GT strength is not directly apparent as a renormalization of single particle matrix elements has been done in the calculation.

Conclusion.

By γ and neutron spectroscopy techniques, a detailed study of the excited states of ⁴⁸⁻⁵¹Ca levels has been made, with special emphasis on the unbound region. For A = 48, when using all the spectroscopic information available on ⁴⁸Ca, a strong excitation of the octupole resonance from GT transitions can be distinguished. In the case of ⁴⁹Ca, the overlap between β decay and resonance neutron spectroscopy is small on account of the selectivity of the β process to populate particle-hole states. This case is found completely different from the ⁸⁷Br decay¹⁰) where a dramatic overlap between the results from resonance or delayed neutrons enabled a detailed discussion of the ⁸⁷Kr level density. Finally, ⁵⁰K decay provides the best case to study the meson-exchange enhancement of the axial current for p_{3/2} \rightarrow d_{3/2} transitions.

The Gamow-Teller strength distributions of ⁴⁸⁻⁵⁰K isotopes are largely explained by shell-model calculations involving five shells, distributed in two major shells. This success generates more interest in the experimental investigation of the large excitation energy range open to study, far from stability.

This work has been supported by IN2P3 (France) and CAICYT (Spain).

*present adress : HCR/UDTS, Alger, Algérie

References

- 1) A.Huck et al., Isolde Collaboration, to be published.
- 2) W.Ziegert, Diplomarbeit, Mainz (1980)
- 3) Y.Fujita et al., Phys.Rev.C37 (1988) 45
- 4) L.C.Carraz et al., Phys.Lett.109B (1982) 419
- 5) R.F.Carlton et al., Nucl.Phys. A465 (1987) 274 and private communication
- 6) A.Dobado and A.Poves, La Rabida (1982) published in Lecture Notes in Physics, 168, Springer Verlag (1983)
- K.Kubodera, J.Delorme and M.Rho, Phys.Rev.Lett. 40 (1978) 755
 J.Delorme, Nucl.Phys. A374 (1982) 541
 J.Delorme and I.S.Towner, Nucl.Phys. A475 (1987) 720
 D.J.Millener and E.K.Warburton, Proceedings of the International Symposium on Nuclear Shell Models,ed. by M.Vallieres and B.H.Wildenthal (World Scientific, 1985, 365)
 - E.K.Warburton et al. Annals of Physics, 187 (1988) 471
- 8) C.A.Gagliardi et al., Phys.Rev.C27 (1983) 1353
- 9) C.A.Gagliardi et al., Phys.Rev.Lett. 48 (1982) 914
- 10) S.Raman et al., Phys.Rev.C28 (1983) 602
- 11) Ch. Miehé et al. Phys.Rev. C33 (1986) 1736
- 12) L.G.Multhauf et al. Phys. Lett. 57B (1975) 44
- 13) C.Detraz et al. Nucl. Phys. A302 (1978) 41