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Abstract The azimuthal correlations of D mesons with
charged particles were measured with the ALICE appara-
tus in pp collisions at

√
s = 7 TeV and p–Pb collisions at√

sNN = 5.02 TeV at the Large Hadron Collider. D0, D+,
and D∗+ mesons and their charge conjugates with transverse
momentum 3 < pT < 16 GeV/c and rapidity in the nucleon-
nucleon centre-of-mass system |ycms| < 0.5 (pp collisions)
and −0.96 < ycms < 0.04 (p–Pb collisions) were corre-
lated to charged particles with pT > 0.3 GeV/c. The yield
of charged particles in the correlation peak induced by the
jet containing the D meson and the peak width are compat-
ible within uncertainties in the two collision systems. The
data are described within uncertainties by Monte-Carlo sim-
ulations based on PYTHIA, POWHEG, and EPOS 3 event
generators.

1 Introduction

The study of the angular correlation of D mesons with
charged particles, i.e. the distribution of the differences in
azimuthal angles, �ϕ = ϕch − ϕD, and pseudorapidities,
�η = ηch −ηD, allows for the characterisation of charm pro-
duction and fragmentation processes in proton–proton (pp)
collisions and of their possible modifications due to nuclear
effects in proton–Pb and Pb–Pb collisions [1,2]. For leading-
order (LO) Quantum-ChromoDynamic (QCD) processes,
charm quark–antiquark pairs are produced back-to-back in
azimuth: the angular correlation of D mesons with charged
particles features a “near-side” peak at (�ϕ,�η) = (0, 0)

and an “away-side” peak at �ϕ = π . The former originates
from the jet containing the “trigger” D meson, the latter is
induced by the recoil jet, which can also include the decay
products of the other charmed hadron produced in the colli-
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sion. The away-side peak extends over a wide range in �η.
The two peaks lie on top of an approximately flat distribu-
tion arising from the correlation of D mesons with charged
particles from the underlying event. Next-to-leading order
(NLO) production processes can give rise to significantly dif-
ferent correlation patterns [3,4]. For example, the radiation
of a hard gluon from a charm quark smears the back-to-back
topology of LO production and broadens both the near- and
the away-side peak. In addition, quark–antiquark charm pairs
originating from the splitting of a gluon can be rather col-
limated and, especially at high transverse momentum (pT),
can generate sprays of hadrons contributing to a unique and
broader “near-side” peak. In such cases, the away-side peak
stems from the particles coming from the fragmentation of
the recoil parton (typically a gluon or a light quark), which
is not aligned with the trigger D meson. Finally, in hard-
scattering topologies classified as “flavour excitation” (see
e.g. [4]) a charm quark (antiquark) from an initial splitting
g → cc̄ undergoes a hard interaction. The hadrons originat-
ing from the antiquark (quark) can be significantly separated
in rapidity with respect to the trigger D meson and contribute
with a rather flat term to the �ϕ distribution.

Since the first measurement performed by STAR in
Au–Au collisions at

√
sNN = 200 GeV [5], two-particle

azimuthal correlations have been exploited at both RHIC and
the LHC [6–8] to investigate the possible modifications of jet
and dijet properties that can be caused by the interaction of
high-energy partons with the constituents of the Quark Gluon
Plasma (QGP) formed in ultra-relativistic heavy-ion colli-
sions. The most evident effect is the suppression of the away-
side correlation peak, commonly attributed to in-medium
partonic energy loss. The results allow one to constrain the
dependence of the energy loss on the distance covered by par-
tons in the QGP as well as the initial gluon density [9,10]. The
correlation pattern of hadron–hadron pairs primarily arises
from the back-to-back production of gluons or light-quarks
produced in hard-scattering processes, and their subsequent
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fragmentation. PHENIX measured the azimuthal correlation
of electrons from heavy-flavour hadron decays with charged
particles in Au–Au collisions at

√
sNN = 200 GeV [11]. The

near- and away-side peaks are suppressed by factors com-
patible, within uncertainties, to those observed for hadron–
hadron correlations, if a similar pT is considered for the trig-
ger hadron and the electron parent hadron. The proper inter-
pretation of nucleus–nucleus results and the connection of the
modifications of the correlation peak properties to the parton
dynamics in the QGP requires the comparison of data with
model predictions. It is crucial that the models reproduce the
correlation pattern measured in pp collisions, where nuclear
effects are absent, as well as the production spectra in both
pp and nucleus–nucleus collisions. Therefore, the measure-
ment of azimuthal correlations of D mesons with charged
particles in pp and p–Pb collisions serves not only as a refer-
ence for future measurements in Pb–Pb collisions but it also
allows for validation of Monte-Carlo generator expectations,
which is fundamental for the understanding of the results in
all collision systems.

Perturbative QCD calculations relying on the collinear-
factorisation approach, like FONLL [12] and GM-VFNS [13],
or based on the kT-factorisation approach [14] describe rea-
sonably well the pT-differential production cross sections
of D mesons from charm-quark fragmentation measured at
central rapidity (|y| < 0.5) in pp collisions at

√
s = 7

and 2.76 TeV using the ALICE detector [15,16]. These
calculations represent the state of the art for the computa-
tion of (pT, y)-differential cross sections of charm quarks
and charmed hadrons. However, the kinematic relationship
between D mesons and particles from charm fragmentation
and the underlying event is accessible only with event genera-
tors coupled with parton-shower Monte-Carlo programs like
those provided by PYTHIA [17] and HERWIG [18]. The
order of hard-scattering matrix elements used, the specific
implementation of parton shower and hadronisation, as well
as the modeling of the underlying event have an influence on
the angular correlations of D mesons with charged particles
produced in the event. For heavy quarks with mass M and
energy EQ, the suppression of gluon radiation off the quark
inside the forward cone with opening angle � = M/EQ

(the so-called “dead-cone” effect) reduces the phase space
for primary gluon radiation [19]. This implies a harder frag-
mentation of the quarks into the heavy hadrons and leads to
essential differences in the profiles of gluon-, light-quark- and
heavy-quark-initiated jets resulting in shape differences of
pT-spectra and multiplicity distributions of primary hadrons
in the jets [20,21].

Correlations between D mesons were measured at the
LHC in pp collisions at

√
s = 7 TeV with the LHCb

experiment [22], providing information on charm produc-
tion mechanisms and on the properties of events contain-
ing heavy flavours. ATLAS measured the production of D∗+

mesons in jets in pp collisions at
√
s = 7 TeV for jets with

25 < pT < 70 GeV/c and D∗+ carrying a jet momentum
fraction (z) in the range 0.3 < z < 1. The results indi-
cate that the production of charm-quark jets or charm-quark
fragmentation into D∗+ mesons is not properly modeled
in state-of-the-art Monte-Carlo generators [23]. Azimuthal
correlations of electrons from heavy-flavour hadron decays
with charged particles were also exploited to study the rela-
tive beauty contribution to the population of electrons from
heavy-flavour hadron decays in pp collisions at RHIC and at
the LHC [24,25].

The angular distribution of particles produced in an event
is sensitive to collective effects that correlate particle pro-
duction over wide phase-space regions. This is particularly
relevant in Pb–Pb collisions with non-zero collision impact
parameter, where the azimuthal asymmetry of the overlap-
ping region of the colliding nuclei gives rise to anisotropic
pressure gradients inducing an anisotropy in the azimuthal
distribution of particle momenta [26,27]. The main com-
ponent of the Fourier decomposition used to describe the
resulting �ϕ distribution of two particle correlations is the
2nd order term, proportional to cos(2�ϕ), called elliptic
flow or v2. Given that correlations induced by the collec-
tive motion of the system extend over large pseudorapidity
ranges, the elliptic-flow term manifests itself with the pres-
ence of two long-range ridge-like structures in the near and
away sides of two-particle angular correlations. Unexpect-
edly, similar long-range correlation structures were observed
in high-multiplicity pp and p–Pb collisions at the LHC [28–
33]. Also in central d–Au collisions at RHIC [34,35] similar
results were obtained, although contributions from jet-like
correlations due to biases on the event selection could not be
excluded [36]. The origin of such v2-like structures is still
debated. Positive v2 values in high-multiplicity pp collisions
and p–Pb (d–Au) collisions at LHC (RHIC) are expected
in models that include final-state effects [37–41], as well
as initial-state effects related to the Color Glass Conden-
sate [42] or to gluon bremsstrahlung by a quark–antiquark
string [43]. A modification of the azimuthal correlations of
D mesons with charged particles in p–Pb with respect to
pp collisions could be a signal of the presence of long-
range v2-like correlations for particles originating from hard-
scattering processes. This would yield complementary infor-
mation to that obtained from correlations of light-flavour par-
ticles, which at low pT are primarily produced in soft pro-
cesses. The D-meson pT-differential production cross sec-
tion in p–Pb collisions at

√
sNN = 5.02 TeV was measured

with ALICE in the interval of rapidity in the nucleon-nucleon
centre-of-mass system −0.96 < ycms < 0.04 [44]. The data
are compatible, within uncertainties, with a Glauber-model-
based geometrical scaling of a pp collision reference obtained
from the cross sections measured at

√
s = 7 TeV and√

s = 2.76 TeV. This suggests that nuclear effects are rather
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small for D mesons in the range 1 < pT < 24 GeV/c. How-
ever, they could still affect angular correlations as observed
at RHIC for azimuthally-correlated pairs of electrons and
muons from decays of heavy-flavour hadrons in d–Au col-
lisions at

√
sNN = 200 GeV [45]. A modification of the

azimuthal correlation of heavy-flavour particles in p–Pb col-
lisions could occur at the LHC due to gluon saturation in
the heavy nucleus [46]. Moreover, transport models based
on the Langevin equation [2,47] describe, within uncertain-
ties, the nuclear modification factor of D mesons measured
in p–Pb collisions at the LHC and that of electrons from
heavy-flavour hadron decays measured in d–Au collisions at
RHIC [48]. These models assume the formation of a small-
size QGP in p–Pb and d–Au collisions and include the possi-
bility of heavy-flavour hadron formation via coalescence of
heavy quarks with thermalised light quarks from the medium.
These transport calculations predict a positive D-meson v2

in central p–Pb collisions. As an example, in the case of the
POWLANG model [2] the maximum expectation for the 20%
most central p–Pb collisions is v2 ∼ 5% at pT = 4 GeV/c.
A finite v2 of muons from heavy-flavour hadron decays in
high-multiplicity p–Pb collisions was also suggested in [31]
as one of the possibilities for reconciling the measured values
of v2 of inclusive muons with the expectations based on the
multi-phase transport model AMPT [49].

In this paper we report the first measurements of azimuthal
correlations of D mesons with charged primary particles in pp
and p–Pb collisions at

√
s = 7 TeV and

√
sNN = 5.02 TeV,

respectively. Unless differently specified we always refer
to “prompt” D mesons from charm-quark fragmentation. In
what follows, primary particles are defined as particles orig-
inated at the collision point, including those deriving from
strong and electromagnetic decays of unstable particles, and
those from decays of hadrons with charm or beauty. The
paper is organised as follows. In Sect. 2 the data samples used
and the details of the ALICE experimental apparatus relevant
for this analysis are described. The analysis strategy, the D-
meson signal extraction, the associated-track selection crite-
ria, and the corrections applied to measure the correlations
between D mesons and charged primary particles are reported
in Sect. 3. In the same section, the fit procedure adopted to
quantify the correlation peak properties is described. Sec-
tion 4 reports the systematic uncertainties affecting the mea-
surement. The results are discussed in Sect. 5. The paper is
then summarised in Sect. 6.

2 Experimental apparatus and data samples

2.1 The ALICE detector and event selection

The ALICE apparatus [50,51] consists of a central barrel
embedded in a 0.5 T solenoidal magnetic field, a forward

muon spectrometer, and a set of detectors located in the
forward- and backward-rapidity regions dedicated to trigger
and event characterisation. The analysis reported in this paper
is performed using the central barrel detectors. Charged par-
ticle tracks are reconstructed using the Inner Tracking Sys-
tem (ITS), consisting of six layers of silicon detectors, and
the Time Projection Chamber (TPC). Particle identification
(PID) is based on the specific energy loss dE /dx in the TPC
gas and on the time of flight from the interaction vertex to
the Time-Of-Flight (TOF) detector. The ITS, TPC and TOF
detectors provide full azimuthal coverage in the pseudora-
pidity interval |η| < 0.9.

The pp data sample consists of about 3 × 108 minimum-
bias events, corresponding to an integrated luminosity of
L int = 5 nb−1. These collisions are triggered by the pres-
ence of at least one hit in one of the V0 scintillator arrays,
covering the ranges −3.7 < η < −1.7 and 2.8 < η < 5.1,
or in the Silicon Pixel Detector (SPD), constituting the two
innermost layers of the ITS, with an acceptance of |η| < 2
(inner layer) and |η| < 1.4 (outer layer). The p–Pb data sam-
ple consists of about 108 minimum-bias events, correspond-
ing to an integrated luminosity of about L int = 50 µb−1. In
this case the minimum-bias trigger requires signals in both
the V0 detectors.

Only events with a reconstructed primary vertex within
±10 cm from the centre of the detector along the beam line
are considered for both pp and p–Pb collisions. This choice
maximises the detector coverage of the selected events, con-
sidering the longitudinal size of the interaction region, and
the detector pseudorapidity acceptances (for more details
see [51]). For p–Pb collisions, the center-of-mass reference
frame of the nucleon-nucleon collision is shifted in rapidity
by �yNN = 0.465 in the proton direction with respect to the
laboratory frame, due to the different per-nucleon energies
of the proton and the lead beams.

Beam-gas events are removed by offline selections based
on the timing information provided by the V0 and the
Zero Degree Calorimeters (two sets of neutron and pro-
ton calorimeters located around 110 m from the interaction
point along the beam direction), and the correlation between
the number of hits and track segments in the SPD detec-
tor.

The minimum-bias trigger efficiency is 100% for events
with D mesons with pT > 1 GeV/c for both pp and p–Pb
data sets. For the analyzed data samples, the probability of
pile-up from collisions in the same bunch crossing is below
4% per triggered pp event and below the percent level per
triggered p–Pb event. Events in which more than one primary
interaction vertex is reconstructed with the SPD detector are
rejected, which effectively removes the impact of in-bunch
pile-up events on the analysis. The contribution of particles
from pile-up of pp collisions in different bunch crossings is
also negligible due to the selections applied to the tracks used
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in this analysis and the large interval between subsequent
bunch crossings in the data samples used.

2.2 Monte-Carlo simulations

Monte-Carlo simulations including a complete description of
the ALICE detector are used to calculate the corrections for
the azimuthal-correlation distributions evaluated from data.
The distribution of the collision vertex along the beam line,
the conditions of all the ALICE detectors, and their evolution
with time during the pp and p–Pb collision runs are taken into
account in the simulations. Proton-proton collisions are sim-
ulated with the PYTHIA 6.4.21 event generator [17] with the
Perugia-0 tune (tune number 320) [52] while p–Pb collisions
are simulated using the HIJING v1.36 event generator [53].
For the calculation of D-meson reconstruction efficiencies
PYTHIA simulations of pp collisions are used, requiring that
in each event a cc̄ or bb̄ pair is present. In the simulation used
for the analysis of p–Pb data, a p–Pb collision simulated with
HIJING is added on top of the PYTHIA event. The generated
particles are transported through the ALICE apparatus using
the GEANT3 package [54].

The measured angular-correlation distributions are com-
pared to simulation results obtained with the event generators
PYTHIA 6.4.25 [17] (tunes number 320, 327, and 350, corre-
sponding to the reference versions of the Perugia-0, Perugia-
2010, and Perugia-2011 sets [52], respectively), PYTHIA 8.1
(tune 4C) [55], POWHEG [56,57] coupled to PYTHIA
(Perugia-2011 tune), and EPOS 3.117 [58–60] (referred
to as EPOS 3 hereafter). PYTHIA simulations utilise LO-
pQCD matrix elements for 2 → 2 processes, along with
a leading-logarithmic pT-ordered parton shower, the Lund
string model for hadronisation, and an underlying-event sim-
ulation including Multiple-Parton Interactions (MPI). With
respect to older tunes, the Perugia tunes use different initial-
state radiation and final-state radiation models. One of the
main differences is that the parton shower algorithm is based
on a pT-ordered evolution rather than a virtuality-ordered
one. Significant differences in the treatment of colour recon-
nection, MPI, and the underlying event were also introduced.
Perugia 0 is the first of the series. The Perugia-2010 tunes dif-
fer from those of Perugia-0 in the amount of final-state radia-
tion and by a modification of the high-z fragmentation (induc-
ing a slight hardening of the spectra). They are expected to
better reproduce observables related to the jet shape. The first
LHC data, mainly from multiplicity and underlying-event
related measurements, were considered for the Perugia-2011
tunes. PYTHIA 8.1 also includes several improvements in
the treatment of MPI and colour reconnection [55]. In the
simulations done with

√
s = 5.02 TeV, the centre-of-mass

frame is boosted in rapidity by �yNN = 0.465 in order to
reproduce the rapidity shift of the reference frame of the
nucleon-nucleon collision in the p–Pb collision system.

POWHEG is a NLO-pQCD generator [56,57] that, cou-
pled to parton shower programs (e.g. from PYTHIA or
HERWIG [18]), can provide exclusive final-state particles,
maintaining the next-to-leading order accuracy for inclusive
observables. The charm-production cross sections obtained
with POWHEG+PYTHIA are consistent with FONLL [12]
and GM-VFNS [13] calculations within the respective uncer-
tainties, and are in agreement with measured D-meson pro-
duction cross sections within the model and experimental
uncertainties [61,62]. The POWHEG+PYTHIA simulations
presented in this paper are obtained with the POWHEG BOX
framework [63,64] and the tune Perugia 2011 of PYTHIA
6.4.25. For the comparison with the measured p–Pb colli-
sion data, parton distribution functions (PDFs) corrected for
nuclear effects (CT10nlo [65] with EPS09 [66]) are used. In
addition, a boost in rapidity by �yNN = 0.465 is applied to
the partons generated with POWHEG before the PYTHIA
parton shower process.

EPOS 3 [58–60] is a Monte-Carlo event generator based
on a 3+1D viscous hydrodynamical evolution starting from
flux tube initial conditions, which are generated in the
Gribov-Regge multiple-scattering framework. Individual scat-
terings are referred to as Pomerons, and are identified with
parton ladders. Each parton ladder is composed of a pQCD
hard process with initial and final state radiation. Non-linear
effects are considered by means of a saturation scale. The
hadronisation is performed with a string fragmentation pro-
cedure. Based on these initial conditions, the hydrodynami-
cal evolution can be applied on the dense core of the colli-
sion. An evaluation within the EPOS 3 model shows that the
energy density reached in pp collisions at

√
s = 7 TeV is

high enough to apply such hydrodynamic evolution [60].

3 Data analysis

The analysis procedure consists of three main parts, which
are described in the following subsections: D-meson recon-
struction and selection of primary particles to be used in the
correlation analysis (Sect. 3.1), construction of azimuthal-
correlation distribution and corrections, including the sub-
traction of combinatorial background and beauty feed-down
contributions (Sect. 3.2), extraction of correlation properties
via fits to the azimuthal distributions (Sect. 3.3).

3.1 D-meson and associated-particle reconstruction

The correlation analysis is performed by associating D
mesons (D0, D+, D∗+ mesons and their antiparticles),
defined as “trigger” particles, with charged primary parti-
cles in the same event, and excluding those coming from the
decay of the trigger D mesons themselves. The D0, D+, D∗+
mesons and their charge conjugates are reconstructed via
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their hadronic decay channels D0 → K−π+, with Branch-
ing Ratio (BR) of (3.88±0.05)%, D+ → K−π+π+, BR of
(9.13±0.19)%, and D∗+ → D0π+, BR of (67.7±0.5)% [67].
The D-meson signal extraction is based on the reconstruc-
tion of decay vertices displaced from the primary vertex by a
few hundred microns and on the identification of the decay-
particle species. The same selection procedures used for the
measurements of D-meson production in pp and p–Pb colli-
sions at

√
s = 7 TeV and

√
sNN = 5.02 TeV, respectively,

are adopted [15,44]. For both the pp and p–Pb data sets, D0

and D+ candidates are formed by combining two or three
tracks, respectively, with each track satisfying |η| < 0.8 and
pT > 0.3 GeV/c. Additionally, D0 and D+ daughter tracks
are required to have at least 70 out of a maximum of 159
possible associated space points in the TPC, a χ2/NDF of
the momentum fit in the TPC smaller than 2, and at least
2 out of 6 associated hits in the ITS. D∗+ candidates are
formed combining D0 candidates with tracks with one point
in the SPD, |η| < 0.8 and pT > 0.1 GeV/c. The main
variables used to reject the combinatorial background are
the separation between primary and secondary vertices, the
distance of closest approach (DCA) of the decay tracks to
the primary vertex, and the angle between the reconstructed
D-meson momentum and the flight line defined by the pri-
mary and secondary vertices. A tighter selection is applied
for p–Pb collisions with respect to pp collisions to reduce the
larger combinatorial background. Charged kaons and pions
are identified using the TPC and TOF detectors. A ±3σ cut
around the expected value for pions and kaons is applied on
both TPC and TOF signals. The D mesons are selected in a
fiducial rapidity range varying from |ylab| < 0.5 at low pT

to |ylab| < 0.8 for D mesons with pT > 5 GeV/c in order to
avoid cases in which the decay tracks are close to the edge
of the detector, where the acceptance decreases steeply. The
D0 and D+ raw yields are extracted using fits to the dis-
tributions of invariant mass M(K−π+) and M(K−π+π+),
respectively, with a function composed of a Gaussian term
for the signal and an exponential term that models the com-
binatorial background. In the case of the D∗+, the raw yield
is obtained by fitting the invariant-mass difference �M =
M(K−π+π+) − M(K−π+), using a Gaussian function for
the signal and a threshold function multiplied by an exponen-
tial (a

√
�M − Mπ ·eb(�M−Mπ )) to describe the background.

Relatively wide D-meson pT intervals (3 < pT < 5 GeV/c,
5 < pT < 8 GeV/c, 8 < pT < 16 GeV/c for pp collisions
and 5 < pT < 8 GeV/c, 8 < pT < 16 GeV/c for p–Pb col-
lisions) are chosen to reduce the statistical fluctuations in the
azimuthal-correlation distributions. Figure 1 shows the D0

and D+ invariant mass, and D∗+ invariant-mass difference
distributions in the 3 < pT < 5 GeV/c interval for pp colli-
sions and in the 5 < pT < 8 GeV/c, 8 < pT < 16 GeV/c

intervals for p–Pb collisions. The fits used to evaluate the raw
yields are also shown.

The statistical uncertainty of the D-meson raw yields in
the pT intervals analyzed varies from about 5 to 8% (3 to
5%) in pp (p–Pb) collisions for the D0 and D+ mesons and
from about 5 to 6% (5 to 10%) for the D∗+ mesons, depend-
ing on pT. For both collision systems, the signal over back-
ground ratio of the signal peaks is between 0.2 and 1 for the
D0 and D+ mesons, and up to 2.6 for the D∗+ meson. In
the interval 3 < pT < 5 GeV/c the D-meson yield can be
extracted from the invariant mass distribution with statistical
uncertainty smaller than 3% in both pp and p–Pb collisions.
However, in the latter case, the near- and away-side peaks
of the azimuthal-correlation distribution, that have a small
amplitude at low D-meson pT, cannot be disentangled from
the statistical fluctuations of the baseline, which is related to
the multiplicity of the event and thus higher in p–Pb than in
pp collisions. Therefore, for this pT interval, the results are
shown only for pp collisions.

Associated particles are defined as all charged primary
particles with passoc

T > 0.3 GeV/c and with pseudorapid-
ity |η| < 0.8, except for the decay products of the trigger D
meson. Particles coming from other weak decays or originat-
ing from interactions with the detector material are defined as
secondary particles and are discarded. Reconstructed tracks
with at least 70 points in the TPC and 3 in the ITS, and a
χ2/NDF of the momentum fit in the TPC smaller than 2 are
associated to D-meson candidates. Using Monte Carlo simu-
lations (see Sect. 2.2), these selection criteria yield an average
track reconstruction efficiency for charged primary particles
of about 85% in the pseudorapidity range |η| < 0.8 and in the
interval 0.3 < pT < 24 GeV/c, with variations contained
within ≈5% for pT < 1.5 GeV/c. Negligible variations are
observed at higher pT. The contamination of secondary parti-
cles is removed by requiring the DCA of the associated tracks
to the primary vertex to be less than 2.5 mm in the transverse
(x, y) plane and less than 1 cm along the beam line (z direc-
tion). This selection identifies primary particles with a purity
(pprim) of approximately 96% and an efficiency higher than
99%, also for particles originating from decays of charm or
beauty hadrons, which can be displaced by several hundred
micrometers from the primary vertex. The purity is indepen-
dent of pT in the measured pT range. For the D0-meson case,
the low-pT pion produced from the D∗+ → D0π+ decay is
removed from the sample of associated particles by reject-
ing tracks that yield a �M compatible within 3σ with the
value expected for D∗+ mesons. It was verified with Monte
Carlo simulations that this selection rejects more than 99%
of the pions from D∗+ decays in all D-meson pT intervals
considered and has an efficiency larger than 99% for primary
particles with pT > 0.3 GeV/c.
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Fig. 1 Distributions of D0 (left column) and D+ (middle column) can-
didate invariant mass and of the D∗+ candidate invariant-mass differ-
ence (right column). The distributions are shown for pp collisions in
the 3 < pT < 5 GeV/c range (top row) and for p–Pb collisions in the

5 < pT < 8 GeV/c (middle row) and 8 < pT < 16 GeV/c (bottom
row) ranges. The fits to the invariant mass distributions and the Gaussian
mean and sigma values are also shown

3.2 Azimuthal-correlation distributions and corrections

D-meson candidates with invariant mass (M) in the range
|M − μ| < 2σ (peak region), where μ and σ denote the
mean and width of the Gaussian term of the invariant-mass
fit function, are correlated to tracks selected with the criteria
described above, and the difference in the azimuthal angle
(�ϕ) and in pseudorapidity (�η) of each pair is computed.
In order to correct for the acceptance and reconstruction effi-
ciency (Acc × ε) of the associated tracks and for the vari-
ation of (Acc × ε) of prompt D mesons inside a given pT

interval, a weight equal to the inverse of the product of both
(Acc × ε) is assigned to each pair. The dependence of the

associated-track efficiency on transverse momentum, pseu-
dorapidity, and position of the primary vertex along the beam
axis is taken into account. The dependence of the track recon-
struction efficiency on the event multiplicity is negligible and
therefore neglected. The reconstruction efficiency of prompt
D mesons is calculated as a function of pT and event multi-
plicity. It is on the order of few percent in the lowest D-meson
pT interval, about 20% at high pT [15,44], and varies within
each pT interval by up to a factor 2–3 (1.5–2) at low (high) pT,
depending on the D-meson species and collision system. The
D-meson (Acc×ε) factor also accounts for the pT-dependent
fiducial rapidity range of the selected D mesons (Sect. 3.1)
in order to normalise the results to one unit of rapidity.
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The obtained distribution, C(�ϕ,�η)peak, also includes
the angular correlation of combinatorial D-meson candidates
in the peak range, which is a source of background and
needs to be subtracted. This contribution is estimated via
the per-trigger correlation distribution of background candi-
dates in the sideband invariant-mass range, 1/Bsidebands ×
C(�ϕ,�η)sidebands, where Bsidebands is the amount of back-
ground in the sideband region 4σ < |M − μ| < 8σ (right
side only, 4σ < M − μ < 15σ , in the case of D∗+
mesons). The term C(�ϕ,�η)sidebands represents the corre-
lation distribution obtained as described above, but selecting
trigger D-meson candidates with invariant mass in the side-
bands. The background contribution is then subtracted from
C(�ϕ,�η)peak after being normalised to the amount of com-
binatorial background in the peak region, Bpeak. The latter is
obtained from the counts in the invariant-mass distribution
in the peak region, after subtracting the signal, Speak, esti-
mated from the invariant-mass fit. Note that Speak, Bpeak and
Bsidebands are calculated from the invariant-mass distributions
weighted by the inverse of the prompt D-meson reconstruc-
tion efficiency.

The correlation distributions C(�ϕ,�η)peak and
C(�ϕ,�η)sidebands are corrected for the limited detector
acceptance and spatial inhomogeneities using the event mix-
ing technique. In this approach, D-meson candidates found
in a given event are correlated with charged tracks from
other events with similar multiplicity and primary-vertex
position along the beam axis. The distribution obtained from
the mixed events, ME(�ϕ,�η), shows a typical triangular
shape as a function of �η, due to the limited η coverage
of the detector, and is approximately flat as a function of
�ϕ. The event-mixing distribution is rescaled by its average
value in the range (−0.2 < �ϕ < 0.2,−0.2 < �η < 0.2)
and its inverse is used as a map to weight the distributions
C(�ϕ,�η)peak andC(�ϕ,�η)sidebands. A correction for the
purity of the primary-particle sample (pprim, see Sect. 3.1) is
applied and the per-trigger normalisation is obtained divid-
ing by Speak. The above procedure is summarised in Eq. 1,
where the notation C̃ refers to angular-correlation distribu-
tions normalised by the number of trigger particles:

C̃inclusive(�ϕ,�η)

= pprim

Speak

(
C(�ϕ,�η)

ME(�ϕ,�η)

∣∣∣∣
peak

− Bpeak

Bsidebands

C(�ϕ,�η)

ME(�ϕ,�η)

∣∣∣∣
sidebands

)
,

ME(�ϕ,�η) =
(

C(�ϕ,�η)

〈C(�ϕ,�η)〉|�ϕ|,|�η|<0.2

)
Mixed Events

. (1)

Finally, the per-trigger azimuthal distribution C̃inclusive

(�ϕ) is obtained by integrating C̃inclusive(�ϕ,�η) in the
range |�η| < 1.

It was verified using Monte-Carlo simulations based on
PYTHIA (Perugia-2011 tune) that the per-trigger azimuthal
correlation of D mesons and secondary particles not rejected

by the track selection has a �ϕ-dependent modulation with
a maximum variation of 7% with respect to the azimuthal
correlation of D mesons and primary particles. This �ϕ-
dependent contamination has a negligible impact on the final
results, considering the 4% level of contamination of sec-
ondary particles in the sample of associated tracks, hence, it
was neglected.

A fraction of the reconstructed D mesons consists of sec-
ondary D mesons coming from B-meson decays. The topo-
logical cuts, applied to reject combinatorial background,
preferentially select displaced vertices, yielding a larger
(by about a factor 2 for D0 mesons in the measured pT

range) efficiency for secondary D mesons than for prompt
D mesons. Therefore, the fraction fprompt of reconstructed
prompt D mesons does not coincide with the natural fraction
and depends on the analysis details. The different fragmen-
tation, as well as the contribution of B-meson decay parti-
cles and a possible different contribution of gluon splitting
to charm- and beauty-quark production, imply a different
angular-correlation distribution of prompt and secondary D
mesons with charged particles, as it was verified with the
Monte-Carlo simulations described in Sect. 2.2. The con-
tribution of feed-down D mesons to the measured angular
correlation is subtracted as follows:

C̃prompt(�ϕ) = 1

fprompt
(C̃inclusive(�ϕ)

−(1 − fprompt)C̃
MC templ
feed-down(�ϕ)). (2)

In Eq. 2, C̃prompt(�ϕ) is the per-trigger azimuthal-correlation
distribution after the subtraction of the feed-down contri-
bution, fprompt is the fraction of prompt D mesons and

C̃MC templ
feed−down(�ϕ) is a template for the azimuthal-correlation

distribution of the feed-down component. Using the same
method described in [15], fprompt was evaluated on the basis
of FONLL calculations of charm and beauty pT-differential
production cross sections [12] and of the reconstruction
efficiencies of prompt and secondary D mesons, calculated
using Monte-Carlo simulations. The value of fprompt, which
depends on the D-meson species and varies as a function of
pT, is estimated to be larger than 75%. The azimuthal cor-
relation of feed-down D mesons, C̃MC templ

feed−down, was obtained
from PYTHIA (tune Perugia 2011 [52]) simulations of pp
collisions at

√
s = 7 TeV and

√
s = 5.02 TeV for the analy-

sis of pp and p–Pb data, respectively. In order to avoid biases
related to the different event multiplicity in real and simulated
events, the correlation distribution was shifted to have its
minimum coinciding with the baseline of the data azimuthal-
correlation distribution before feed-down subtraction. A dif-
ference smaller than 8% was observed in the simulation
between the baseline values of the azimuthal-correlation dis-
tributions for prompt and feed-down D mesons. Considering
the typical values of fprompt, this difference results in a shift
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of the baseline of C̃prompt(�ϕ) smaller than 2%, negligible
with respect to the other uncertainties affecting the measure-
ment.

3.3 Characterization of azimuthal-correlation distributions

In order to quantify the properties of the measured azimuthal
correlations, the following fit function is used:

f (�ϕ) = b + ANS√
2πσfit,NS

e
− (�ϕ)2

2σ2
fit,NS

+ AAS√
2πσfit,AS

e
− (�ϕ−π)2

2σ2
fit,AS . (3)

It is composed of two Gaussian terms describing the near-
and away-side peaks and a constant term describing the base-
line. A periodicity condition is also imposed to the function,
requiring f (0) = f (2π).

The integrals of the Gaussian terms, ANS and AAS, corre-
spond to the associated-particle yields for the near (NS)- and
away (AS)-side peaks, respectively, while σfit,NS and σfit,AS

quantify the widths of the correlation peaks. By symmetry
considerations, the mean of the Gaussian functions are fixed
to �ϕ = 0 and �ϕ = π . The baseline b represents the
physical minimum of the �ϕ distribution. To limit the effect
of statistical fluctuations on the estimate of the associated
yields, b is fixed to the weighted average of the points in the
transverse region, defined as π/4 < |�ϕ| < π/2, using the
inverse of the square of the point statistical uncertainty as
weights. Given the symmetry of the correlation distributions
around �ϕ = 0 and �ϕ = π , the azimuthal distributions
are reported in the range 0 < �ϕ < π to reduce statistical
fluctuations. The effect of a v2-like modulation in the �ϕ

distribution, which could be present in p–Pb collisions, was
estimated and assessed in Sect. 5.

In the case of the simulations, for which statistical fluctua-
tions are negligible, the baseline is estimated as the minimum
of the azimuthal-correlation distribution. An alternative fit-
ting procedure based on a convolution of two Gaussian func-
tions for the description of the NS peak was performed for
Monte Carlo simulations. The resulting NS yields were found
to be compatible with those obtained with the standard pro-
cedure, with a maximum variation of 7% (10%) in pp (p–Pb)
collisions in case of EPOS 3 simulations.

4 Systematic uncertainties

The fit of the D-meson invariant-mass distribution introduces
systematic uncertainties on Speak and Bpeak (Sect. 3.2, Eq. 1).
The uncertainty on the correlation distribution was estimated
by calculating Bpeak from the integral of the background term

of the invariant-mass fit function in the range |M −μ| < 2σ

and by varying the fit procedure. In particular, the fit was
repeated modeling the background distribution with a linear
function and a parabola instead of an exponential function
(for D0 and D+ mesons only), considering a different his-
togram binning, and varying the fit range. A 10% systematic
uncertainty was estimated from the corresponding variation
of the azimuthal-correlation distribution. No significant trend
was observed as a function of �ϕ and the same uncertainty
was estimated for all D-meson species in all pT-intervals and
in both pp and p–Pb collision systems.

A 5% uncertainty (10% for D+ mesons in p–Pb colli-
sions) arises from the possible dependence of the shape of
C̃(�ϕ,�η)sidebands on the sideband range. This source of
uncertainty was determined by restricting the invariant-mass
sideband window to the intervals 4σ < |M − μ| < 6σ or
to 6σ < |M − μ| < 8σ for all the D mesons, and also by
considering, for D0 and D+ mesons, only the left or only the
right sideband.

The uncertainty on the correction for the associated-
particle reconstruction efficiency was assessed by varying the
selection criteria applied to the reconstructed tracks, remov-
ing the request of at least three associated clusters in the ITS,
or demanding a hit on at least one of the two SPD layers. A
±4% uncertainty was estimated for p–Pb collisions, while
a +10%

−5% contribution was obtained for the pp analysis, with
the +10% contribution arising from the request of hits in the
SPD. No significant trend in �ϕ was observed.

The uncertainty on the residual contamination from sec-
ondary tracks was evaluated by repeating the analysis varying
the cut on the DCA in the (x, y) plane from 0.1 cm to 1 cm,
and re-evaluating the purity of charged primary particles for
each variation. This resulted in a 5% (3.5%) systematic uncer-
tainty in pp (p–Pb) collisions, independent of �ϕ and passoc

T .
A 5% systematic effect originating from the correction

of the D-meson reconstruction efficiency was evaluated by
applying tighter and looser topological selections on the D-
meson candidates. No significant dependence on �ϕ was
observed and the same uncertainty was estimated for the
three D-meson pT intervals, apart from D+ meson in p–Pb
collisions, for which a 10% uncertainty was assigned.

The uncertainty on the subtraction of the beauty feed-
down contribution was quantified by generating the templates
of feed-down azimuthal-correlation distributions, C̃MC templ

feed−down
(�ϕ) in Eq. 2, with different PYTHIA 6 tunes (Perugia 0,
Perugia 2010, see Sect. 2.2), and by considering the range of
fprompt values obtained by varying the prompt and feed-down
D-meson pT-differential production cross sections within
FONLL uncertainty band, as described in [15]. The effect
on the azimuthal-correlation distributions is �ϕ dependent
and contained within 8% and is more pronounced in the near
side, in particular in the low and mid D-meson pT intervals.
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Table 1 List of systematic uncertainties for the �ϕ-correlation distri-
butions in pp and p–Pb collisions. See text for details

System pp p–Pb

D-meson species D0, D∗+, D+ D0, D∗+ (D+)

Signal, background
normalisation

±10% ±10%

Background �ϕ

distribution
±5% ±5% (±10%)

Associated-track
reconstruction
efficiency

+10%,−5% ±4%

Primary-particle
purity

±5% ±3.5%

D-meson efficiency ±5% ±5% (±10%)

Feed-down
subtraction

Up to 8%, �ϕ

dependent
Up to 8%, �ϕ

dependent

MC closure test −2% (near side) −2% (near side),
±2%

The consistency of the whole correction procedure, prior
to the feed-down subtraction, was verified by performing the
analysis on simulated events (“Monte-Carlo closure test”)
separately for prompt and feed-down D mesons. For prompt
D mesons, no effect was found for both pp and p–Pb collision
systems. Conversely, for feed-down D mesons, an overesti-
mate by about 20% in the near side was found for both colli-
sion systems. It was verified that the source of this excess is
related to a bias induced by the topological selection applied
to D mesons, that tends to favour cases with a small angular
opening between the products of the beauty-hadron decay,
thus between the D meson and the other decay particles.
This effect results in a �ϕ-dependent overestimate of the
feed-down subtracted correlation distribution in the near side,
contained within 2%.

The systematic uncertainties affecting the �ϕ-correlation
distributions are summarised in Table 1 for both pp and p–Pb
collision systems. The �ϕ-dependent parts of the uncertain-
ties arising from the feed-down subtraction and the Monte-
Carlo closure test define the �ϕ-uncorrelated systematic
uncertainties. All the other contributions, correlated in �ϕ,
act as a scale uncertainty. No significant dependence on the

transverse momentum of D mesons and associated particles
was observed for both �ϕ-correlated and uncorrelated uncer-
tainties, except for the feed-down systematic uncertainty.

Different approaches were applied to estimate the sys-
tematic uncertainty on the near-side peak associated yield
and peak width and on the baseline, obtained from the
ANS, σfit,NS, and b parameters of the fit of the azimuthal-
correlation distribution, as described in Sect. 3.3. The main
source of uncertainty originates from the definition of the
baseline itself, which is connected to the assumption that the
observed variation of the azimuthal-correlation distribution
in the transverse region is determined mainly by statistical
fluctuations rather than by the true physical trend. The varia-
tion of ANS, σfit,NS, and b values obtained when considering
a ±π/4 variation of the �ϕ range defining the transverse
region is interpreted as the systematic uncertainty due to
the baseline definition. In addition, the fits were repeated by
moving upwards and downwards the data points by the cor-
responding value of the �ϕ-uncorrelated systematic uncer-
tainty. The final systematic uncertainty was calculated by
summing in quadrature the aforementioned contributions
and, for the associated yields and baseline, also the system-
atic uncertainty correlated in �ϕ. The values of the total
systematic uncertainties on the near-side peak yield, width,
and baseline are reported in Table 2, for two intervals of
transverse momentum of D mesons and associated particles.
Considering all the measured kinematic ranges, the uncer-
tainties vary from ±12 to ±25% for the near-side peak yield,
from ±2 to ±13% for the near-side peak width and from ±11
to ±16% for the baseline. Typically, lower uncertainties are
obtained for p–Pb collisions, where the larger available statis-
tics of the correlation distributions allow for a more precise
estimate of the baseline height, which constitutes the main
source of uncertainty also on the evaluation of the near-side
peak associated yield and width.

5 Results

The azimuthal-correlation distributions of D0, D+, D∗+
mesons with charged particles with passoc

T > 1 GeV/c are
compared in Fig. 2 for 5 < pD

T < 8 GeV/c in pp collisions

Table 2 List of systematic uncertainties for near-side (NS) peak associated yield, near-side peak width, and baseline in pp and p–Pb collisions, for
two different kinematic ranges of D mesons and associated particles. See text for details

System pp p–Pb

Kinematic range 5 < pD
T < 8 GeV/c, 8 < pD

T < 16 GeV/c, 5 < pD
T < 8 GeV/c, 8 < pD

T < 16 GeV/c,
0.3 < passoc

T < 1 GeV/c (%) passoc
T > 1 GeV/c (%) 0.3 < passoc

T < 1 GeV/c (%) passoc
T > 1 GeV/c (%)

NS yield ±22 ±15 ±17 ±12

NS width ±10 ±5 ±3 ±3

Baseline ±13 ±15 ±12 ±11
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Fig. 2 Comparison of the azimuthal-correlation distributions of D
mesons with charged particles obtained for D0, D+ and D∗+ mesons
for 5 < pD

T < 8 GeV/c, passoc
T > 1 GeV/c in pp collisions

at
√
s = 7 TeV (left panel) and for 8 < pD

T < 16 GeV/c,
passoc

T > 1 GeV/c in p–Pb collisions at
√
sNN = 5.02 TeV (right

panel). The statistical uncertainties are shown as error bars, the �ϕ-
uncorrelated systematic uncertainties as boxes, while the part of sys-
tematic uncertainty correlated in �ϕ is reported as text (scale uncer-
tainty). The latter is largely uncorrelated among the D-meson species

(left panel) and for 8 < pD
T < 16 GeV/c in p–Pb collisions

(right panel). The distributions obtained with the three D-
meson species are compatible within the quadratic sum (wi ,
i = D0, D+, D∗+) of the statistical uncertainty and of the
systematic uncertainties on the signal, background normali-
sation, and on the background shape (see Table 1), that are
uncorrelated among the three meson species. The D0-, D+-
, D∗+-meson data are averaged using 1/w2

i as weights. The
averages of the distributions are shown, for all the considered
kinematic ranges, in Fig. 3 for pp and p–Pb collisions. A ris-
ing trend of the height of the near-side peak with increasing
D-meson pT is observed for both collision systems. A similar
trend is present for hadron–hadron correlations measured at
Tevatron and LHC energies [68–71]: an increase of hadron
multiplicity in jets with increasing jet energy is expected
from the evolution of parton cascade with the parton energy
for both light and heavy quarks [19]. A decrease of the base-
line level with increasing pT of the associated particles can
also be noticed.

Figure 4 shows the �ϕ distributions after the subtraction
of the baseline, calculated as described in Sect. 3.3. The dis-
tributions show a near-side peak along with a wider and
lower peak in the away-side region. The results obtained
for the two collision systems are compatible within the
total uncertainties. According to simulations of pp colli-
sions performed using PYTHIA 6 (Perugia-0, -2010, and
-2011 tunes), the different centre-of-mass energy and the
slightly different D-meson rapidity range of the two mea-
surements should induce variations in the baseline-subtracted
azimuthal-correlation distributions smaller than 7% in the
near- and away-side regions. The same estimate is obtained
with POWHEG+PYTHIA simulations including the EPS09
parametrisation of nuclear PDFs (see Sect. 2.2). Such differ-
ences are well below the current level of uncertainties.

A further comparison of the results from pp and p–Pb colli-
sions is done by quantifying the integrals and the widths of the
near-side correlation peaks by fitting the measured distribu-
tions as described in Sect. 3.3. The fit results are reported only
for the near-side peak parameters and the baseline because of
the poor statistical precision on the fit parameters of the away-
side peaks. Figure 5 shows an exemplary fit to the azimuthal-
correlation distributions of D mesons with charged particles
with passoc

T > 1 GeV/c, for 5 < pD
T < 8 GeV/c in pp col-

lisions (left panel) and for 8 < pD
T < 16 GeV/c in p–Pb

collisions (right panel). The curves superimposed to the data
represent the three terms of the function defined in Eq. 3.

Within the uncertainties, the fit function describes the
measured distributions in all kinematic cases considered,
yielding χ2/NDF values close to unity. The evolution of
the near-side peak associated yield as a function of the
D-meson pT is reported in Fig. 6 (top row), for pp and
p–Pb collisions, for passoc

T > 0.3 GeV/c (left panel) and
for the two sub-intervals 0.3 < passoc

T < 1 GeV/c (mid-
dle panel) and passoc

T > 1 GeV/c (right panel). The near-
side peak associated yield exhibits an increasing trend with
D-meson pT and has similar values, within uncertainties,
for the softer (0.3 < passoc

T < 1 GeV/c) and the harder
(passoc

T > 1 GeV/c) sub-ranges of passoc
T used, in each D-

meson pT interval considered. The values obtained for pp and
p–Pb collision data are compatible within statistical uncer-
tainties. In the bottom row of the same figure the width of
the near-side Gaussian term (σfit,NS) is shown. Although the
case with passoc

T > 0.3 GeV/c seems to suggest that σfit,NS

does not strongly depend on D-meson pT in the range of
the measurement, the current level of uncertainty does not
allow for quantification of the dependence of σfit,NS on D-
meson and associated charged particle pT, as well as any
potential difference between the values extracted using pp
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Fig. 3 Average of the azimuthal-correlation distributions of D0, D+
and D∗+ mesons with 3 < pD

T < 5 GeV/c (left column), 5 <

pD
T < 8 GeV/c (middle column), and 8 < pD

T < 16 GeV/c (right
column), with charged particles with passoc

T > 0.3 GeV/c (top row),
0.3 < passoc

T < 1 GeV/c (middle row), and passoc
T > 1 GeV/c (bottom

row), measured in pp collisions at
√
s = 7 TeV and in p–Pb collisions

at
√
sNN = 5.02 TeV. The statistical uncertainties are shown as error

bars, the �ϕ-uncorrelated systematic uncertainties as boxes, while the
part of systematic uncertainty correlated in �ϕ is reported as text (scale
uncertainty)

and p–Pb data. In particular, our approach for baseline cal-
culation (Sect. 3.3) guarantees a robust estimate of the min-
imum, but the baseline uncertainty and its impact on the
associated-yield uncertainty are rather large (Sect. 4). This
systematic uncertainty is expected to be significantly reduced
in future measurements with larger data samples, where
a smaller �ϕ range for the baseline calculation could be
used.

A v2-like modulation of the baseline would introduce a
bias in the measurement of the associated yield and peak
width and that needs to be taken into account while interpret-
ing the measured quantities in terms of charm-jet properties.
In order to get an estimate of this possible effect, for the
p–Pb case the fit was repeated by subtracting from the corre-

lation distribution a v2-like modulation assuming v2 = 0.05
for D mesons and v2 = 0.05 (0.1) for associated charged
particles with pT > 0.3 (1) GeV/c. These values were cho-
sen on the basis of charged-particle measurements in high-
multiplicity p–Pb collisions [30] and assuming for D mesons
the maximum value predicted in [2] for the 20% most central
p–Pb collisions as a test case. With such assumptions, rather
extreme also considering that this measurement is performed
without any selection on event multiplicity, ANS varies by
−10% (−6%) for D mesons with 5 < pT < 8 GeV/c and
for 0.3 < passoc

T < 1 GeV/c (passoc
T > 1 GeV/c). The vari-

ations on σfit,NS and on the baseline are below 4 and 1%,
respectively. Significantly smaller modifications result for D
mesons with 8 < pT < 16 GeV/c. With the available statis-
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Fig. 4 Comparison of the azimuthal-correlation distributions of D
mesons with 5 < pD

T < 8 GeV/c (left column) and 8 < pD
T <

16 GeV/c (right column) with charged particles with passoc
T >

0.3 GeV/c (top row), 0.3 < passoc
T < 1 GeV/c (middle row), and

passoc
T > 1 GeV/c (bottom row) in pp collisions at

√
s = 7 TeV and in

p–Pb collisions at
√
sNN = 5.02 TeV, after baseline subtraction. The

statistical uncertainties are shown as error bars, the �ϕ-uncorrelated
systematic uncertainties as boxes around the data points, the part of
systematic uncertainty correlated in �ϕ is reported as text (scale uncer-
tainty), the uncertainties deriving from the subtraction of the baselines
are represented by the boxes at �ϕ > π

tics, the precision of the measurement is not sufficient to
observe or exclude these modifications.

Figure 7 shows the comparison of the averaged azimuthal-
correlation distributions measured in pp collisions with
expectations from simulations performed with PYTHIA,
POWHEG+PYTHIA, and EPOS 3 (see Sect. 2.2), after the
baseline subtraction. The average of the two lowest values
of the azimuthal-correlation distribution is used to define the
uncertainty related to the baseline definition in Monte-Carlo
simulations (see Sect. 3.3). This uncertainty is negligible and
not displayed in the figures. The distributions obtained with
the different generators and tunes do not show significant dif-
ferences in the near side, except from EPOS 3 which tends
to have higher and wider distributions. In the away side, the

PYTHIA 6 tunes Perugia 0 and Perugia 2010 tend to have
higher correlation values, especially for passoc

T > 1 GeV/c,
compared to the other simulation results. Similar consid-
erations hold for EPOS 3 in the case of D mesons with
8 < pT < 16 GeV/c. The considered Monte-Carlo sim-
ulations describe, within the uncertainties, the data in the
whole �ϕ range. The comparison of the associated yield in
the near-side peak in data and in simulations is displayed in
the top row of Figs. 8 and 9, for pp and p–Pb collisions,
respectively. The simulations obtained with EPOS 3 pro-
vide a better description of the near-side yields for D mesons
with 8 < pT < 16 GeV/c in both pp and p–Pb collisions.
At lower D-meson pT a better agreement is obtained with
PYTHIA and POWHEG+PYTHIA simulations. The width

123



Eur. Phys. J. C   (2017) 77:245 Page 13 of 24  245 

 (rad)ϕΔ
0 0.5 1 1.5 2 2.5 3

)
-1

 (r
ad

ϕΔd
as

so
c

Nd
D

N1

0

0.5

1

1.5

2

2.5

3
*+, D+, D0Average D

 = 7 TeVspp,
ALICE

| < 1ηΔ| < 0.5, |cms
Dy|

c > 1 GeV/assoc
T

p,c < 8 GeV/D
T

p5 < 

 scale uncertainty10%−
13%+

Total fit
Near side
Away side
Baseline

 (rad)ϕΔ
0 0.5 1 1.5 2 2.5 3

)
-1

 (r
ad

ϕΔd
as

so
c

Nd
D

N1

0

1

2

3

4

5

6

7

Total fit
Near side
Away side
Baseline

*+, D+, D0Average D
 = 5.02 TeVNNsp-Pb,

ALICE

| < 1ηΔ < 0.04, |cms
Dy-0.96 < 

c > 1 GeV/assoc
T

p,c < 16 GeV/D
T

p8 < 

 scale uncertainty10%−
10%+

Fig. 5 Examples of the fit to the azimuthal-correlation distribution,
for D mesons with 5 < pD

T < 8 GeV/c with charged particles with
passoc

T > 1 GeV/c in pp collisions at
√
s = 7 TeV (left), and for

D mesons with 8 < pD
T < 16 GeV/c with charged particles with

passoc
T > 1 GeV/c in p–Pb collisions at

√
sNN = 5.02 TeV (right). The

statistical uncertainties are shown as error bars, the �ϕ-uncorrelated

systematic uncertainties as boxes, while the part of systematic uncer-
tainty correlated in �ϕ is reported as text (scale uncertainty). The terms
of the fit function described in Sect. 3.3 are also shown separately: near-
side Gaussian function (blue dashed line), away-side Gaussian function
(green dashed–dotted line) and baseline constant term (magenta dotted
line)

A
ss

oc
ia

te
d 

yi
el

d

0

0.5

1

1.5

2

2.5

3 ALICENear side
| < 1ηΔ, |c > 0.3 GeV/assoc

T
p

)c (GeV/
T

pD meson 
0 2 4 6 8 10 12 14 16

 (r
ad

)
fit

,N
S

σ

0

0.1

0.2

0.3

0.4

0.5

0.6
p-Pb points and error boxes

c = +0.3 GeV/
T

pΔshifted by 

| < 0.5
cms
Dy = 7 TeV, |spp,

 = 5.02 TeV,NNsp-Pb,
 < 0.04

cms
Dy-0.96 < 

| < 1ηΔ, |c < 1 GeV/assoc
T

p0.3 < 

)c (GeV/
T

pD meson 

| < 1ηΔ, |c > 1 GeV/assoc
T

p

<7% variation expected from energy and
rapidity difference (PYTHIA6, Perugia 2011)

)c (GeV/
T

pD meson 
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Fig. 6 Comparison of the near-side peak associated yield (top row)
and peak width (bottom row) in pp and p–Pb collisions as a function of
pD

T , for passoc
T > 0.3 GeV/c (left column), 0.3 < passoc
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error boxes for p–Pb collisions are shifted by �pT = +0.3 GeV/c. Sta-
tistical and systematic uncertainties are shown as error bars and boxes,
respectively

of the near-side peaks, shown in the second row of the same
figures, is better reproduced by the simulations in the case of
p–Pb than of pp results. The evolution of the baseline value

as a function of the D-meson pT is compared for pp-collision
data to expectations from PYTHIA simulations in the bottom
row of Fig. 8 for the three ranges of passoc

T considered in the
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Fig. 7 Comparison of �ϕ-correlation distributions of D mesons with
charged particles measured in pp collisions at

√
s = 7 TeV and Monte-

Carlo simulations performed with different event generators, after the

subtraction of the baseline. The statistical and systematic uncertainties
of the measured distributions are displayed as in Fig. 4

analysis. The value of the baseline, mainly determined by the
event multiplicity, does not show substantial variations as a
function of D-meson pT, as expected also from PYTHIA and
EPOS 3 simulations, which reproduce the observed values
within the uncertainties.

6 Summary

The first measurements of the azimuthal correlations between
D mesons with charged particles in pp and p–Pb collisions at√
s = 7 TeV and

√
sNN = 5.02 TeV, respectively, performed

with the ALICE apparatus at the LHC were presented. The
�ϕ distributions were studied in pp collisions in three dif-
ferent D-meson transverse-momentum intervals, 3 < pD

T <

5 GeV/c, 5 < pD
T < 8 GeV/c, and 8 < pD

T < 16 GeV/c,
for associated charged particles with passoc

T > 0.3 GeV/c,
and in the two sub-ranges 0.3 < passoc

T < 1 GeV/c and
passoc

T > 1 GeV/c. For p–Pb collisions, the results were
reported in two D-meson pT ranges, 5 < pD

T < 8 GeV/c, and
8 < pD

T < 16 GeV/c. The baseline-subtracted azimuthal-
correlation distributions observed in the two collision sys-
tems are compatible within uncertainties. The variations
expected from the lower nucleon-nucleon centre-of-mass
energy of p–Pb collisions and from the slightly different D-
meson rapidity ranges used for the p–Pb analysis were stud-
ied with simulated pp collisions at the two centre-of-mass
energies and are well below the sensitivity of the measure-
ments.
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Fig. 8 Comparison of near-side peak associated yield (top row), near-
side peak width (middle row), and baseline (bottom row) values mea-
sured in pp collisions at

√
s = 7 TeV with the expectations from simu-

lations performed with different Monte-Carlo event generators. Statis-
tical and systematic uncertainties are shown as error bars and boxes,
respectively

The properties of the near-side correlation peak, sensitive
to the characteristics of the jet containing the D meson, were
described in terms of the yield of associated charged parti-
cles and peak width, obtained by fitting the �ϕ distributions
with a function composed of a constant term, representing
the physical minimum of the distribution, and two Gaussian
terms modeling the near- and away-side peaks. The values
measured in the two collision systems are compatible within
uncertainties.

The measured azimuthal distributions, as well as the prop-
erties of the correlation peaks, were compared to expectations
from simulations performed with different Monte-Carlo gen-
erators. The simulations reproduce the correlation distribu-
tions within uncertainties.

Considering that the overall uncertainty is dominated by
the statistical component, the data collected from pp colli-
sions at

√
s = 13 TeV in the ongoing Run 2 at the LHC

will allow for a more precise measurement. In particular,
the predicted increase of the cross section for charm pro-
duction by more than a factor 2 at pT = 10 GeV/c at the
higher collision energy [12], along with the foreseen larger
integrated luminosity, will allow for a significant reduction
of the statistical uncertainty, providing a more quantitative
and constraining comparison of the data with expectations
from Monte-Carlo generators. As mentioned in Sect. 5, with
larger data samples a different determination of the base-
line of the azimuthal-correlation distribution will become
possible, bringing to a significant reduction of the system-
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atic uncertainty on the measurement of the associated yields.
The data that will be collected in next p–Pb collision runs
at the LHC may also allow for a study of the evolution of
the azimuthal-correlation distribution as a function of the
event multiplicity, searching for possible long-range ridge-
like structures already observed with angular correlation of
light particles.

The results reported in this paper represent a first step
towards the measurement of possible modifications concern-
ing the azimuthal correlation of D mesons with charged par-
ticles in Pb–Pb collisions, which has the potential to pro-
vide important information on the charm-quark energy-loss
mechanisms in the presence of the medium formed in heavy-
ion collisions at LHC energies. Given the same collision
energy, the p–Pb results presented in this paper could serve
as a reference to study medium effects in Pb–Pb collisions at√
sNN = 5.02 TeV collected during the LHC Run 2.
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