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Keywords: Deep Inelastic Scattering (Phenomenology), QCD Phenomenology

ArXiv ePrint: 1605.01946
1Corresponding author.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2016)050

mailto:valerio.bertone@physics.ox.ac.uk
http://arxiv.org/abs/1605.01946
http://dx.doi.org/10.1007/JHEP08(2016)050


J
H
E
P
0
8
(
2
0
1
6
)
0
5
0

Contents

1 Introduction 1

2 FONLL with MS heavy-quark masses 3

2.1 Implementation 6

2.1.1 MS mass vs. pole mass 6

2.1.2 Solution of the RGE for the running of the MS mass 7

2.1.3 Matching conditions 8

2.1.4 Structure functions 12

2.2 Benchmark 16

3 QCD fit settings 19

4 Results 22

4.1 Comparison to other results 27

4.2 Cross-checks 29

4.3 Discussion on the Q2
min dependence of the mass determination 30

4.4 Discussion on the sensitivity to mc(mc) of the inclusive data 31

5 Conclusions 32

1 Introduction

The masses of the heavy quarks, charm, bottom and top, are fundamental parameters of

the Standard Model [1]. A precise determination of their values is of utmost importance;

as an example, the fate of the electroweak vacuum depends crucially on the exact value of

mt [2]. In the case of the charm quark, since its mass mc is larger than the scale ΛQCD

of Quantum Chromodynamics (QCD), its value is a direct input of many perturbative

calculations involving charm quarks in the initial and/or in the final state.

Differences in the value of the charm quark mass and in the treatment of its effects in

deep-inelastic-scattering structure functions can lead to differences in modern analyses of

parton distribution functions (PDFs) [3–7], with implications for precision phenomenology

at the Large Hadron Collider (LHC). As a consequence, a high-precision determination of

the charm quark mass is of interest both in principle, as a fundamental test of the Standard

Model and a measurement of one of its fundamental parameters, and in practice, as input

for LHC calculations.

The current global-average value of the charm mass in the MS renormalization scheme

is mc(µR = mc) = 1.275 ± 0.025 GeV [8], where the result is dominated by high-precision
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data from charm production in e+e− collisions. It is therefore interesting to provide alter-

native determinations of the charm mass from other processes, both to test the robustness

of the global average and to attempt to further reduce the present uncertainty.

A process directly sensitive to the charm mass is open-charm production in lepton-

proton deep-inelastic scattering (DIS). This process has been measured with high accuracy

at the HERA collider and the results of different measurements implying various charm-

tagging techniques are combined [9]. The charm contribution to the inclusive structure

functions can be determined through the measurement of the charm-pair production cross

section. In addition, the final combination of inclusive measurements from Runs I and II

at HERA has been recently presented in [7].

DIS structure functions can be described using a variety of theoretical schemes, in-

cluding the fixed-flavor number (FFN) scheme, where charm mass effects are included

to a fixed perturbative order, the zero-mass variable-flavor number (ZM-VFN) scheme

that neglects power-suppressed terms in the charm mass but resums to all orders large

collinear logarithms, and the so-called matched general-mass variable-flavor-number (GM-

VFN) schemes, which interpolate smoothly between the two regimes. A recent discussion

and summary of the application of these schemes to heavy-flavor data at HERA can be

found e.g. in [10].

Examples of matched general-mass schemes in electro-, photo- and hadroproduction

include FONLL [11–13], TR [14–16], ACOT [17], and a scheme generically referred to as

GMVFNS [18–22]. In this work we will mostly concentrate on the FONLL scheme and on

its implications for the determination of the charm mass. For the sake of comparison with

previous studies [9, 23–25], a determination of the charm mass in the FFN scheme at NLO

is also performed.

The original formulation of the FONLL general-mass scheme for DIS structure func-

tions was derived in the pole (on-shell) heavy quark scheme [11]. In ref. [26] it was shown

how DIS structure functions in the FFN scheme can be modified to include MS heavy-

quark masses. The same scheme conversion can be applied to any GM-VFN scheme, and

in this work we provide the relevant expressions for FONLL structure functions with MS

running masses. The main advantage of the use of MS masses is the possibility of direct

connection with the precise determinations from low-energy experimental data [8].

In this work we will use the xFitter open-source framework [27] (previously known

as HERAfitter) to extract the MS charm mass from a PDF fit to the most up-to-date

inclusive and charm data from HERA. Structure functions are computed using the FONLL

scheme as implemented in the APFEL [28] code. Our results have been obtained employing

the most accurate perturbative calculations presently available and will include a detailed

characterization of the different sources of uncertainties on mc(mc) from data, theory and

fitting methodology. As we will show, the results are consistent with the global PDG

average as well as with previous determinations based on the FFN [9, 23–25] and in the

S-ACOT [29] schemes.1 The uncertainty in our results turns out to be competitive with

that of previous determinations based on DIS structure functions.

1See also [30] for a recent determination of the pole charm mass from a global PDF fit.
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The outline of this paper is the following. In section 2 we discuss how FONLL can be

formulated in terms of MS masses and present a benchmark of its implementation in APFEL.

In section 3 we describe the settings of the PDF fits and the treatment of the uncertainties.

Results for the determination of mc(mc) are presented in section 4, where we also compare

with previous determinations. We conclude and discuss possible next steps in section 5.

2 FONLL with MS heavy-quark masses

In this section we discuss how the FONLL general-mass variable-flavor-number scheme for

DIS structure functions can be expressed in terms of MS heavy-quark masses. We also

describe the subsequent implementation in the public code APFEL, and present a number

of benchmark comparisons with other public codes.

In general, higher-order calculations are affected by ambiguities in the prediction for the

physical quantities due to the choice of the subtraction scheme used to remove divergences.

In fact, different prescriptions imply different numerical values of the parameters of the

underlying theory.

As far as the mass parameters are concerned, the pole mass definition is usually more

common in the calculation of massive higher-order QCD corrections to heavy-quark pro-

duction processes. The main reason for this is that the pole mass is, by its own definition,

more closely connected to what is measured in the experiments. On the other hand, it is

well known that observables expressed in terms of the pole mass present a slow pertur-

bative convergence. This is caused by the fact that the pole mass definition suffers from

non-perturbative effects which result in an intrinsic uncertainty of order ΛQCD [31]. The

MS scheme, which stands for modified minimal subtraction scheme, is instead free of such

ambiguities and as a matter of fact massive computations expressed in terms of heavy-

quark masses normalized in this scheme present a better perturbative convergence [26]. As

a consequence, the results obtained in the MS scheme are more appropriate to achieve a

reliable determination of the numerical value of the charm mass.

The FONLL scheme, as any other GM-VFN scheme, aims at improving the accuracy

of fixed-order calculations at high scales by matching them to resummed computations.

In DIS this results in the combination of massive (fixed-order) calculations, that are more

reliable at scales closer to the heavy-quark masses, with resummed calculations that are

instead more accurate at scales much larger than the heavy-quark masses. However, in the

original derivation, the massive component of the FONLL scheme was expressed in terms

of the pole masses [11].

It is then one of the goals of this paper to provide a full formulation of the FONLL

scheme applied to DIS structure functions in terms of MS masses. A detailed discussion on

such a formulation is given below in section 2.1. Here, we limit ourselves to describing the

main steps needed. We point out that our procedure is entirely driven by the requirement of

defining DIS structure functions in terms of the MS masses order-by-order in perturbation

theory. Thus, the goal of the current work is to completely replace the pole mass with the

MS mass as a fundamental object in a variable flavour number scheme. As discussed in

ref. [29], other approaches to the same procedure exist which formally differ by subleading
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contributions. Numerically, such contributions might be non-negligible raising the question

of the optimal perturbative convergence at higher orders of the QCD series in terms of MS

masses. Only the inclusion of higher-order corrections will help clarify this aspect.

The generic form of the DIS structure functions in the FONLL approach applied to

charm production is:

F (x,Q,mc) = F (3)(x,Q,mc) + F (d)(x,Q,mc)

F (d)(x,Q,mc) = F (4)(x,Q)− F (3,0)(x,Q,mc) ,
(2.1)

where x, Q, and mc are the Bjorken variable, the virtuality of the photon, and the mass

of the charm quark, respectively. In eq. (2.1) the three-flavor structure function F (3)

is evaluated retaining the full charm-mass dependence and with no charm in the initial

state. The four-flavor structure function F (4) is instead computed by setting mc to zero

and allowing for charm in the initial state, and its associated PDF reabsorbs the mass

(collinear) divergences which are in turn resummed by means of the DGLAP evolution.

Finally, F (3,0) represents the massless limit of F (3) where all the massive power corrections

are set to zero and only the logarithmically enhanced terms are retained. This last term

is meant to subtract the double counting terms resulting from the sum of F (3) and F (4).

In fact, the role of F (3,0) is twofold: for Q � mc, by definition F (3) and F (3,0) tend to

the same value so that the FONLL structure function reduces to F (4). By contrast, in the

region where Q ' mc it can be shown that F (d) becomes subleading in αs reducing the

FONLL structure function to F (3) up to terms beyond the nominal perturbative accuracy.

It should be noticed that, even though F (d) in eq. (2.1) becomes subleading in the

low-energy region, it might become numerically relevant and it is advisable to suppress it.

To this end, the term F (d) in eq. (2.1) is usually replaced by:

F (d′)(x,Q,mc) = D(Q,mc)F
(d)(x,Q,mc) , (2.2)

where the function D(Q,mc) is usually referred to as the damping factor and has the

explicit form:

D(Q,mc) = θ(Q2 −m2
c)

(
1− m2

c

Q2

)2

. (2.3)

The role of the damping factor is clearly that of setting F (d′) to zero for Q < mc, suppressing

it for Q & mc, and reducing it to F (d) for Q � mc. It should be pointed out that the

particular functional form of the damping factor given in eq. (2.3) is somewhat arbitrary. In

fact, any function D such that F (d′) and F (d) only differ by power-suppressed terms, namely:

D(Q,mc) = 1 +O
(
m2
c

Q2

)
, (2.4)

is a formally suitable choice. In the results section we will also consider the effect of varying

the functional form of the damping factor in order to estimate the associated theoretical

uncertainty on mc(mc).

Given the possible different perturbative structure of the elements that compose the

FONLL structure function in eq. (2.1), two possibilities for the definition of the perturbative
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ordering are possible: the relative and the absolute definitions. In the relative definition

F (4) and F (3) are combined using the same relative perturbative accuracy, that is LO with

LO, NLO with NLO, and so on. The absolute definition, instead, is such that LO refers to

O(α0
s) (parton model), NLO to O(αs), and so forth. This issue is relevant in the neutral-

current case where the lowest non-vanishing order is O(α0
s) for F (4) and O(αs) for F (3)2

such that the relative and absolute orderings lead to different prescriptions.

Beyond LO, there are currently three possible variants of the FONLL scheme, all of

them implemented in APFEL:

• the FONLL-A variant adopts the absolute ordering at O(αs) and thus only terms

up to this accuracy are included. This variant is formally NLO and thus also PDFs

should be evolved using the same accuracy in the DGLAP evolution.

• The FONLL-B variant is instead computed using the relative ordering at NLO. There-

fore, F (4) is computed at O(αs) and combined with F (3) at O(α2
s). F

(3,0) is instead

computed dropping the non-logarithmic O(α2
s) term to match the accuracy of F (4)

in the low-energy region. PDFs are again evolved at NLO.

• Finally, the FONLL-C scheme adopts the absolute ordering at O(α2
s). This is formally

a NNLO scheme thus PDFs should be evolved using the same accuracy.

Presently, no other variant beyond FONLL-C can be pursued because the O(α3
s) massive

coefficient functions are not known yet. Approximate NNLO corrections valid near the

partonic threshold, in the high-energy (small-x) limit, and at high scales Q2 � m2 have

been derived in ref. [34] and they are currently employed by the ABM group to determine

NNLO PDFs [6].

As clear from the description above, the computations for the three-flavor structure

functions F (3) and F (3,0) depend explicitly on the charm mass, while F (4) does not. In ad-

dition, as already mentioned, the expressions needed to compute F (3) and F (3,0) are usually

given in terms of the pole mass. As a consequence, one of the steps required to achieve a

full formulation of the FONLL structure functions in terms of MS masses is the adaptation

of the heavy-flavor contributions to the structure functions. A thorough explanation of

the procedure adopted to perform such transformation can be found in ref. [26] for both

neutral- and charged-current structure functions. In section 2.1 we re-derive the main for-

mulae and report the full expressions for the relevant coefficient functions. It should be

pointed out that the derivation presented in ref. [26] is performed assuming µR = mc(mc),

µR being the renormalisation scale, and the renormalisation scale dependence of αs is re-

stored only at the end using the expansion of the solution of the relative RG equation. Such

a procedure implies that the heavy-quark mass is not subject to the relative RG equation:

in other words, the mass running is not expressed explicitly. The reason is that in the

running of the heavy-quark mass in MS one can resum logarithms of µR/mc(mc) and this

2This is strictly true only if the heavy-quark PDFs are dynamically generated via gluon splitting. In

fact, the presence of an intrinsic heavy-quark component would introduce a O(α0
s) contribution also in F (3)

leading to a “realignment” of the perturbative structure between F (4) and F (3) (see refs. [32, 33]).
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is not required in a fixed-order calculation. On the contrary, when dealing with a GM-VFN

scheme like FONLL, such a resummation is an important ingredient and thus should be

consistently incorporated into the derivation. For this reason, the transition from pole to

MS masses of the massive structure functions presented in section 2.1 is done at the generic

renormalisation scale µR and the connection between mc(mc) and mc(µR) is established

solving the appropriate RG equation.

A further complication that arises in FONLL as a VFN scheme is the fact that the

involved running quantities, that is PDFs, αs and the mass itself, have to be properly

matched when crossing a heavy-quark threshold in their evolution. The matching condi-

tions for PDFs and αs are presently known up to O(α2
s) [35] and O(α3

s) [36], respectively,

but those for PDFs are given in terms of the pole mass. In the next section we will show

how to express them in terms of the MS mass up to the relevant accuracy. As far as the

matching of the mass is concerned, the expressions for the matching conditions are given

in ref. [37] up to O(α3
s) also in terms of MS mass.

2.1 Implementation

In this section we will describe in some detail the implementation of the FONLL scheme in

terms of the MS heavy-quark masses in APFEL. Starting from the more usual definition of

structure functions in terms of pole masses, our goal is to consistently replace them with

the MS mass definition.

2.1.1 MS mass vs. pole mass

The (scale independent) pole mass M and the (scale dependent) MS mass m(µ) arise from

two different renormalization procedures and, as already mentioned, in perturbation theory

they can be expressed one in terms of the other. The relation connecting pole and MS mass

definitions has been computed in ref. [31] up to four loops. However, in the following we

will only need to go up to one loop and thus we report here the corresponding relation:

M

m(µ)
= 1 + h(1)as +O(a2

s) , (2.5)

with:

h(1)(µ,m(µ)) = CF (4 + 3Lµm) , (2.6)

where CF = 4/3 is one of the usual QCD color factors. Moreover, we have defined:

as ≡ as(µ) =
αs(µ)

4π
, (2.7)

and:

Lµm = ln
µ2

m2(µ)
. (2.8)

In the following we will use eq. (2.5) to replace the pole mass M with the MS mass m(µ).

– 6 –
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2.1.2 Solution of the RGE for the running of the MS mass

In order to evaluate the running of m(µ) with the renormalization scale µ we have to solve

the corresponding renormalization-group equation (RGE):

µ2 dm

dµ2
= m(µ)γm(as) = −m(µ)

∞∑
n=0

γ(n)
m an+1

s , (2.9)

whose first three coefficients can be taken from ref. [38]:3

γ(0)
m = 4 , (2.10a)

γ(1)
m =

202

3
− 20

9
Nf , (2.10b)

γ(2)
m = 1249−

(
2216

27
+

160

3
ζ3

)
Nf −

140

81
N2
f , (2.10c)

where Nf is the number of active flavors. In addition, the RGE for the running of αs reads:

µ2 das
dµ2

= β(as) = −
∞∑
n=0

βna
n+2
s , (2.11)

with:

β0 = 11− 2

3
Nf , (2.12a)

β1 = 102− 38

3
Nf . (2.12b)

β2 =
2857

2
− 5033

18
Nf +

325

54
N2
f . (2.12c)

Combining eqs. (2.9) and (2.11) we obtain the following differential equation:

dm

das
=
γm(as)

β(as)
m(as) , (2.13)

whose solution is:

m(µ) = m(µ0) exp

[∫ as(µ)

as(µ0)

γm(as)

β(as)
das

]
. (2.14)

In order to get an analytical expression out of eq. (2.14), one can expand the integrand

in the r.h.s. using the perturbative expansions of γm(as) and β(as) given in eqs. (2.9)

and (2.11). This allows us to solve the integral analytically, obtaining:

m(µ) = m(µ0)

(
a

a0

)c0
×

1 + (c1 − b1c0)a+ 1
2 [c2 − c1b1 − b2c0 + b21c0 + (c1 − b1c0)2]a2

1 + (c1 − b1c0)a0 + 1
2 [c2 − c1b1 − b2c0 + b21c0 + (c1 − b1c0)2]a2

0

,

(2.15)

3The following expressions have been adjusted taking into account our definition of as which differs by

a factor of 4 with respect to that of ref. [38].
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where we have defined:

bi =
βi
β0

and ci =
γ

(i)
m

β0
, (2.16)

and a ≡ as(µ) and a0 ≡ as(µ0). Eq. (2.15) represents the NNLO solution of the RGE for

the MS mass m(µ).

Of course, the NLO and the LO solutions can be easily extracted from eq. (2.15) just

by disregarding the terms proportional to a2 and a2
0 for the NLO solution and also the

terms proportional to a and a0 for the LO solution.4

2.1.3 Matching conditions

When working in the context of a VFN scheme, all running quantities are often required to

cross heavy-quark thresholds when evolving from one scale to another. Such a transition in

turn requires the matching different factorization schemes whose content of active flavors

differs by one unit. In other words, if the perturbative evolution leads from an energy

region where (by definition) there are Nf − 1 active flavors to another region where there

are Nf active flavors, the two regions must be consistently connected and such a connection

can be evaluated perturbatively. This goes under the name of matching conditions.

In general, matching conditions give rise to discontinuities of the running quantities

at the matching scales and in the following we will report the matching conditions up to

NNLO in terms of the MS heavy-quark thresholds for: αs(µ), m(µ) and PDFs.

Matching of αs(µ). The matching conditions for αs were evaluated in ref. [36] to three

loops. We report here the relation up to two loops (again taking into account the factor 4

coming from the different definitions of a):

a(Nf−1)(µ)

a(Nf )(µ)
= 1− 2

3
LµMa

(Nf )(µ) +

(
4

9
L2
µM −

38

3
LµM −

14

3

)
[a(Nf )(µ)]2 . (2.17)

M being the pole mass of the n-th flavor. From eq. (2.5) we can easily infer that:

lnM2 = lnm2(µ) + 2 ln[1 + h(1)(µ)a(Nf )(µ)] = lnm2(µ) + 2h(1)(µ)a(Nf )(µ) +O([a(Nf )]2) .

(2.18)

Therefore, it is straightforward to see that:

LµM = Lµm − 2h(1)a(Nf ) = Lµm −
(

32

3
+ 8Lµm

)
a(Nf ) , (2.19)

so that:

a(Nf−1)(µ)

a(Nf )(µ)
= 1− 2

3
Lµma

(Nf )(µ) +

(
4

9
L2
µm −

22

3
Lµm +

22

9

)
[a(Nf )(µ)]2 , (2.20)

consistently with eq. (20) of ref. [37].

4In order to be consistent, the evaluation of a and a0 eq. (2.15) must be performed at the same pertur-

bative order of m(µ). So, for instance, if one wants to evaluate the NNLO running of m(µ) also the value

of a and a0 must be computed using the NNLO running.
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In order to simplify this expression, it is a common procedure to perform the matching

at the point where the logarithms vanish. In this particular case, choosing µ = m(µ) =

m(m), we get:

a(Nf−1)(m) = a(Nf )(m)

(
1 +

22

9
[a(Nf )(m)]2

)
, (2.21)

which can be easily inverted obtaining:

a(Nf )(m) = a(Nf−1)(m)

(
1− 22

9
[a(Nf−1)(m)]2

)
. (2.22)

It is interesting to observe that, in order to perform the matching as described above,

one just needs to know the value of m(m). This is the so-called RG-invariant MS mass.

Matching of m(µ). The running of the MS masses also needs to be matched at the

heavy-quark thresholds. In particular, one needs to match the (Nf −1)- with (Nf )-scheme

for the mass mq(µ), with q = c, b, t, at the threshold mh(µ), where h = c, b, t. From ref. [37]

we read:

m
(Nf−1)
q (µ)

m
(Nf )
q (µ)

= 1 +

(
4

3
L(h)2
µm −

20

9
L(h)
µm +

89

27

)
[a(Nf )(µ)]2 , (2.23)

where:

L(h)
µm = ln

µ2

m2
h(µ)

. (2.24)

Exactly as before, if we choose to match the two schemes at the scale µ = mh(µ) = mh(mh),

the logarithmic terms vanish and we are left with:

m
(Nf−1)
q (mh) =

(
1 +

89

27
[a(Nf )(mh)]2

)
m

(Nf )
q (mh) , (2.25)

whose inverse is:

m
(Nf )
q (mh) =

(
1− 89

27
[a(Nf−1)(mh)]2

)
m

(Nf−1)
q (mh) . (2.26)

Matching of PDFs. To conclude the section on the matching conditions, we finally

consider PDFs. One can write the singlet and the gluon in the (Nf )-scheme in terms of

singlet and gluon in the (Nf − 1)-scheme at any scale µ as follows:

(
Σ(Nf )

g(Nf )

)
=

(
1 + a2

s[A
NS,(2)
qq,h + Ã

S,(2)
hq ] asÃ

S,(1)
hg + a2

sÃ
S,(2)
hg

a2
sA

S,(2)
gq,h 1 + asA

S,(1)
gg,h + a2

sA
S,(2)
gg,h

)(
Σ(Nf−1)

g(Nf−1)

)
, (2.27)

where the form of the functions entering the transformation matrix above are given in

appendix B of ref. [39] in terms of the pole mass. We omit the matching conditions for

the non-singlet PDF combinations because they have no O(as) correction and the first

correction appears at O(a2
s). This leaves the conversion from the pole to the MS mass

scheme unaffected up to NNLO.
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In order to replace the pole mass M with the MS mass m(µ), we just have to plug

eq. (2.19) into eq. (2.27). In doing so, only the O(as) terms proportional to ln(µ2/M2) play

a role in the conversion up to NNLO. Since the functions Ã
S,(1)
hg and A

S,(1)
gg,h can be written as:

Ã
S,(1)
hg

(
x,

µ2

M2

)
= f1(x) ln

µ2

M2
,

A
S,(1)
gg,h

(
x,

µ2

M2

)
= f2(x) ln

µ2

M2

, (2.28)

where:
f1(x) = 4TR[x2 + (1− x)2] ,

f2(x) = −4

3
TRδ(1− x) ,

(2.29)

replacing M with m in eq. (2.28) using eq. (2.19) leads to:

Ã
S,(1)
hg

(
x,
µ2

m2

)
= f1(x) ln

µ2

m2
− 2h(1)(µ)f1(x)as(µ) ,

A
S,(1)
gg,h

(
x,
µ2

m2

)
= f2(x) ln

µ2

m2
− 2h(1)(µ)f2(x)as(µ) .

(2.30)

Therefore eq. (2.27) in terms of m becomes:

(
Σ(Nf )

g(Nf )

)
=

(
1 + a2

s[A
NS,(2)
qq,h + Ã

S,(2)
hq ] asÃ

S,(1)
hg + a2

s[Ã
S,(2)
hg − 2h(1)f1] ,

a2
sA

S,(2)
gq,h 1 + asA

S,(1)
gg,h + a2

s[A
S,(2)
gg,h − 2h(1)f2]

)(
Σ(Nf−1)

g(Nf−1)

)
.

(2.31)

As usual, we choose to match the (Nf )-scheme to the (Nf − 1)-scheme at µ = m(µ) =

m(m) so that all the logarithmic terms vanish, obtaining:

(
Σ(Nf )

g(Nf )

)
=

(
1 + a2

s[A
NS,(2)
qq,h + Ã

S,(2)
hq ] a2

s[Ã
S,(2)
hg − 2h(1)f1]

a2
sA

S,(2)
gq,h 1 + a2

s[A
S,(2)
gg,h − 2h(1)f2]

)(
Σ(Nf−1)

g(Nf−1)

)
. (2.32)

Renormalization scale variation. The scale µ that appears in as and mq is the renor-

malization scale, which we will now denote as µR. The scale that explicitly appears in the

PDFs is instead the factorization scale, which we will now denote with µF . In principle,

renormalization and factorization scales are different but one usually takes them to be

proportional to each other, as µR = κµF , where κ can be any real number.5

The most common choice when matching the (Nf − 1)-scheme to the (Nf )-scheme is

to set µF equal to heavy-quark thresholds (Mc, Mb and Mt in the pole-mass scheme and

mc(mc), mb(mb) and mt(mt) in the MS scheme). In doing so, the logarithmic terms in the

PDF matching conditions are assured to vanish. However, if κ is different from one, the log-

arithmic terms in the matching conditions for as(µR) and mq(µR) do not vanish anymore.

In the following we will show how the matching conditions for as and mq change for κ 6= 1.

5It should be noticed that in the case κ 6= 1 PDFs acquire an implicit dependence on µR that comes from

a redefinition of the splitting functions that in turn derives from the expansion of αs(µR) around µR = µF .
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Let us start with αs. Inverting eq. (2.20) we obtain:

a(Nf )(µR)

a(Nf−1)(µR)
= 1 + c1a

(Nf−1)(µR) + c2[a(Nf−1)(µR)]2 , (2.33)

where:

c1 =
2

3
Lµm and c2 =

4

9
L2
µm +

22

3
Lµm −

22

9
. (2.34)

Setting µF = κµF , we have that:

Lµm = ln
µR

m(µR)
= ln

κµF
m(κµF )

. (2.35)

As usual, the matching scale is chosen to be µF = m(m), so that:

Lµm → lnκ+ ln
m(m)

m(κm)
. (2.36)

But using eq. (2.14), it is easy to see that:

ln
m(m)

m(κm)
= as(κm)γ(0)

m lnκ+O[a2
s(κm)] , (2.37)

so that:

Lµm → [1 + γ(0)
m as(κm)] lnκ . (2.38)

It should be noticed that in the eq. (2.38), since a
(Nf−1)
s = a

(Nf )
s + O([a

(Nf )
s ]2), it does

not matter whether one uses a
(Nf )
s (κm) or a

(Nf−1)
s (κm) because the difference would be

subleading up to NNLO.

Therefore, setting µ = µR = κm(m) = κm in eq. (2.20) and using eq. (2.38), one gets:

a(Nf−1)(κm) = a(Nf )(κm)

{
1− 2

3
lnκ a(Nf )(κm)

+

[
4

9
ln2 κ− 2

3

(
γ(0)
m + 11

)
lnκ+

22

9

]
[a(Nf )(κm)]2

}
,

(2.39)

whose inverse is:

a(Nf )(κm) = a(Nf−1)(κm)

{
1 +

2

3
lnκ a(Nf−1)(κm)

+

[
4

9
ln2 κ+

2

3

(
γ(0)
m + 11

)
lnκ− 22

9

]
[a(Nf−1)(κm)]2

}
.

(2.40)

Now let us turn to mq. In this case there is not much to do. In fact, for an arbitrary

matching point the matching condition of the MS mass starts at O(α2
s) (cfr. eq. (2.23)),

therefore writing Lµm in terms of lnκ would give rise to subleading terms up to NNLO

(see eq. (2.38)). As a consequence, we have that:

m
(Nf−1)
q (κmh) =

[
1 +

(
4

3
ln2 κ− 20

9
lnκ+

89

27

)
[a(Nf )(κmh)]2

]
m

(Nf )
q (κmh) , (2.41)

whose inverse is:

m
(Nf )
q (κmh) =

[
1−

(
4

3
ln2 κ− 20

9
lnκ+

89

27

)
[a(Nf−1)(κmh)]2

]
m

(Nf−1)
q (κmh) . (2.42)
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2.1.4 Structure functions

We finally turn to discuss how the DIS massive structure functions change when expressing

them in terms of the MS masses. We will first consider the neutral-current (NC) massive

structure functions up to O(α2
s), which is the highest perturbative order at which cor-

rections are known exactly, and then we will consider the charged-current (CC) massive

structure functions again up to the highest perturbative order exactly known,6 that is

O(αs). In order to shorten the notation, we will adopt the following definitions:

M = pole mass, m ≡ m(µ) = MS mass, as ≡ as(µ), h(l) ≡ h(l)(µ,m(µ)) .

Neutral current. Dropping all the unnecessary dependences, the NC massive structure

functions up to O(a2
s) have the form:

F = asF
(0)(M) + a2

sF
(1)(M) +O(a3

s) . (2.43)

The goal is to replace explicitly the pole mass M with the MS mass m using eq. (2.5). To

this end, following the procedure adopted in refs. [26, 41], we expand F (0)(M) and F (1)(M)

around M = m:

F (l)(M) =

∞∑
n=0

1

n!

dnF (l)

dMn

∣∣∣∣
M=m

(M −m)n , (2.44)

so that, up to O(a2
s), what we need is:

F (0)(M) = F (0)(m) + asmh
(1)dF

(0)

dM

∣∣∣∣
M=m

,

F (1)(M) = F (1)(m) .

(2.45)

Finally, we have that:

F = asF
(0)(m) + a2

s

[
F (1)(m) +mh(1)dF

(0)

dM

∣∣∣∣
M=m

]
. (2.46)

We now need to evaluate explicitly the derivative in eq. (2.46). First of all we observe

that:

F (0)(M) = x

∫ xmax(M)

x

dz

z
g
(x
z

)
C(0)
g (η(z,M), ξ(M), χ(M)) , (2.47)

where g is the gluon distribution and we have used the following definitions:

xmax(M)=
1

1+ 4M2

Q2

, η(z,M)=
Q2

4M2

(
1

z
−1

)
−1, ξ(M)=

Q2

M2
, χ(M)=

µ2

M2
. (2.48)

Defining:

G(z,M) =
x

z
g
(x
z

)
C(0)
g (η(z,M), ξ(M), χ(M)) , (2.49)

6In a recent publication [40] the O(α2
s) corrections (NNLO) to charm production in CC DIS were

presented. However, no analytical expression was provided.
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the derivative of eq. (2.47) can be written as:

dF (0)

dM
=

d

dM

∫ xmax(M)

x
dzG(z,M) =

dG̃(xmax(M),M)

dM
− dG̃(x,M)

dM
, (2.50)

where G̃(z,M) is the primitive of G(z,M) with respect to z (i.e. ∂G̃/∂z = G). But:

dG̃(xmax(M),M)

dM
=
dG̃(xmax,M)

dM
+
dxmax

dM
G(xmax,M) , (2.51)

thus:
dF (0)

dM
=
∂G̃(xmax,M)

∂M
− ∂G̃(x,M)

∂M
+
dxmax

dM
G(xmax,M) =

=

∫ xmax(M)

x
dz
∂G(z,M)

∂M
+
dxmax

dM
G(xmax,M) .

(2.52)

It can be shown that the boundary term in eq. (2.52) vanishes (see ref. [26]), thus it can

be omitted.

Gathering all pieces and taking into account that:

∂G(z,M)

∂M
=
x

z
g
(x
z

) ∂C(0)
g

∂M
, (2.53)

we have that:
dF (0)

dM

∣∣∣∣
M=m

=

[
x

∫ xmax(M)

x

dz

z
g
(x
z

) ∂C(0)
g

∂M

] ∣∣∣∣∣
M=m

= x

∫ xmax(m)

x

dz

z
g
(x
z

)[∂C(0)
g

∂M

] ∣∣∣∣∣
M=m

.

(2.54)

Finally, considering that:

F (1)(M) =
∑
i=q,q,g

x

∫ xmax(M)

x

dz

z
qi

(x
z

)
C

(1)
i (z,M) (2.55)

and using eqs. (2.46) and (2.54), one can explicitly write down the full structure of the

massive structure functions (F2 and FL) in terms of MS masses up to O(α2
s) as follows:

F = x

∫ xmax(m)

x

dz

z
g
(x
z

)[
asC

(0)
g (z,m) + a2

s

(
C(1)
g (z,m) +mh(1)

[
∂C

(0)
g

∂M

] ∣∣∣∣∣
M=m

)]
+

+
∑
i=q,q

x

∫ xmax(M)

x

dz

z
qi

(x
z

)
a2
sC

(1)
i (z,M) . (2.56)

In order to carry out the implementation, we need to evaluate explicitly the derivative

of C
(0)
g in eq. (2.56) and this must be done separately for F2 and FL.

We consider F2 first. The explicit expression of C
(0)
2,g is the following:

C
(0)
2,g (z,Q2,M2) = TR

{
2(1− 6ε− 4ε2)I2(ε, z)− 2(1− 2ε)I1(ε, z) + I0(ε, z)+

− 4(2− ε)J2(ε, z) + 4(2− ε)J1(ε, z)− J0(ε, z)
}
,

(2.57)
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where:

Iq(ε, z) = zq ln

(
1 + v

1− v

)
. (2.58)

Jq(ε, x) = zqv , (2.59)

with:

ε =
M2

Q2
, a =

1

1 + 4ε
and v =

√
1− 4ε

z

1− z
. (2.60)

From the definitions in eq. (2.60), we obtain:

∂

∂M
=

∂ε

∂M

∂

∂ε
=

2ε

M

∂

∂ε
,

∂

∂M
=

∂ε

∂M

∂v

∂ε

∂

∂v
= −1− v2

Mv

∂

∂v
.

(2.61)

Therefore:

∂C
(0)
2,g

∂M
=

1

M
TR

{
2ε
[
2(−6− 8ε)I2 + 4I1 + 4J2 − 4J1

]
− 1− v2

v

[
2(1− 6ε− 4ε2)

∂I2

∂v
− 2(1− 2ε)

∂I1

∂v
+
∂I0

∂v

− 4(2− ε)∂J2

∂v
+ 4(2− ε)∂J1

∂v
− ∂J0

∂v

]}
.

(2.62)

To find the explicit expression, we just need to evaluate the derivative of Iq and Jq starting

from eqs. (2.58) and (2.59) which is easily done:

∂Iq
∂v

=
2zq

1− v2
,

∂Jq
∂v

= zq .

(2.63)

In the end we get:

∂C
(0)
2,g

∂M
=

1

M
TR

{
4ε
[
(−6− 8ε)z2 + 2z

]
ln

(
1 + v

1− v

)
+ 8εz(z − 1)v

− 2

v

[
2(1− 6ε− 4ε2)z2 − 2(1− 2ε)z + 1

]
− 1− v2

v

[
−4(2− ε)z2 + 4(2− ε)z − 1

]}
.

(2.64)

The implementation of the FONLL scheme given in eq. (2.1) requires the massless

limit of the massive structure functions. In practice this means that one needs to compute

the limit M → 0 of the massive coefficient functions retaining the logarithmic enhanced

terms. In order to apply this recipe to eq. (2.64), we observe that:

ε −→
M→0

0 , v −→
M→0

1 , (2.65)
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and that:

ln

(
1 + v

1− v

)
−→
M→0

ln
Q2(1− z)

M2z
, (2.66)

so that:

∂C
(0)
2,g

∂M
−→
M→0

∂C
0,(0)
2,g

∂M
= − 2

M
TR
(
2z2 − 2z + 1

)
. (2.67)

We now turn to consider FL. In this case the the gluon coefficient function takes the

simpler form:

C
(0)
L,g

(
z,Q2,M2

)
= TR [−8εI2(ε, z)− 4J2(ε, z) + 4J1(ε, z)] . (2.68)

Therefore, using eq. (2.61), we immediately get:

∂C
(0)
L,g

∂M
=

1

M
TR

[
−16εz2 ln

(
1 + v

1− v

)
+

8εz2

v
− 1− v2

v

(
−4z2 + 4z

)]
. (2.69)

It is finally easy to realize that:

∂C
(0)
L,g

∂M
−→
M→0

∂C
0,(0)
L,g

∂M
= 0 . (2.70)

Charged current. In this section we consider the CC massive structure functions. The

treatment follows the exact same steps as the NC structure functions, with the only dif-

ference being that in the CC case the first non-vanishing term is O(a0
s). This means that,

truncating the perturbative expansion at O(as), we have:

Fk = F
(0)
k (M) + asF

(1)
k (M) +O(a2

s) , (2.71)

with k = 2, 3, L. Therefore, expanding F (0) and F (1) around M = m and keeping only the

terms up to O(as), one obtains:

Fk = F
(0)
k (m) + as

[
F

(1)
k (m) +mh(1)dF

(0)
k

dM

∣∣∣∣
M=m

]
. (2.72)

The leading-order contribution can be written as follows:

F
(0)
k (M) = bk(M)s′(ξ(M)) , (2.73)

where:

ξ = x

(
1 +

M2

Q2

)
︸ ︷︷ ︸

1
λ

=
x

λ
and


b2 = ξ

b3 = 1

bL = (1− λ)ξ

, (2.74)

where we have also defined:

s′ = 2|Vcs|2s+ 2|Vcd|2d . (2.75)
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Therefore:

mh(1)dF
(0)
k

dM

∣∣∣∣
M=m

= mh(1) dξ

dM

dF
(0)
k

dξ

∣∣∣∣
M=m

= 2h(1)(1− λ)ξ

[
dbk
dξ

s′(ξ) + bk(ξ)
ds′

dξ

] ∣∣∣∣
M=m

,

(2.76)

that can be conveniently rewritten as:

mh(1)dF
(0)
k

dM

∣∣∣∣
M=m

= 2h(1)(1− λ)

[(
dbk
dξ
− bk

ξ

)
+ bk(ξ)

d

dξ

]
ξs′(ξ)

∣∣∣∣
M=m

, (2.77)

so that, using eq. (2.74), we have that:

mh(1)dF
(0)
2

dM

∣∣∣∣
M=m

= 2h(1)(1− λ)ξ
d

dξ
ξs′(ξ)

∣∣∣∣
M=m

,

mh(1)dF
(0)
3

dM

∣∣∣∣
M=m

= 2h(1)(1− λ)
1

ξ

[
ξ
d

dξ
− 1

]
ξs′(ξ)

∣∣∣∣
M=m

,

mh(1)dF
(0)
L

dM

∣∣∣∣
M=m

= 2h(1)(1− λ)2ξ
d

dξ
ξs′(ξ)

∣∣∣∣
M=m

.

(2.78)

Finally, we notice that in the massless limit, where λ→ 1, all expressions in eq. (2.78)

vanish, with the consequence that the CC massive structure functions up to O(as) in terms

of the pole mass M or the MS mass m are exactly the same.

2.2 Benchmark

In order to validate the implementation in APFEL, we have benchmarked it against public

codes. To the best of our knowledge, there exist no public codes able to compute structure

functions in the FONLL scheme with MS masses. For this reason the best we could do is

to benchmark the various ingredients separately.

As a first step, we present the benchmark of the running of PDFs, αs and mc
7 in the

VFN scheme with MS heavy-quark thresholds. The difference with respect to the more

common pole-mass formulation arises from the fact that the matching of the evolutions at

the heavy-quark thresholds needs to be adapted to take into account the different scheme

used to renormalize the masses. The full set of such matching conditions for PDFs, αs and

mc has been collected in section 2.1.

We start with the DGLAP PDF evolution in the VFN scheme with MS heavy-quark

thresholds. A careful benchmark was already presented in the original APFEL publication.

In particular, the APFEL evolution has been checked against the HOPPET code [42] v1.1.5,

finding a very good agreement at the O
(
10−4

)
level or better. Since then, APFEL has

undergone several changes and improvements and thus we repeated the benchmark using

the same settings and finding the same level of agreement with HOPPET, as shown in figure 1

for a representative set of combinations of PDFs.8

7The running of mb and mt has also been checked finding the same lavel of accuracy found for mc.
8We observe that, thanks to a better interpolation strategy, the predictions at the transition regions

between internal x-space subgrids is now smoother.
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APFEL v2.7.0 vs. HOPPET v1.1.5, NNLO PDF VFNS evolution
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Figure 1. Comparison between APFEL v2.7.0 and HOPPET v1.1.5 for the VFNS DGLAP evolution

at NNLO with MS heavy-quark thresholds. The evolution settings, i.e. initial scale PDFs, reference

value of αs, and heavy-quark thresholds, are the same as used in the Les Houches PDF evolution

benchmark [43]. The upper inset shows the gluon PDF xg, the valence up and down PDFs xuv ≡
xu−xu and xdv ≡ xd−xd, respectively, and the total strangeness xs+ ≡ xs+xs at µF = 100 GeV

as functions of the Bjorken variable x as returned by APFEL. In the lower inset the ratio to HOPPET

is displayed showing a relative difference of 10−4 or better all over the considered range.

Although the benchmark of the DGLAP evolution already provides an indirect check

of the evolution of αs, we have also performed a direct check of the VFNS evolution with

MS heavy-quark thresholds of αs along with the evolution of the MS charm mass. To this

end, we have used the CRunDec code [44], which is the C++ version of the Mathematica

package RunDec [37]. In figure 2 we show the comparison between APFEL and CRunDec for

the three-loop evolution (NNLO) of the strong coupling αs (left plot) and the charm mass

mc (right plot). As is clear from the lower insets, the agreement between the two codes is

excellent. Also the one- and two-loop evolutions have been checked finding the same level

of agreement.

Finally, we benchmarked the implementation of massive DIS structure functions

(i.e. F (3) in eq. (2.1)) with MS masses against the public code OPENQCDRAD v1.6 [45].

OPENQCDRAD implements DIS structure functions in terms of the MS heavy-quark masses

following the formalism discussed in ref. [26]. However, as already mentioned above, such

a procedure does not directly correspond to what is needed for the implementation of the

FONLL scheme. In order to make the comparison with OPENQCDRAD possible, we have

implemented in APFEL a variant of the FONLL scheme with MS masses where, as done in

OPENQCDRAD , the RG running of the heavy-quark masses is expanded and truncated to the

appropriate order. In figure 3 we show the comparison between APFEL and OPENQCDRAD for

the exclusive charm neutral-current structure functions F c2 (left plot) and F cL (right plot) at

O(α2
s) for three different values of Q2 and over a wide range of x. As is clear from the lower

ratio plots, the agreement is typically at the per-mil level except in the very large-x region
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Figure 2. Comparison between APFEL v2.7.0 and CRunDec v1.1 for the VFNS RG three-loop evolu-

tion with MS heavy-quark thresholds of the strong coupling αs (left plots) and the MS charm mass

mc (right plot). The evolution settings are: α
(nf=3)
s (

√
2 GeV) = 0.35, m

(nf=4)
c (mc) =

√
2 GeV,

and m
(nf=5)
b (mb) = 4.5 GeV. The upper insets show the strong coupling αs (left) and the charm

mass mc (right) as functions of the renormalization scale µR as returned by APFEL. In the lower

insets the ratios to CRunDec are displayed showing a relative difference well below 10−6 over the

complete range considered.
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Figure 3. Comparison between APFEL v2.7.0 and OPENQCDRAD v1.6 for the neutral-currents massive

charm structure functions with MS heavy-quark masses at O(α2
s). As an input PDF set we have

used MSTW2008nlo68cl nf3 [46] from which also the numerical values of αs and mc are taken. The

upper insets show F c2 (left) and F cL (right) as functions of x for Q2 = 10, 100, 1000 GeV2 as returned

by APFEL. In the lower insets the ratios to OPENQCDRAD are displayed showing a relative difference

at the per-mil level except in the very large-x region where, due to the smallness of the predictions,

the relative differences tend to increase but maintain a good level of absolute accuracy.

where, due to the smallness of the predictions, the relative difference tends to increase but

maintains a good level of absolute accuracy.

To conclude this section, we observe that, referring to eq. (2.1), the introduction of the

MS masses does not affect the four-flavor structure function F (4). The structure function

F (3,0) is instead affected by the transition from pole to MS masses. Since we are not aware

of any public code that computes such structure functions, a direct bechmark has not been
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possible. However, as a sanity check we have checked that F (3,0) and F (3) for large values

of Q2 tend to the same value, as the definition of F (3,0) requires.

3 QCD fit settings

The QCD fits were performed to the combined H1 and ZEUS charm production cross-

section measurements [9] together with the combined HERA1+2 H1 and ZEUS inclusive

DIS cross-section data [7], accounting for all given sources of systematic uncertainties.

The kinematic region covered by HERA is constrained by the invariant mass of the

hadronic system of W > 15 GeV and the Bjorken scaling variable of x < 0.65, therefore

target mass corrections are expected to have negligible effects and are not discussed in

this paper. The settings of the QCD fits in xFitter closely follow those used for the

HERAPDF2.0 PDF extraction [7], with a few differences related to the specifics of the

current analysis which are motivated in the following.

The nominal result is extracted using the FONLL-C variant of the FONLL scheme

discussed in section 2. It should be pointed out that, while being accurate at NNLO for

the inclusive DIS cross sections, the sensitivity to mass corrections of the FONLL-C scheme

is actually NLO. The reason is that at O(α0
s) the FONLL scheme reduces to the parton

model which is insensitive to heavy-quark mass effects. Therefore, the first mass-sensitive

term is O(αs) which is the accuracy of the FONLL-A scheme which would thus provide

a LO determination of the charm mass. Both the FONLL-B and the FONLL-C schemes,

instead, include the O(α2
s) massive corrections and thus would both produce determinations

of the mass of the charm accurate at NLO. The advantage of FONLL-C with respect to

FONLL-B is that it is accurate at O(α2
s) also in the massless sector and thus it is supposed

to provide a better description of the data. In other words, FONLL-C is the most accurate

variant of the FONLL scheme presently available and as such it will be employed for our

determination of mc(mc).

The result obtained in the FONLL scheme is accompanied by an analogous determina-

tion of mc(mc) obtained using the FFN scheme with MS masses [6] at NLO. Access to the

structure functions calculated with the FFN scheme is possible via the xFitter interface

to the OPENQCDRAD program [45] using the QCDNUM program for the PDF evolution [47].

The procedure to determine the MS charm mass follows closely the methodology de-

scribed in ref. [9]. It involves a series of fits in each of which a set of PDFs is determined

corresponding to numerical values of charm mass ranging between mc(mc) = 1.15 GeV and

mc(mc) = 1.60 GeV with steps of 0.05 GeV. For each value of mc(mc) a value of global χ2

is obtained. The best fit value of mc(mc) is determined from the minimum of the parabolic

fit to the resulting χ2 distribution and the associated 1-σ uncertainty, which reflects the

sensitivity of the data set to the charm mass, is determined as the ∆χ2 = 1 variation

around the minimum.

We now discuss the settings of the nominal fits and the variations that we performed

to assess the different sources of uncertainty deriving from: the PDF parametrization, the

model parameters, and the theoretical assumptions.
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The assumption that heavy-quark PDFs are dynamically generated via gluon split-

ting at the respective thresholds requires that the starting scale Q0 at which PDFs are

parametrized is below the charm threshold, which in turn is identified with mc(mc). Given

the range in which the scan of mc(mc) is done (from 1.1 to 1.6 GeV), we have chosen to set

Q0 = 1 GeV to allow all fits to be parametrized at the same starting scale. The combina-

tions and the relative functional forms of the initial scale PDFs have been chosen following

the parametrization scan procedure as performed for the HERAPDF2.0 determination [7],

and the optimal configuration has been found to be:

xg(x) = = Agx
Bg(1− x)Cg −A′gxB

′
g(1− x)25,

xuv(x) = xu(x)− xu(x) = Auvx
Buv (1− x)Cuv (1 + Euvx

2),

xdv(x) = xd(x)− xd(x) = Advx
Bdv (1− x)Cdv ,

xŪ(x) = xu(x) = AŪx
BŪ (1− x)CŪ (1 +DŪx),

xD̄(x) = xd(x) + xs(x) = AD̄x
BD̄(1− x)CD̄ .

(3.1)

There are 14 free parameters, since additional constraints were applied as follows. The QCD

sum rules are imposed at the starting scale and constrain the normalisation parameters

Ag, Auv , Adv . The light-sea quark parameters that affect the low-x kinematic region BŪ
and BD̄, as well as the normalisation parameters AŪ and AD̄, are constrained by the

requirement that ū→ d̄ as x→ 0, leading to the following constraints:

BŪ = BD̄, (3.2)

AŪ = AD̄(1− fs), (3.3)

with fs being the strangeness fraction of D̄ assumed at the starting scale, i.e. fs = s̄/D̄,

because HERA data alone are not able to provide a precise light-sea flavor separation.

The strangeness fraction for the nominal fits is set to fs = 0.4, as in the HERAPDF2.0

analysis [7].

In order to estimate the uncertainty associated to the PDF parametrization, we have

considered the following variations with respect to the nominal configuration:

• we have moved up the initial scale Q0 from 1 to
√

1.5 GeV. In the FONLL scheme, this

restricted the mc(mc) range in which we did the scan because we could not use values

of the charm mass such that mc(mc) <
√

1.5 GeV. We were however able to perform

the parabolic fit in order to find the best fit value of mc(mc). This complication does

not arise in the FFN scheme in which there is no threshold crossing.

• In the xuv distribution we have included an additional linear term so that the last

factor in second line of eq. (3.1) reads (1 + Duvx + Euvx
2). After trying different

variations of the parametrization, we found that this particular choice leads to the

largest differences.

Moving to the model parameters, the values of the bottom and top quark masses for

the nominal fits are chosen to be equal to the PDG values, defined in the MS scheme, i.e.

mb(mb) = 4.18 GeV and mt(mt) = 160 GeV [8]. The value of the strong coupling is set to
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αs(MZ) = 0.118. It should be pointed out that this value of αs assumes 5 active flavors.

For the FFN scheme fits, though, one needs to use the value of αs with 3 active flavors.

In order to find this value one has to evolve αs(MZ) down to below mc(mc) in the VFN

scheme and evolve back to MZ with 3 active flavors. We have computed the value of αs
with 3 active flavors for each of the values of mc(mc) considered.

The uncertainty associated to model parameters will be estimated by considering the

following variations:

• the bottom mass has been moved up and down by 0.25 GeV, i.e. mb(mb) = 3.93 GeV

and mb(mb) = 4.43 GeV. The magnitude of the variation is actually much larger than

the present uncertainty on the bottom mass and thus our choice is meant to provide

a conservative estimate of the associated uncertainty.

• The variation of the strong coupling follows the recent PDF4LHC prescription [48].

In particular, we have considered the conservative variation up and down by 0.0015

with respect to the nominal value, i.e. αs(MZ) = 0.1165 and αs(MZ) = 0.1195.

• Finally, we considered the value of the strangeness fraction introduced in eq. (3.3) as

being a model parameter and we have thus varied it up and down by 0.1 around the

nominal value considering fs = 0.3 and fs = 0.5.

We finally turn to the theory assumptions and their variations. These mostly concern

unknown higher-order corrections and the most common way to estimate them is by varying

the renormalization and the factorization scales µR and µF . As nominal scales in our

analysis we have chosen µ2
R = µ2

F = Q2 for both the FONLL9 and the FFN scheme

analyses. Another possible source of theoretical uncertainty in the FONLL scheme is the

presence of the damping factor discussed in section 2 which is meant to suppress unwanted

subleading terms and whose explicit form in the nominal fits is given in eq. (2.3).

The theoretical uncertainty associated to the missing higher-order corrections has been

estimated as follows:

• the factorization and renormalization scales were varied by a factor 2 up and down

with respect to the nominal values, that is choosing µ2
R = µ2

F = Q2/2 and µ2
R = µ2

F =

2Q2. Such variations have been applied only to the heavy-quark components of the

structure functions, while the light part has been left unchanged. The reason for this

is that, in order to estimate the theoretical uncertainty associated to the determina-

tion of mc(mc), we want to perform scale variations only in the part of the calculation

sensitive to this parameter, which is clearly the charm structure function (for consis-

tency, the same variation was applied also to the bottom structure functions).

• As already mentioned, the FONLL damping factor represents a further source of un-

certainty. It has the role of suppressing unwanted subleading terms but the particular

9A scale choice involving the heavy-quark mass would lead to technical complications with the FONLL

matching as implemented in APFEL. However, we have checked that the more commonly used scales µ2
R =

µ2
F = Q2+4mc(mc)

2 produce a very marginal difference in the determination of mc(mc) in the FFN scheme.
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way in which this suppression is implemented is somewhat arbitrary. To assess the

impact of our particular choice on the determination of mc(mc), we have changed the

suppression power around the nominal one, considering the following functional form:

Dp(Q,mc) = θ(Q2 −m2
c)

(
1− m2

c

Q2

)p
, (3.4)

with p = 1, 4.

In addition, to assure the applicability of perturbative QCD and to keep higher-twist

corrections under control, a cut on Q2 is imposed on the fitted data. Our nominal cut is

Q2 > Q2
min = 3.5 GeV2. The choice of the value of Q2

min requires some care; an extensive

discussion on the impact of varying it on the determination of mc(mc) is given in section 4.3.

To conclude this section, we observe that the self-consistency of the input data set and

the good control of the systematic uncertainties enable the determination of the experi-

mental uncertainties in the PDF fits using the tolerance criterion of ∆χ2 = 1.

4 Results

In this section we will present the result for our the determination of the value mc(mc)

in the MS renormalization scheme using the FONLL scheme with its associated set of

uncertainties.

The parabolic fit to the global χ2 as a function of mc(mc) is shown in figure 4 and yields

a best fit value and its 1-σ experimental uncertainty equal to mc(mc) = 1.335±0.043 GeV.

An estimate of the parametric, model, and the theoretical uncertainties, performed follow-

ing the procedure described in section 3, is summarised in the second column of table 1

and leads to our final result:

mc(mc) = 1.335± 0.043(exp)+0.019
−0.000(param)+0.011

−0.008(mod)+0.033
−0.008(th) GeV. (4.1)

An illustration of the deviations, again determined through parabolic fits, caused by the

variations employed to determine the parametric, model, and theoretical uncertainties is

given in figure 5.

After we have determined the best fit value of the charm mass in eq. (4.1), we have

used the central value to perform a further fit in the FONLL-C scheme (nominal fit). In

table 2 we report the partial χ2’s over the number of data points for each subset along with

the total correlated χ2, the logarithmic penalty, and the total χ2 per degree of freedom.

As an illustration, the singlet and the gluon PDFs extracted from the nominal fits are

compared with other GM-VFNS PDF sets: CT14 [5], HERAPDF2.0 [7], MMHT14 [50],

NNPDF3.0 [3]. They are shown in figure 6 at the scale Q2 = 10 GeV2, where the the ex-

perimental uncertainties from the nominal fits on PDFs are estimated using Monte Carlo

procedure with the root mean square estimated from 500 replica. An overall good agree-

ment is observed.

The FONLL determination of mc(mc) presented above is supported by an analogous

determination in the FFN scheme at NLO. The corresponding parabolic fit with the associ-

ated experimental uncertainty is shown in figure 7. Also in this case a full characterization
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Figure 4. Parabolic fit to the global χ2 as a function of mc(mc) in the FONLL-C scheme with

nominal settings.

variation FONLL-C FFN

central 1.335± 0.043 1.318± 0.054

Q2
0 = 1.5 1.354 [+0.019] 1.329 [+0.011]

Duv non-zero 1.340 [+0.005] 1.308 [−0.010]

fs = 0.3 1.338 [+0.003] 1.320 [+0.002]

fs = 0.5 1.332 [−0.003] 1.315 [−0.003]

mb(mb) = 3.93 GeV 1.330 [−0.005] 1.312 [−0.006]

mb(mb) = 4.43 GeV 1.343 [+0.008] 1.324 [+0.006]

αs(MZ) = 0.1165 1.342 [+0.007] 1.332 [+0.014]

αs(MZ) = 0.1195 1.329 [−0.006] 1.300 [−0.018]

µ2
F = µ2

R = 2 ·Q2 1.347 [+0.012] 1.314 [−0.004]

µ2
F = µ2

R = Q2/2 1.361 [+0.026] 1.363 [+0.045]

FONLL Damping power = 1 1.352 [+0.017] —

FONLL Damping power = 4 1.327 [−0.008] —

Table 1. List of the variations performed to estimate the non-experimental uncertainties on mc(mc)

with the respective results obtained in the FONLL-C scheme and in the FFN scheme at NLO.
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Figure 5. Parabolic fits to the global χ2’s as functions of mc(mc) in the FONLL-C scheme for all

variations performed to estimate the non-experimental uncertainties on mc(mc).
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Data Set χ2

Charm cross section H1-ZEUS combined 44 / 47

HERA1+2 CCep 43 / 39

HERA1+2 CCem 55 / 42

HERA1+2 NCem 218 / 159

HERA1+2 NCep 820 67 / 70

HERA1+2 NCep 920 439 / 377

HERA1+2 NCep 460 220 / 204

HERA1+2 NCep 575 219 / 254

Correlated χ2 104

Log penalty χ2 +12

Total χ2 / d.o.f. 1420 / 1178

Table 2. χ2’s resulting from the fit in the FONLL-C scheme using the best fit value of the charm

mass mc(mc) = 1.335 GeV. The partial χ2’s per data point along with the total correlated χ2, the

logarithmic penalty, and the total χ2 / d.o.f. are reported, as defined in ref. [49].
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Figure 6. Comparison at Q2 = 10 GeV2 of the singlet (left plot) and gluon (right plot) distri-

butions from the nominal FONLL-C fit with other PDF sets determined using GM-VFN schemes:

HERAPDF2.0, CT14, MMHT14, NNPDF3.0.
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Figure 7. Parabolic fit to the global χ2 as a function of mc(mc) in the FFN scheme at NLO with

nominal settings.

of the non-experimental uncertainty has beed achieved by carrying out the same paramet-

ric, model, and theory variations (except for the variation of the damping factor which

is specific of the FONLL scheme). The results of the variation in the FFN scheme are

reported in the third column of table 1. The final result is:

mc(mc) = 1.318± 0.054(exp)+0.011
−0.010(param)+0.015

−0.019(mod)+0.045
−0.004(th) GeV , (4.2)

which is in agreement with the FONLL determination given in eq. (4.1).

It is interesting to notice that we observe a reduced scale dependence in the FONLL

scheme as compared to the FFN scheme. We ascribe this effect to the fact that the lead-

ing contributions in the FONLL scheme involve both gluon- and quark-initiated processes;

typically the contributions from gluon processes decrease with the scale, while the con-

tributions from quark processes tend to increase. Conversely, the FFN scheme is mostly

driven by gluon processes the contributions of which (along with αs) tend to be monotonic

in µ leading to larger scale variations.10

As discussed section 2.1.3, the running of the MS heavy-quark masses in the VFN

scheme, exactly like the running of αs and PDFs, is not univocally defined at the heavy-

quark thresholds due to the presence of the so-called matching conditions. In particular,

when giving the value of the mass at one of the heavy-quark thresholds, one should also

10We thank Fred Olness for this interesting observation.
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specify whether this corresponds to the value immediately below or above the threshold

itself. This is typically done by complementing the value with the number of active flavors

used in the computation. In fact, in general m
(Nf=3)
c (mc) 6= m

(Nf=4)
c (mc). On theoretical

grounds, this difference is relevant when comparing a determination obtained in a VFN

scheme like FONLL with a determination obtained in the (Nf = 3) FFN scheme: in the

latter one automatically determines m
(Nf=3)
c (mc), while in the former it is more natural

to extract m
(Nf=4)
c (mc). However, eqs. (2.25) and (2.26) tell us how the two values are

connected up to O(α2
s) and applying eq. (2.25) to the central value eq. (4.1) one gets

m
(Nf=3)
c (mc) = 1.339 GeV, that is a difference of 0.004 GeV as compared to the nominal

value which is well within the current uncertainty on mc(mc). We can then conclude that,

even though providing a value mc(mc) is ambiguous if the number of active flavors is not

specified, the magnitude of the ambiguity is currently not large enough to significantly

affect the current determinations.

4.1 Comparison to other results

It is interesting to compare our results with the past determinations of MS charm mass

mc(mc) using a similar methodology (also see ref. [10, 25, 29] for previous comparisons).

The analysis of ref. [24] was performed in the ABM11 framework [51] using the FFN

scheme at NLO and at approximate NNLO and based on world data for DIS from HERA,

and fixed-target DIS experiments and Tevatron Drell-Yan data. While the analysis in

ref. [24] was performed including the same exclusive charm cross-section data used in this

study, it did not include the HERA1+2 combined inclusive cross-section data set which

was not available at the time, but used instead the HERA combined data from run 1 only.

An earlier analysis [23] used a partial charm dataset only, with correspondingly larger

uncertainties, while a subsequent analysis [25] investigated the correlation between the

measurement of mc(mc) and the strong coupling constant.

The analysis of ref. [29] is instead based on the CT10NNLO global analysis, and uses

the S-ACOT-χ GM-VFN scheme discussed, e.g., in ref. [17]. It is based on a slightly wider

data set as it includes LHC jet production data and also a set of older F c2 measurements at

HERA [52] that are not included in the more recent combined charm data. The authors of

ref. [29] provide a set of four determinations deriving from different strategies to convert the

pole-mass definition into MS. They also provide a separate estimate of the uncertainty due

to the O(α3
s) corrections for one of the four strategies essentially by varying the parameter

that governs a generalized version of the rescaling variable χ.

Finally, a determination of the charm mass mc(mc) was produced by the H1 and ZEUS

collaborations in the framework of the HERAPDF QCD analysis in the same publication

in which the charm cross-section measurements employed in our study were presented [9].

That determination also used only the HERA combined inclusive data from run 1 [53].

In table 3 we report the numerical values for the mc(mc) determinations listed above

along with our results and the world average value [54]. A short clarification about the

nomenclature of the uncertainties reported in table 3 is in order. In section 3 we discussed

extensively the meaning of the uncertainties associated to our determinations. In doing so,
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scheme mc(mc) [GeV]

FONLL (this work) 1.335± 0.043(exp)+0.019
−0.000(param)+0.011

−0.008(mod)+0.033
−0.008(th)

FFN (this work) 1.318± 0.054(exp)+0.011
−0.010(param)+0.015

−0.019(mod)+0.045
−0.004(th)

FFN (HERA) [9] 1.26± 0.05(exp)± 0.03(mod)± 0.02(param)± 0.02(αs)

FFN (Alekhin et al.) [24] 1.24± 0.03(exp)+0.03
−0.02(scale)+0.00

−0.07(th) (approx. NNLO)

1.15± 0.04(exp)+0.04
−0.00(scale) (NLO)

S-ACOT-χ (CT10) [29] 1.12+0.05
−0.11 (strategy 1)

1.18+0.05
−0.11 (strategy 2)

1.19+0.06
−0.15 (strategy 3)

1.24+0.06
−0.15 (strategy 4)

World average [54] 1.275± 0.025

Table 3. List of the recent determinations of mc(mc) from fits to DIS data along with the deter-

minations extracted in this work. The PDG world average value is also reported for reference.

we tried to be consistent with the previous determinations, nevertheless some differences re-

main. As far as the determination in ref. [9] is concerned, while their definition of “(exp)”

and “(param)” essentially coincides with ours, their “(model)” uncertainty includes the

variation of the cut in Q2 (that we will discuss separately in section 4.3) but does not in-

clude the αs variation, which is instead quoted separately. In addition, the authors do not

quote any scale variation uncertainty. The nomenclature of ref. [24] is also different from

ours. Apart from the common “(exp)” uncertainty, for the NLO determination the authors

only quote the “(scale)” uncertainty, which essentially coincides with our “(th)” (even

though the FONLL “(th)” uncertainty also accounts for the variation of the damping fac-

tor), while for the approximate NNLO determination they also quote a “(th)” uncertainty

which, differently from our nomenclature, accounts for the uncertainty on the approximated

expressions used atO(α3
s). Finally, the determinations in ref. [29] only quote the experimen-

tal uncertainty (the asymmetric uncertainties are due to the use of a generic second-degree

polynomial to fit the χ2 profiles). A graphical representation of table 3 is shown in figure 8

where the inner error bars display the experimental uncertainty while the outer error bars

(when present) are obtained as a sum in quadrature of all uncertainty sources. The blue

vertical band represents the world average and provides a reference for all other determi-

nations. It is clear that, while the spread of the current determinations of mc(mc) from

DIS data covers a pretty large range, they are generally in agreement with the world aver-

age. As far as our determinations in particular are concerned, we observe that, apart from

being consistent with each other and with the world average, they also present competitive

uncertainties. This is particularly relevant for the FONLL determination because this is

the first time that this scheme is employed for a direct determination of the charm mass.

Figure 8 shows that our determinations tend to be larger than the world average while

most of the previous determinations place themselves below it. Detailed investigations

show that the largest contribution to this difference arises from the use of to the new
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Figure 8. Graphical representation of the determinations reported in table 3. The inner error bars

display the experimental uncertainty while the outer error bars (when present) are obtained as a

sum in quadrature of all uncertainty sources. The blue vertical band represents the world average

and provides a reference for all other determinations.

combined HERA1+2 combined inclusive cross section measurements that are employed for

the first time to determine the charm mass and that, as we will discuss in section 4.3, tend

to prefer larger values of mc(mc).

4.2 Cross-checks

It is worth mentioning that we have also employed the variants A and B of the FONLL

scheme discussed in section 2 to determine mc(mc). While the FONLL-A scheme is accurate

to LO in the massive sector and thus does not produce a reliable determination of the charm

mass, the FONLL-B has the same formal accuracy in the massive sector as FONLL-C and

indeed it leads to a determination comparable to that given in eq. (4.1) both for the central

value and the uncertainties. It is interesting to notice that the FONLL-B scheme in the

low-energy region resembles very closely the FFN scheme at NLO. In particular, both

schemes are accurate to O(α2
s) in the massive sector and to O(αs) in the light sector. As

a matter of fact, we find that the experimental uncertainty associated to the FONLL-B

determination is very close to the FFN one quoted in eq. (4.2), which in turn is around 20%

larger than that associated to the FONLL-C determination. This suggests that the O(α2
s)

corrections to the light sector that are present in the FONLL-C scheme, which depend on
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the heavy-quark mass by means of diagrams in which a gluon splits into a pair of heavy

quarks, provide a further constraint on mc(mc).

Finally, we have also attempted a determination in the FFN scheme using the approx-

imate NNLO massive structure functions as implemented in OPENQCDRAD. However, we did

not pursue a full characterization of the uncertainties because we believe that this determi-

nation, while giving a quantitative indication of the effect of the NNLO corrections, cannot

claim an NNLO accuracy and thus does not add anything to our NLO determinations.

4.3 Discussion on the Q2
min dependence of the mass determination

Our determination of mc(mc) given in eq. (4.1) was obtained cutting off all data with

Q2 < Q2
min = 3.5 GeV2. The necessity of such a cut stems from the fact that low-energy

data are hard to describe for two main reasons: the large value of αs with consequent

large higher-order corrections, and sizable higher-twist corrections. In addition, as pointed

out in ref. [55], the low-Q2 region (low-x, in fact) might be affected by deviations from

the fixed-order DGLAP evolution whose description might require small-x perturbative

resummation. The dependence on Q2
min of fits to HERA data has already been discussed

in the context of the inclusive measurements only. In this section, we will address this issue

considering also the HERA charm production data.

The particular value of Q2
min used in our analysis (3.5 GeV2) was determined by re-

quiring a good fit quality but maintaining a good sensitivity to mc(mc). This is illustrated

in figure 9 where the global χ2 per degree of freedom is plotted as a function of Q2
min in

the left panel while the best fit of mc(mc) is plotted as a function of Q2
min in the right

panel. Looking at the left panel it is clear that, as expected, the global χ2 improves as

more and more low-energy data are excluded from the fit. On the other hand, the right

plot shows that the experimental uncertainty associated to mc(mc) gets larger and larger

as Q2
min increases indicating that, again as expected, the sensitivity to mc(mc) deteriorates

if low-energy data are excluded. In the light of the plots in figure 9, we conclude that

Q2
min = 3.5 GeV2 represents a good compromise between a good description of the full

data set and a good sensitivity to mc(mc).

In this context, it is interesting to look at the behaviour of the partial χ2’s as a function

of Q2
min of the charm and inclusive cross-section data separately to assess in a more specific

way which nominal value of Q2
min is more convenient. Since the meaning of “degrees of

freedom” is unclear for a subset of the full data set, in order to quantify the degree of

improvement in the partial χ2’s, we consider the following quantity:

∆χ2

∆Npoints
(Q2

min) =
χ2(Q2

min)− χ2(Q2
min = 2.5 GeV2)

Npoints(Q2
min)−Npoints(Q2

min = 2.5 GeV2)
, (4.3)

which provides an estimate of the improvement of the χ2 per data point with respect to our

lowest cut Q2
min = 2.5 GeV2. If for a given value of Q2

min this quantity is larger than one,

this means that that specific cut leads to an improvement of the χ2 which is larger than

the degrees of freedom subtracted by excluding a given number of data points and thus the

excluded data points with respect of the reference cut (2.5 GeV2) are poorly described. On

the contrary, if the quantity in eq. (4.3) is smaller than one, this means that the excluded
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Figure 9. Left plot: dependence of the global χ2 / d.o.f. as a function of Q2
min. Right plot:

dependence of the global best fit value of mc(mc) with the associated experimental uncertainty as

a function of Q2
min. Both plots have been obtained using the FONLL-C scheme.

data points are better described than the fitted ones. In the left panel of figure 10 we show

the behaviour of the contribution to the global ∆χ2/∆Npoints originating from the charm

data points only. It is clear that any cut between 3.5 and 5 GeV2 improves drastically

the partial χ2 while cuts above 5 GeV2 either cause a much less significant improvement

or even lead to a deterioration. This provides a further confirmation of the fact that our

nominal cut (3.5 GeV2) is a sensible choice.

It is also interesting to look at the best fit values of mc(mc) and the relative uncertainty

preferred by a given subset as a function of Q2
min to quantify the sensitivity to mc(mc) as

more and more data are excluded from the fit. This is plotted in the right panel of figure 10

for the charm cross-section data. It is clear that this particular subset of data tends to

prefer values of mc(mc) around 1.23 GeV which is substantially lower than the global value

given in eq. (4.1). The stability of the central value of mc(mc) for different values of Q2
min

is remarkable and, as expected, the experimental uncertainty tends to increase for larger

value of Q2
min indicating a loss of sensitivity.

Finally, we have done the same exercise for the HERA1+2 inclusive cross-section data

and in figure 11 we present the relative plots. In the left panel we observe that the χ2 of

this subset improves essentially monotonically as Q2
min increases while from the right panel

it is clear that the preferred value of mc(mc) of the inclusive cross sections is substantially

larger than that preferred by the charm cross sections with, again, uncertainties than

become broader for larger values of Q2
min. It is finally clear that our best value for mc(mc)

quoted in eq. (4.1) is a compromise between the lower value preferred by the exclusive

charm data and the larger value preferred by the inclusive data.

4.4 Discussion on the sensitivity to mc(mc) of the inclusive data

It is clear from the right panels of figures 10 and 11 that the exclusive charm and inclusive

data subsets prefer somewhat different values of mc(mc). However, the values shown in

these figures are clearly correlated because they were obtained in a simultaneous fit to all

data. In order to investigate a possible tension, we have performed a fit to the inclusive data
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Figure 10. Left plot: dependence of ∆χ2/∆Npoints as a function of Q2
min for the charm cross-section

subset. Right plot: dependence of the best fit value of mc(mc) with the associated experimental

uncertainty as a function of Q2
min for the charm cross-section subset in the combined fit. Both plots

have been obtained using the FONLL-C scheme.
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Figure 11. Same as figure 10 for the inclusive cross-section subset in the combined fit.

only using both the FONLL-C and FFN schemes. The χ2 profiles are shown in figure 12. In

contrast to figures 4 and 7, in both schemes the scan in mc(mc) of the fits to inclusive data

only yielded a shallow χ2 dependences with a minimum around 1.7 GeV. This demonstrates

that the inclusive data alone cannot constrain mc(mc) reasonably well, but also why this

data exerts an upwards pull on the mc(mc) value in the combined fit. Furthermore, since

figures 9, 10, and 11 in section 4.3 present an overall remarkable stability of the central

value of mc(mc) for different values of Q2
min, the observed feature cannot be attributed to

the low Q2 part of the inclusive data.

5 Conclusions

In this work we have presented a new determination of the MS charm quark mass mc(mc)

obtained by fitting HERA charm and inclusive DIS data. In particular, we included in

our fits the combined H1 and ZEUS charm production cross-section measurements [9] and

the final combination of HERA1+2 H1 and ZEUS inclusive DIS cross-section data [7], the

latter being used in this work for the first time for the extraction of the charm mass. Our
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Figure 12. χ2 vs. mc(mc) profile for the fits to the HERA1+2 inclusive cross sections only. The
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determination is based on the FONLL general-mass variable-flavor-number scheme, and

has required the generalization of the FONLL structure functions, originally constructed

in the pole-mass scheme, in terms of MS heavy quark masses.

A detailed estimate of the various sources of uncertainty that affect our determination

of mc(mc) has been performed. In particular, we estimated the uncertainties due to the

choice of the PDF parametrization, the model parameters used as input for the theoretical

computations, and the missing higher-order corrections. We found that those sources

of uncertainty are smaller than the experimental uncertainty, resulting in a competitive

determination of the charm mass.

We complemented the FONLL extraction of the charm mass with an analogous de-

termination based on the fixed-flavour number scheme at next-to-leading order, finding a

good agreement between the two. In addition, we compared our results with previous de-

terminations also based on fits to DIS data and with the PDG world average finding again

a generally good agreement. We find that the values extracted in this work, although

compatible within uncertainties, tend to be slightly higher than previous determinations

from HERA data. This feature seems to be associated to the final HERA1+2 combined

inclusive dataset, which tends to prefer larger values of mc(mc) as compared to the charm

structure function data, and thus increases the best-fit value.

In the future, it would be interesting to repeat the FONLL determination in the context

of a global PDF analysis, since, in addition to the inclusive and charm HERA data, other

experiments are expected to have some sensitivity to the value of the MS charm mass.

In addition, the use of a wider dataset might lead to a reduction of the experimental

uncertainties of the mc(mc) determination. Moreover, our analysis is based on the standard

assumption that the charm PDF is dynamically generated by collinear splitting from gluons

and light quarks. In this respect, it would be useful to redo the determination of mc(mc) in
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the presence of a possible non-perturbative charm PDF, for which the generalized FONLL

structure functions accounting for a fitted heavy quark PDF are available [32].
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[24] S. Alekhin, J. Blümlein, K. Daum, K. Lipka and S. Moch, Precise charm-quark mass from

deep-inelastic scattering, Phys. Lett. B 720 (2013) 172 [arXiv:1212.2355] [INSPIRE].
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