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Abstract. We perform a detailed study of the sources of perturbative uncertainty in parton shower predic-
tions within the Herwig 7 event generator. We benchmark two rather different parton shower algorithms,
based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading
order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will
enable us to reliably assess improvements by higher-order contributions in a follow-up work.

1 Introduction

General purpose Monte Carlo (MC) event generators [1–6]
are central to both theoretical and experimental collider
physics studies. Recent development of these simulations
has seen improvements in various areas, both within per-
turbative calculations, through matching to fixed order
[2,7–15], combining higher jet mutliplicites [16–22], as well
as the all-order resummation with parton showers [23–26]
and also within the non-perturbative, phenomenological
models [27, 28]. While there are well established prescrip-
tions on how to quantify the theoretical uncertainty of
fixed-order calculations due to missing higher order con-
tributions [29–35] 1, no such general recipe exists for re-
summed calculations (see e.g. [36,37]), and parton shower
algorithms in particular. Given the perturbative improve-
ments, and the expected precision from data-taking at
Run II of the Large Hadron Collider [38, 39], the task of
assigning theoretical uncertainties to MC event generators
is becoming increasingly crucial. This also applies to val-
idating new approaches against existing data, as well as
using predictions to design future observables and/or col-
lider experiments. Phenomenological studies, for example,
indicate that MC event generators can be used even in pri-
marily data driven methods to perform powerful analyses
once theoretical uncertainties are under control [40,41]. It
is therefore important to quantify the uncertainties asso-
ciated with an event generator in a reliable way.

Uncertainties due to non-perturbative modelling have
been addressed in [42] and [43], as well as the impact of

1 While being based on scale compensation arguments, these
methods are, however, not able to predict the impact of finite
corrections.

the parton shower on reconstructed observables [44]. Var-
ious ambiguities and sources of uncertainty have been ad-
dressed within the context of other multi-purpose event
generators as well; in particular recoil schemes [45,46] and
parton distribution functions (PDF) [47–49] have so far
been considered, both for pure showers and in the context
of matched or merged samples, see e.g. [50]. All of these
studies share a commonality in that they focus on a single
source of uncertainty which is usually connected to the
development/improvement studied. Contrary to this, the
authors in [51–54] describe possible approaches to uncer-
tainty handling for the Drell-Yan process. An even more
systematic approach for how to handle the possible inter-
play between theoretical and experimental uncertainties
can be found in [55]. Further in the direction of a sys-
tematic approach, CMS published a short guide on how
to estimate MC uncertainties [56] and outlined some is-
sues to address. Finally, new techniques of propagating
uncertainties through the parton shower by means of an
alternate event weight were proposed [57].

In the present work, we address uncertainties of parton
shower algorithms within the Herwig 7 event generator
[1, 2]. Herwig 7 is a general purpose event generator that
computes any observable at next-to-leading order (NLO)
precision in perturbation theory automatically matched
to a parton shower. It includes sophisticated modules for
very different physics aspects ranging from interfaces for
physics beyond the standard model and two independent
parton shower algorithms [45,58], to a detailed modelling
of multiple particle interactions [59–61].

It is our aim to develop a consistent uncertainty eval-
uation for event generators, and Herwig 7 in particular.
This work is a first step in this direction, concerning the
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parton shower part and will be extended by further de-
tailed studies in the context of higher order improvements
and the interplay with non-perturbative, phenomenolog-
ical models and parameter fitting. The present paper is
therefore structured as follows: in Sec. 2 we classify all dif-
ferent types of uncertainties and their respective sources.
We then argue as to why we start with a pure leading or-
der (LO) plus parton shower (PS) study. The sources of
uncertainty tested in this study are described in detail in
Sec. 3. Our results are presented in Sec. 4 for e+e− and
fully inclusive pp production, while our findings including
additional jet radiation are described in Sec. 5. The results
establish a baseline of a set of controllable uncertainties,
that can then be used to quantify the impact of higher or-
der corrections to be addressed in upcoming work. Finally,
we present a summary and outlook in Sec. 6.

2 Context

2.1 Sources of Uncertainty

For any general purpose event generator that is based
on both perturbative input and phenomenological mod-
els, there are a number of different sources of uncertainty
to be addressed:

– Numerical: Computational precision and statistical
convergence. This is clearly a limitation which can
be overcome by investing enough computing resources
and will hence not be addressed further.

– Parametric: Quantities taken from measurements or
fits beyond the event generator parameters. This in-
cludes masses, coupling constants, and PDFs, and the
impact of these needs to be quantified separately and
potentially on a process-by-process basis watching out
for maximum sensitivity.

– Algorithmic: The actual parton shower algorithm,
matching and merging prescriptions, and phenomeno-
logical models considered. The last are not considered
here, as we limit ourselves to the simulation available
in Herwig 7.

– Perturbative: Truncation of expansion series in cou-
pling or logarithmic order. The main purpose of this
work is to elaborate on quantifying these uncertainties
in the case of leading order plus parton shower simu-
lation, which will be motivated in more detail below.

– Phenomenological: Goodness of fit uncertainties re-
garding parameters in the non-perturbative models.
We will argue that a remaining spread of predictions
obtained by fitting parameters for each of the varia-
tions of controllable perturbative uncertainties is able
to quantify the cross talk to non-perturbative models
and a genuine model uncertainty.

In this study we will address perturbative uncertain-
ties in the parton shower algorithms as a first piece of the
chain of variations to be done. We will use two different
shower algorithms to benchmark the uncertainty prescrip-
tions against each other and to point out further interest-
ing differences. The results considered here will serve as

further input to identify improvements of NLO matching
and merging, to be addressed in a separate paper.

Phenomenological uncertainties will be subject to fu-
ture investigations. However, we will point out first hints
towards their influence by considering variations of the
shower infrared cutoff in a selected number of cases. The
reasoning to this is two-fold: On one hand, we want to
stress the fact that parton level studies should typically
be carried out with care, and their region of validity can
by estimated by cutoff variations with large changes that
indicate non-negligible hadronisation corrections. On the
other hand, this fact also indicates how cutoff variations,
along with other variations, may actually point to the pos-
sibility of quantifying otherwise unknown, generic, model
uncertainties and the interplay with non-perturbative cor-
rections.

2.2 Why Leading Order?

We solely consider LO plus PS simulation in this work.
The motivation to do so is as follows: With fixed-order
improvements it is clearly very hard to disentangle sources
of uncertainty stemming from pure parton showering, and
those which have been potentially improved by higher-
order corrections. In order to quantify genuine parton show-
er uncertainties in an improved setting one would typically
need to look at jets beyond those that received fixed-order
hard process input (e.g. the second jet from a leading order
configuration in a next-to-leading order matched simula-
tion). Not only is this computationally unnecessary for the
sake of studying only parton shower uncertainties, it also
introduces slightly different shower dynamics, the differ-
ences of which, with respect to leading order, would also
need to be quantified carefully. Additionally, it is our aim
to show where and how fixed order input improves the sim-
ulation along with the expected reduction in uncertainty;
stated otherwise: To use the NLO matched simulation in
order to identify which of the non-first-principle variations
considered in this work are indeed reliable estimators of
theoretical uncertainty in the perturbative part of event
generator predictions.

2.3 Different Algorithms or Uncertainties?

To quantify to what extent commonly used recipes are a
sensible measure of uncertainties in parton shower algo-
rithms the first step is a clear distinction of what possible
sources exist within a fixed algorithm, and what differ-
ences should actually be attributed to the consideration
of distinct algorithms. Looking at different algorithms, we
obtain a strong cross-check on whether the uncertainties
assigned to one algorithm are sensible, provided we con-
sider algorithms that exhibit similar resummation prop-
erties. We will also show that changes to the algorithms
that are naively expected to be subleading, can cause se-
vere difference in the resummation properties. Similarly,
kinematics parametrisations to convert on-shell partons to
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off-shell ones after multiple radiation are known to cause
numerically significant differences [45,46,62].

Such details, as well as the choice of splitting kernels
and evolution variable should not be considered a source
of uncertainty within an algorithm but are details that
fix a distinct algorithm; we therefore call them algorith-
mic uncertainties. An uncertainty band based on varying
such details cannot serve as a systematic framework to
quantify missing higher-logarithmic contributions. If dif-
ferences between algorithms are not covered by variation
of the scales involved, either the estimate of uncertainty
or the resummation properties of the algorithms should
be questioned.

The relevant scales for the study at hand are:

– the hard scale µH (factorisation and renormalisation
scale in the hard process);

– the veto scale µQ (boundary on the hardness of emis-
sions);

– the shower scale µS (argument of αS and PDFs in the
parton shower).

No a priori prescription can be obtained as to what these
scale choices should optimally be; the first two are usually
taken as ‘a typical scale of the hard process’, while the
last one faces more constraints to guarantee resummation
properties and the correct backward evolution [63] within
the parton shower. Having made a central choice, we vary
the scales by fixed factors to generate subleading terms
with coefficients of order one as an initial guess on higher
order corrections and phase-space effects.

At least two parameters in our shower algorithms are
typically obtained in the course of tuning to data, the
strong coupling αs(MZ), and the shower cutoff parame-
ter.2 Using the different tuned values (at least with the lat-
ter having, in general, a different meaning between the two
showers), the predictions on parton level will differ, though
fully simulated, hadronic events, will yield a comparable
description of data. We argue that these differences should
be evaluated carefully, but belong to a future study that
will address the interplay with non-perturbative models
in more detail.

2.4 Simulation Setup

We consider both parton shower modules available in Her-
wig 7, the default angular-ordered shower [58] and the
dipole-type shower based on [8, 45]; in addition to their
default settings, which we have adjusted to make them as
similar as possible by choosing the same p⊥ cutoff and αs
running (the ‘baseline’ settings for this work), we consider
a number of modifications mainly outlined in Sec. 3, all of
which constitute different algorithms in the sense outlined
above. The two showers are very different in their nature:
The angular-ordered, QTilde, shower evolves on the basis

2 One can argue that the tuning of αs(MZ) is typically ab-
sorbing the CMW correction advertised in [64] which would
have to be included otherwise to obtain a satisfactory descrip-
tion of data.

of 1 → 2 splittings with massive DGLAP functions, us-
ing a generalised angular variable and employs a global
recoil scheme once showering has terminated; its available
phase space is intrinsically limited by the angular-ordering
criterion, resulting in a ‘dead zone’, though it is able to
generate emissions with transverse momenta larger than
the hard process scale and so typically an additional veto
on jet radiation is imposed (see Sec. 3 for more details).
The dipole based shower, Dipoles, uses 2 → 3 splittings
with Catani-Seymour kernels with an ordering in trans-
verse momentum and so is able to perform recoils on an
emission-by-emission basis; the splitting kernels naturally
require the two possible emitting legs of each dipole to
share their phase space and there is no a priori phase-space
limitation, but the available phase space is controlled by
the starting scale of the shower.

Using the baseline, we find very similar predictions de-
spite the very different nature of these algorithms. As an
example we show in Fig. 1 the predictions for the Higgs
p⊥ spectrum at an LHC with

√
s = 13 TeV. The only

difference between the algorithms we observe in the very
low p⊥ region where the interplay with the treatment of
the remnant and intrinsic transverse momentum smear-
ing becomes important. For future reference, we have also
included results running the showers at their default set-
tings to highlight what level of interplay with tuned val-
ues and non-perturbative models can be expected. To be

Herwig 7
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Fig. 1. The Higgs boson transverse momentum spectrum com-
paring the two shower algorithms QTilde (red) and Dipole
(blue) at their adjusted baseline settings used in this compar-
ison.

more precise, we use a two-loop running, MS, αs including
CMW correction [64] with αCMW

s (MZ) = 0.126 (which

corresponds to αMS
s (MZ) = 0.118), and the MMHT2014

NLO PDF set [65] with five active flavours, interfaced
through LHAPDF 6 [66], as far as initial state radiation
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is concerned.3 Hard processes are simulated at leading
order (see the previous discussion), using the Matchbox
infrastructure powered by amplitudes generated by Mad-
Graph5 aMC@NLO [11]. In e+e− collissions, we consider
di-jet production; at hadron colliders, in addition, we con-
sider stable Z-boson Drell-Yan production, (e+e−j) pro-
duction within the mass window 66 GeV < mll < 116 GeV
around the Z mass, as well as production of a stable,
125 GeV, Higgs accompanied by zero or one jet. In the
presence of additional jets in the hard process we use
FastJet [67, 68] to perform the generation cuts; analyses
are performed throughout using the Rivet framework [69],
with analysis modules based on existing experimental and
generic Monte Carlo implementations. In e+e− collisions,
where we choose a centre of mass energy of

√
s = 100

GeV as baseline, we reconstruct jets with the Durham al-
gorithm [70], while the hadron collider setup reconstructs
anti-k⊥ jets with a radius of R = 0.4 within a rapidity
range |y| < 5 and a transverse momentum threshold of
p⊥ > 20 GeV. Parton level without multiple interactions
and hadronisation is employed, and partons up to and
including b-quarks are treated as massless objects. Both
parton showers mentioned above use a p⊥ cutoff prescrip-
tion with a value of µIR = 1 GeV. Electroweak parameters
are kept at their default values.

2.5 Consistency Checks

The ability to compare different algorithms puts us into
the unique position of performing a number of consistency
checks for the uncertainty estimate that we advocate. In
particular, perturbative error bands should cover algorith-
mic discrepancies, if these algorithms are expected to de-
liver the same accuracy. If that is not the case then the
algorithm at hand is questionable. Furthermore, by con-
struction the shower approximates emissions in the soft
and collinear region. If we force the shower to produce
hard emissions, larger uncertainties are to be expected by
a controllable prescription. Another point is the possibility
of double counting hard emissions. The shower should not
cover phase-space regions that are already covered by the
hard process input. This property is typically reflected in
demanding that observables that receive input at fixed or-
der are not significantly altered by subsequent showering.
Clearly, the definition of ‘region’, which in this case is cov-
ered by the veto scale on hard emissions (see Sec. 3 for a
more detailed discussion), is again only precise to the level
of accuracy covered by the parton shower and varying this
boundary should serve as a measure of missing logarith-
mic orders. We emphasise that a boundary chosen to be far
away from the correct ordering behaviour may introduce
severe double counting issues, ultimately impacting on a
resummation of a tower of logarithms which is not typical
to the process, i.e. not encountered in any higher order
corrections to an observable considered. Furthermore, the

3 This setup has been chosen such as to later on enable a
fair comparison to NLO improved simulation that necessitates
these orders of running.

perturbative uncertainties for observables in phase-space
regions that do not receive logarithmically enhanced con-
tributions should be driven by the hard scale alone, while
the other scales have negligible impact. Logarithmically
sensitive observables, on the other hand, should be al-
tered by the parton shower and the uncertainties should
be driven by all possible scale variations together. The set-
ting where this is least clear is pure jet production, which
we will address amongst other ‘jetty’ processes in Sec. 5.

3 Scale Choices, Variations and Profiles

3.1 Phase-Space Restrictions and Profile Choices

The quantity central to parton showers is the splitting
kernel. Its exponentiation gives rise to the Sudakov form
factor, which regulates the divergence of the splitting ker-
nel for soft and/or collinear emissions. On top of this,
there are two further crucial ingredients (besides formally
subleading, though not necessarily small issues like kine-
matic parametrisations): The evolution variable chosen,
and the phase space accessible at a fixed value of the evo-
lution variable. Emissions are typically further subject to
an upper bound on their hardness. This cannot be directly
deduced from a priori principles but should be chosen in
the order of magnitude of the typical hardness scale of the
process being evolved to avoid the double counting issues
mentioned before.

The central point we are concerned with in this sec-
tion shall be summarised in a simplified model of final
state radiation. Quite generally, we have to consider three
different scales: a hard scale K⊥ defining the phase space
available to emissions at a fixed transverse momentum;
a veto scale Q⊥ defining the maximum transverse mo-
mentum available to emissions; and the kinematic limit of
transverse momentum, R⊥. We consider the p⊥ spectrum
of a single soft emission with splitting kernel (possibly af-
ter an appropriate transformation of the evolution variable
into a transverse momentum)

PK2
⊥

(p2⊥, z) = Ci
αs(p

2
⊥)

π

1

1− z ×

θ(z+(p2⊥,K
2
⊥)− z)θ(z − z−(p2⊥,K

2
⊥)) , (1)

where Ci is the colour factor associated with the emitting
leg. The longitudinal momentum fraction, z, has limits
that read

z±(p2⊥,K
2
⊥) =

1

2

(
1±

√
1− p2⊥

K2
⊥

)
, (2)

in the presence of a hard scaleK2
⊥. With emissions weighted

by κ, an arbitrary function of a veto scale Q2
⊥, we find a

p⊥ spectrum of the form

dP
dp2⊥dz

= PK2
⊥

(p2⊥, z)
κ(Q2

⊥, p
2
⊥)

p2⊥
×

θ(R2
⊥ − p2⊥)θ(p2⊥ − µ2

IR)∆K2
⊥

(p2⊥|Q2
⊥) , (3)
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with the Sudakov form factor

− ln∆K2
⊥

(p2⊥|Q2
⊥) =∫ R2
⊥

p2⊥

dq2⊥
q2⊥

κ(Q2
⊥, q

2
⊥)

∫
dzPK2

⊥
(q2⊥, z) . (4)

R⊥ denotes the scale that makes all of phase space avail-
able to emissions, while we denote the infrared cutoff by
µ2
IR (we have not shown the zero p⊥, non-radiating event

contribution). Once a hard cutoff κ(Q2
⊥, p

2
⊥) = θ(Q2

⊥ −
p2⊥) is chosen, this setup is known to reproduce the right
anomalous dimensions. It has to be applied to a full evo-
lution in a hierarchy Q2

⊥ → q2⊥ where K2
⊥ = Q2

⊥ is chosen
and the form of the z boundaries being crucial to produce
the correct logarithmic pattern [25,45]. Instead, if one de-
sires to make all of the phase space available to parton
shower emissions, K2

⊥ = R2
⊥ is chosen and no other than

the kinematic constraint p2⊥ < R2
⊥ is in place.4

We have here considered the freedom of ensuring sup-
pression of such emissions by an arbitrary function κ. We
call this weighting function a profile scale choice. One of
the subjects of the present study is to identify sensible
profile scale choices; we stress that such a choice is of algo-
rithmic nature and not an intrinsic source of uncertainty.
We will consider the following choices, depicted in Fig. 2:

– theta: κ(Q2
⊥, q

2
⊥) = θ(Q2

⊥ − q2⊥), which is expected to
reproduce the correct tower of logarithms;

– resummation: κ(Q2
⊥, q

2
⊥) is one below (1−2ρ) Q⊥, zero

above Q⊥, and quadratically interpolating in between.
This profile is expected to reproduce the correct tow-
ers of logarithms, and switches off the resummation
smoothly towards the hard region (currently we use
ρ = 0.3 5):

κ(Q2
⊥, q

2
⊥) =

1 q⊥/Q⊥ ≤ 1− 2ρ

1− (1−2ρ−q⊥/Q⊥)2

2ρ2 q⊥/Q⊥ ∈ (1− 2ρ, 1− ρ]
(1−q⊥/Q⊥)2

2ρ2 q⊥/Q⊥ ∈ (1− ρ, 1]

0 q⊥/Q⊥ > 1

; (5)

– hfact: κ(Q2
⊥, q

2
⊥) =

(
1 + q2⊥/Q

2
⊥
)−1

, which is also re-
ferred to as damping factor within the POWHEG-BOX
implementation [7]; and

– power shower: imposing nothing but the phase-space
restrictions inherent to the shower algorithm consid-
ered.

Different combinations of R2
⊥ and K2

⊥ can be achieved
within the two showers. In particular, the dipole shower
is able to populate the region up to K2

⊥ = R2
⊥ (‘power

4 Typically, the splitting kernel for exact phase-space factori-
sation is then accompanied by a damping factor ∼ 1− p2⊥/R2

⊥
towards the edge of phase space.

5 In principle ρ should be varied with a reasonable range,
though we do not expect a big effect from this variation, given
the similarities between ρ = 0.3 and ρ = 0 corresponding to
the theta profile; see the following sections.

power shower

theta cutoff

hfact profile

resummation profile
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(Q

2 ⊥
,q

2 ⊥
)

Fig. 2. The different profile scale shapes considered in this
study at a veto scale of Q⊥ = 100 GeV (solid) and Q⊥ =
50, 200 GeV (dashed).

shower’), while, for 2 → 1 processes at hadron colliders
the angular-ordered phase space, by construction, imposes
K2
⊥ = Q2

⊥ to be the mass of the singlet which is produced.
The leading logarithmic contribution of the z integra-

tion at this simple qualitative level is given by∫
dzPK2

⊥
(q2⊥, z) ∼

Ciαs(q
2
⊥)

π
log

(
K2
⊥
q2⊥

)
. (6)

We shall illustrate the impact of the profile scale choice κ
on the Sudakov form factor by considering a fixed αs, and
evaluate

−
∫ R2

⊥

p2⊥

dq2⊥
q2⊥

κ(Q2
⊥, q

2
⊥) log

(
K2
⊥
q2⊥

)
= (7)

− 1

2
log2

(
K2
⊥

p2⊥

)
κ(Q2

⊥, p
2
⊥)

+
1

2
log2

(
K2
⊥

R2
⊥

)
κ(Q2

⊥, R
2
⊥)

+
1

2

∫ R2
⊥

p2⊥

dq2⊥ log2

(
K2
⊥
q2⊥

)
∂

∂q2⊥
κ(Q2

⊥, q
2
⊥) .

To obtain the desired resummation properties, namely∫ R2
⊥

p2⊥

dq2⊥
q2⊥

κ(Q2
⊥, q

2
⊥) log

(
K2
⊥
q2⊥

)
∼ 1

2
log2

(
Q2
⊥
p2⊥

)
, (8)

a number of limitations on κ and the other scale choices
need to be imposed. Clearly, the limiting cases for small
and large transverse momenta need to be reproduced;

κ(Q2
⊥, p

2
⊥)→ 1 p2⊥ � Q2

⊥ , (9)

κ(Q2
⊥, p

2
⊥)→ 0 q2⊥ ∼ R2

⊥ � Q2
⊥ .

While this is the case for all of the profiles we considered
in this study, it is not sufficient to produce the desired
tower of logarithms. Imposing the former restriction we
still require that:

– K2
⊥ ∼ Q2

⊥ is imposed by the z boundaries; and
– κ(Q2

⊥, q
2
⊥) ∼ const whenever q2⊥ is not of the order of

Q2
⊥ for the term involving the derivative of κ to become

subleading.



6 Johannes Bellm et al.: Parton Shower Uncertainties with Herwig 7: Benchmarks at Leading Order

Specifically the first restriction is only guaranteed by ei-
ther the angular-ordered phase space which naturally im-
poses this restriction, or the restricted phase space chosen
for the dipole shower. The second restriction also excludes
choices of κ providing a ratio of logarithms to effectively
replace K2

⊥ by Q2
⊥ in the first term in Eq. 7. To this ex-

tent, we conclude that only those profiles that are narrow
smeared versions (in the sense of varying only in a region
where Q2

⊥/q
2
⊥ is of order one) of a theta-type cutoff will

provide the proper tower of logarithms. Choices such as
the resummation profile are desirable to avoid discontinu-
ities introduced by the theta-type cutoff which are beyond
the accuracy considered, while keeping the resummation
properties of the parton shower; the profile we consider
here is only one such kind, and there is no restriction on
the exact form considered. The name ‘profile’ is chosen
since the treatment of the hard scale we consider here
closely resembles prescriptions on scale variations within
the analytic resummation context [71].

3.2 Identifying a ‘Resummation Scale’

The hard veto scale Q2
⊥ is the scale that, when considering

transverse momentum spectra as outlined in the previous
section, is closest in role to a resummation scale in analyt-
ical resummation. However, it is not typically the same as
a shower starting scale. Though in our case this statement
is true for the dipole shower, no such notion exists for the
angular-ordered shower where typically the masses of the
emitting dipoles set the shower starting scale owing to
the angular-ordered phase space. In the latter case, emis-
sions exceeding the transverse momenta of jets present in
the hard process are possible and an additional veto on
transverse momenta generated by the shower is applied;
the value of this veto is, in this case, the analogue of the
starting scale of the dipole shower. The resummation scale
of the typical q⊥-resummation can thus not directly be re-
lated to an analogue hard scale present in different shower
algorithms, especially when they evolve in a variable dif-
ferent from the transverse momentum and hence built up
the full spectrum from multiple, differently ordered emis-
sions.

For both the showers considered here, transverse mo-
menta of parton shower emissions are expected to be lim-
ited or suppressed by the scale Q2

⊥, which on very gen-
eral grounds should thus be of the order of a typical scale
of the hard process, i.e. the factorisation scale. As with
fixed-order calculations the residual dependence on Q2

⊥
is expected to become smaller as more and more loga-
rithmic orders are incorporated. This implies a pattern of
scale compensation through successive logarithmic orders,
which a parton shower can typically only guarantee at the
level of at most next-to-leading logarithms (NLL).

3.3 Scale Variations

Having chosen a reasonable profile scale and value ofK2
⊥ ∼

Q2
⊥, the leading behaviour of the Sudakov exponent takes

the well-known form

− ln∆(p2⊥|Q2
⊥) =∫ Q2

⊥

p2⊥

dq2

q2

(
A(αs(q

2)) ln

(
Q2
⊥
q2

)
+B(αs(q

2))

)
, (10)

where the highest level of accuracy one can hope for with
coherent evolution is NLL accuracy, neglecting sublead-
ing colour correlations, at least for some observables and
typically limited phase-space regions [64],

A(αs) =
Ci
2

αs
π

(
1 +

Kg

2

αs
π

)
B(αs) =

αs
π

γi
2

(11)

along with a two-loop running of αs.
In addition to variations of the scales in the hard pro-

cess, µ′R/F = ξHµR/F , we vary both the hard veto scale,

µQ = ξQQ⊥, and the arguments of αs and the PDFs in the
parton shower splitting kernels, µS = ξSq⊥. We constrain
the number of possible variations to be ξ ∈ [1/2, 1, 2]. This
spans a cube of, ξH ⊗ ξS ⊗ ξQ, 27 combinations. All these
choices are connected to logarithmic scale choices. There
is therefore no a priori way of reducing their number. We
emphasise that in principle only the full 27-point enve-
lope constitutes a comprehensive uncertainty measure. We
therefore always produce the full envelope along with en-
velopes for each of the individual variations. Using this it
is possible to observe which scale drives the overall un-
certainty in a particular region of phase space. While one
clearly expects the variation of Q2

⊥ to cancel out to the
level of NLL accuracy [72] (if this is indeed resembled by
the parton shower), the situation is less clear for the other
variation and different proposals have been made as to
what extent the contribution at the level of NLL contribu-
tions should be canceled (see e.g. [73] for a discussion) or
otherwise considered as a probe of where precisely higher
accuracy of the shower is missing. We do not consider in-
troducing any terms that cancel these variations to the
NLL order, and postpone a detailed analysis of this issue
to future work. We do, however, analyse these variations
as we are convinced that they are another clean handle
on controlling where we expect, specifically, soft emissions
and contributions by the hadronisation model to domi-
nate. A recent Les Houches study [74] has also shown that,
when not taking into account the full variations of this
kind, discrepancies between different shower algorithms,
which are expected to be similar, are not covered within
these variations.

3.4 Real-life Constraints

Besides the unclear definition of a resummation scale in
the context of different shower algorithms, another word
of caution needs to be raised when considering the hard
veto scales: There are cases in which there is no meaning-
ful variation as the hard scale is a fixed quantity such as
the mass of an independently evolving final state emitting
system, e.g. showers in e+e− → hadrons. It is not clear
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how one would quantify the respective shower uncertainty
in this case, besides looking at shape differences encoun-
tered at different centre-of-mass energies of the e+e− col-
lider to quantify the scaling of the predictions with respect
to ratios of the hard scale to the infrared sensitive quan-
tity considered. Already this observation clearly marks the
fact that no claim of a full and well-understood uncer-
tainty recipe can be made at this point, but only are we
able to perform initial steps in this direction. Similarly for
the power shower there is no meaningful variation of µQ.
It can also happen, as is the case for the angular-ordered
shower, that the algorithm chosen naturally imposes an
upper bound on the hardness of the emission. In the case
of Drell-Yan type processes, the angular-ordered shower,
for example, will only allow for a down-variation of Q2

⊥
and is thus questionable as to whether this variation in
these cases is the right measure.

As with the small scales probed in the evolution of the
parton shower, µR,F variations in the shower may actually
encounter regions where typically some cutoff or freezing-
like behaviour is imposed to both, the running of αs and
the parton distributions functions, which may result in
interesting dynamics when variation of such small scales
is used to infer uncertainties – a variation of the freezing
prescription may thus be desirable, as well.

4 Clean Benchmarks

To begin exploring the uncertainties that arise from the
considerations of Sec. 3 we start by studying ‘clean bench-
marks’, i.e. hard processes with the least number of legs:
e+e− annihilation, and Drell-Yan-type 2 → 1 processes
producing either a Z or Higgs boson. For the case of e+e−

collisions, the notion of a hard veto scale does not directly
exist owing to the fact that the phase-space boundary
and relevant hard scale coincide. However, we can com-
pare variations of the collision energy and quantify this
impact at the level of normalised distributions to acquire
a handle on variations of the logarithmic structure similar
to hadron-hadron collisions6. On top of the three scales
µH,S,Q described above, we vary the infrared cutoff of the
shower by a factor of 1/2 and 2 for the e+e− setting, in
order to obtain a first indication of how much dynamics of
the shower is expected to be absorbed into hadronisation
effects; notice that varying the argument of αs may serve
a similar purpose.

6 We do not consider deep inelastic scattering, which is inter-
esting in its own respect. Similarly, a (hypothetical) e+e− → gg
collider setting should be explored to complement our studies
of Z versus H production in pp collisions; we postpone these
discussions to later work elaborating on the interplay with
hadronizsation models, where these differences are expected to
be more relevant; the reader is also referred to the Les Houches
study [74] in this context.
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Fig. 3. Thrust distribution for the QTilde shower (red) and
Dipole shower (blue). The main plot envelopes consist of the
variations

√
s ⊗ µS . The ratio plot for each individual shower

contains the contributions from the individual variation of each
scale which are shown relative to the full envelope (ratio, top-
left).

4.1 Final State Showers

e+e− → qq provides the clean environment to study final
state radiation. Note that in this case the power and theta
profile coincide, which is also our choice in the following.

The Thrust distribution, Fig. 3, shows good agreement
between showers; this is true both for the central predic-
tion and its variations, and shows that they possess the
same resummation accuracy. Differences that do emerge
between the showers are related to cutoff effects and non-
radiating events in the region towards T = 1; these offer
no insight into the resummation properties. A further dif-
ference emerges from the dead-zone of the QTilde shower,
however this is a region that can be supplemented by using
matching or ME corrections. For this observable we note
that the

√
s and µS variations are similar in magnitude.

In Fig. 4 we show results for the integrated two-jet rate;
the uncertainties are dominated by

√
s as well as cutoff

variations at small ycut. Again, the overall uncertainties
are comparable between the showers; as expected, we ob-
tain large uncertainties in the small ycut region, which is
dominated by hadronisation effects.

4.2 Initial State Showers

As far as initial-state showering is concerned, we investi-
gate a gluon-initiated process pp → H (in the large-mt

effective theory), and a quark-initiated process pp → Z;
these particles are set stable for simplicity. Inclusive ob-
servables, such as the rapidity of the resonance in this
case, are quantities expected to be well described by the
matrix element, and thus should be unmodified by the
parton shower; this is reflected in Figs. 5 and 7 where
both showers display good agreement, with uncertainties
mainly driven by the hard process variation. The differ-
ences in magnitude should be attributed to different cou-
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Fig. 4. Distribution of the 2-jet fraction against ycut. The main
plot contains the envelope of the scale variations

√
s ⊗ µS for

the QTilde shower (red) and Dipole shower (blue). The first
two ratio plots contain the contributions from the individual
variation of each scale relative to the full envelope (ratio, top-
left). The last two ratio plots show the µIR variations (ratio,
top-right), and, for size comparison, we also plot the envelopes
of the main plot (ratio, top-left).
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Fig. 5. Rapidity of the Higgs boson for both the QTilde shower
(red) and the Dipole shower (blue). The main plot envelope
contains the full scale variations for each shower, and the ratio
plots contain their breakdown in terms of the individual scales
relative to the full envelope (ratio, top-left). The lines shown
are for the resummation profile.

plings for each process, with envelope shape differences
attributed to the PDFs.

The jets in these samples are generated solely from the
parton shower; therefore the p⊥ of the leading (hardest)
jet directly probes the impact of the profile scales.
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Fig. 6. Transverse momentum of the leading jet in Higgs pro-
duction with the QTilde shower. The main plot envelopes con-
sist of the full set of µH , µS , µQ variations for the resummation

(red), hfact (green), theta (pink), pow (brown). The first ratio
plot shows the central predictions for each profile relative to
the resummation profile. The subsequent ratio plots show the
variations of individual scales relative to the full envelope for
each profile (ratio, top-left).
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Fig. 7. Rapidity of the Z boson for both the QTilde shower
(red) and the Dipole shower (blue). The main plot envelope
contains the full scale variations for each shower, and the ratio
plots contain their breakdown in terms of the individual scales
relative to the full envelope (ratio, top-left). The lines shown
are for the resummation profile.

Comparing Figs. 6-10, we find that the different pro-
file choices exhibit significantly different behaviours, both
amongst themselves as well as between different showers.
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Fig. 8. Transverse momentum of the leading jet in Higgs pro-
duction with the Dipole shower. The main plot envelopes con-
sist of the full set of µH , µS , µQ variations for the resummation

(blue), hfact (pink), theta (green), pow (teal). The first ratio
plot shows the central predictions for each profile relative to
the resummation profile. The subsequent ratio plots show the
variations of individual scales relative to the full envelope for
each profile (ratio, top-left).

The resummation and theta profiles, as intended, yield
comparable results in terms of central predictions and
uncertainties and across the different shower algorithms.
This clearly shows that we can indeed expect the same re-
summation accuracy using these profiles. The variations
towards high p⊥ for the theta profile expose the effect of
the different phase-space limitations. In the QTilde shower
the upward variation of the scales (µQ) is ultimately irrel-
evant, as there are no possible emissions at this scale; look-
ing at the dipole shower one sees the effect of such varia-
tions. However, this is not the case for the resummation
profile whose interpolating region is sensitive to such vari-
ations, and displays similar variations between showers.

For large transverse momenta, the uncertainties should
reflect the case that parton-shower emissions in these re-
gions are unreliable. We observe this for both the theta
and resummation profiles and to some extent for the hfact
choice, though the variation is considerably smaller than
indicated by the theta-type choices. The power shower,
however, shows no increased uncertainty and in fact is
dominated by variations of µH . Given the marked differ-
ences in the hardness of jets between the two showers, the
power shower seems to offer no handle towards the assess-
ment of shower uncertainties. We can also clearly observe
the intrinsic limitation of the QTilde shower phase space,
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Fig. 9. Transverse momentum of the leading jet in Z produc-
tion with the QTilde shower. The main plot envelopes consist
of the full set of µH , µS , µQ variations for the resummation

(red), hfact (green), theta (pink), pow (brown). The first ra-
tio plot shows the central predictions for each profile relative
to the resummation profile. The subsequent ratio plots show
the variations of individual scales relative to the full envelope
for each profile (ratio, top-left).

that in this case is not able to populate high-p⊥ emis-
sions which ultimately needs to be supplied by matching
and/or matrix element corrections similarly to the ‘dead
zone’ effect in e+e− collisions.

We therefore conclude that within this basic setting
the showers and profile scale choices do admit the expected
behaviour, and the two showers using theta-type profiles
exhibit similar central predictions and uncertainties.

5 Jetty Processes

Having established shower uncertainties using simple bench-
mark processes, the next simplest examples are the pro-
cesses studied in Sec. 4 with an additional hard emission
off the hard process, e.g. H/Z plus one (inclusive) jet. In
addition, pure di-jet production is investigated because of
the absence of a colour singlet setting a hard scale and
the related ambiguities in possible hard scale choices. We
do not investigate the shower cutoff as we shall now focus
on properties which are not expected to be significantly
altered by hadronisation effects.

As with the clean benchmarks presented in Sec. 4, we
consider variations of the three relevant scales discussed in
Sec. 3, changing them by factors 1/2 and 2, respectively, to
span a cube of a total of 27 variations; we will also perform
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Fig. 10. Transverse momentum of the leading jet in Z produc-
tion with the Dipole shower. The main plot envelopes consist
of the full set of µH , µS , µQ variations for the resummation

(blue), hfact (pink), theta (green), pow (teal). The first ratio
plot shows the central predictions for each profile relative to
the resummation profile. The subsequent ratio plots show the
variations of individual scales relative to the full envelope for
each profile (ratio, top-left).

cross-validations between both available showers. From ar-
guments given in Sec. 3 we expect observables and/or
regions in phase space where the uncertainty is mainly
driven by ξH, i.e. in the case of inclusive observables. As
all uncertainties connected with scale choices stem from
logarithmic arguments there is no a priori way to exclude
any of the possible variations when determining shower
uncertainties, unless one is able to identify scale compen-
sation patterns between the different scales for which we
see no evidence in the setting considered in this study.

For the rapidity distributions of the Higgs and Z bo-
son, shown in Fig. 11 and 12, respectively, we find that
the distributions are consistent with the prediction of the
hard matrix element, as is expected from such inclusive
quantities; this applies to all of the profile scales consid-
ered, with the power shower showing larger deviations in
the forward region. Scale variations affect these observable
mainly through variations present in the hard process.

Similarly to the rapidity distributions, we expect the
p⊥-spectra of the leading jet to be predicted mainly by the
hard matrix element, according to the consistency con-
ditions discussed in Sec. 2.5. In Fig. 13 and 14 (H and
Z production, respectively) we show the results for the
QTilde shower, while Fig. 15 and 16 contain our findings
for the Dipole shower. We again find that the uncertain-
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Fig. 11. Rapidity of the Higgs in Higgs plus one jet events for
the QTilde (red) and Dipole (blue) shower compared to the
matrix element prediction (black). We show results obtained
with the resummation profile. The error bands are computed
from all allowed scale choices (see text). Top ratio plot: QTilde
vs. Dipole and ME. Second ratio plot: QTilde with full error
band vs. variation of only either µH , µQ or µS . Third ratio
plot: Dipole with full error band vs. variation of only either
µH , µQ or µS .

ties are dominated by the variation of the hard scale. For
both showers the resummation profile is consistent with
the hard matrix element prediction, except for jets close
to the threshold where cut migration effects are being
probed7. For the hfact profile with the QTilde shower
we find a spectrum compatible with the one anticipated
by the matrix element; for the dipole shower, a signifi-
cantly harder spectrum is obtained. A similar, but even
more dramatic picture emerges for the power shower set-
ting. The spread of predictions for the QTilde shower is
smaller than the spread for the dipole shower, owing to
the intrinsic limitations of the phase-space volume avail-
able to angular-ordered emissions as already pointed out
in the previous sections. The combinations QTilde plus
power, and Dipole plus hfact or power contradict the
criterion of controllable showering, which in this case is
expected to not significantly alter the jet p⊥ spectrum.
Combined with the empirical findings of Sec. 4, we will
therefore not consider the power shower profile choice any
further.

Turning to more exclusive observables8, we consider
the angular separation between the boson and the lead-

7 Cut migration for jetty processes should actually be consid-
ered another source of uncertainty beyond the ones discussed
here; however, we do not address these in detail but chose to
use equal generation and analysis cuts to highlight these ef-
fects.

8 We remind the reader that ‘exclusive’ here means: poten-
tially probing more and more shower emissions on top of the
hard process.
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Fig. 12. Rapidity of the Z in Z plus one jet events for the
QTilde (red) and Dipole (blue) shower compared to the ma-
trix element prediction (black). We show results obtained with
the resummation profile. The error bands are computed from
all allowed scale choices (see text). Top ratio plot: QTilde vs.
Dipole and ME. Second ratio plot: QTilde with full error band
vs. variation of only either µH , µQ or µS . Third ratio plot:
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Fig. 13. Transverse momentum of the leading jet for Higgs
plus one (inclusive) jet as computed by the QTilde shower for
resummation (red), hfact (lime) and power (brown) profile
compared to the ME (black) prediction. Top ratio plot: same
as before. Other ratio plots: resummation, hfact respectively
power profile with full error band vs. variation of only either
µH , µQ or µS .

ing jet ∆R(H/Z)j , which probes both matrix element and
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Fig. 14. Transverse momentum of the leading jet for Z plus
one (inclusive) jet as computed by the QTilde shower for
resummation (red), hfact (lime) and power (brown) profile
compared to the ME (black) prediction. Top ratio plot: same
as before. Other ratio plots: resummation, hfact respectively
power profile with full error band vs. variation of only either
µH , µQ or µS .
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Fig. 15. Transverse momentum of the leading jet for Higgs
plus one (inclusive) jet as computed by the Dipole shower for
resummation (red), hfact (lime) and power (brown) profile
compared to the ME (black) prediction. Top ratio plot: same
as before. Other ratio plots: resummation, hfact respectively
power profile with full error band vs. variation of only either
µH , µQ or µS .
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Fig. 16. Transverse momentum of the leading jet for Z plus
one (inclusive) jet as computed by the Dipole shower for
resummation (red), hfact (lime) and power (brown) profile
compared to the ME (black) prediction. Top ratio plot: same
as before. Other ratio plots: resummation, hfact respectively
power profile with full error band vs. variation of only either
µH , µQ or µS .

shower dominated regions in a continuous observable: Ma-
trix element emissions in this case can only populate the
phase-space region ∆R(H/Z)j ≥ π. The region below is
solely filled by the parton shower, typically operating at
the boundary of validity of the underlying approximation
as this phase space requires the shower to produce a hard,
large-angle emission. Within the definition of controllable
and consistent uncertainties, we therefore expect large un-
certainties for ∆R(H/Z)j ≤ π, while the shower should re-
produce the matrix element dynamics above. Results for
the QTilde shower are shown in Fig. 17 and 19 (H and
Z production, respectively) and for the Dipole shower in
Fig. 18 and 20. We place particular emphasis on the com-
parison of the resummation and hfact profiles. For all
processes/showers we find that hfact predicts a small un-
certainty band and produces slightly more hard jets; the
latter can be attributed to the available phase space, while
the former can be obtained by analysing Eq. 7, stressing
the fact that the region in which the derivative of the pro-
file is varying significantly extends over a larger region
than for the other profiles, though with less overall vari-
ation implied. Contrary, and matching the expectations
motivated by the logarithmic structure, the uncertainty
for the resummation profile in the small ∆R(H/Z)j region
is large and driven by all scale variations together. In ad-
dition, in the bottom ratio plot of Figs. 17, 19, 18 and 20
we show a subset of scale variations for the resummation
profile choice, varying the hard and shower scales in a
correlated and anti-correlated setting, at a fixed µQ. This
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Fig. 17. Separation between the Higgs and the leading jet
for Higgs plus one (inclusive) jet as computed by the QTilde
shower for resummation (red) and hfact (lime) profile com-
pared to the ME (black) prediction. Top ratio plot: same as
before. Second and third ratio plots: resummation respectively
hfact profile with full error band vs. variation of only either
µH , µQ or µS . Last ratio plot: resummation profile with full er-
ror band vs a subset where µH and µS are varied in correlated
(dark purple) respectively anti-correlated (hatched) manner,
while µQ is held fixed.

breakdown shows how different subsets of variations con-
stitute the full uncertainty band. Besides the simple dom-
ination of the uncertainty by one variation, other regions
of phase space show that the uncertainty is strongly un-
derestimated by considering the variations separately. We
therefore argue that only the full, combined, scale vari-
ation produces a reliable error band. As another probe
of the interaction of shower emissions with the hardest
jet, we consider k⊥-splitting scales, particularly the one
in which an event with two jets would turn into an event
with one jet as the jet p⊥ threshold passes through the
scale obtained. These observables have also been proven
to be accessible to analytic considerations [75], for which
comparisons to full parton showers are highly desirable
though are beyond the scope of this paper. In Fig. 21 we
show our results for the QTilde shower for Higgs produc-
tion9. Once again we compare the resummation profile
choice with the hfact profile. It is noteworthy that the
hfact profile introduces a strong change in the shape of
the Sudakov peak, on top of the harder spectrum already
observed for the first jet; besides the tail effects we are
therefore concerned that profile scale choices along these
lines may significantly impact the resummation properties
of the parton shower, as may already be expected from the

9 The results for Z plus one jet and the Dipole shower yield
similar observations and conclusions.



Johannes Bellm et al.: Parton Shower Uncertainties with Herwig 7: Benchmarks at Leading Order 13

Herwig 7
pp → Hj

LO ⊕ Dipoles (res)
LO ⊕ Dipoles (hfac)
ME

10−4

10−3

10−2

10−1

1

10 1

Separation between H boson and leading jet

d
σ

/
d

∆
R
(H

,1
st

je
t)

[p
b]

0.5
1

1.5
LO ⊕ Dipoles (res) LO ⊕ Dipoles (hfac)

ME

0.5
1

1.5
LO ⊕ Dipoles (res) µH

µQ µS

0.5
1

1.5
LO ⊕ Dipoles (hfac) µH

µQ µS

1 2 3 4 5 6 7

0.5
1

1.5
LO ⊕ Dipoles (res) µanti−corr,S,H

µcorr,S,H

∆R(H, 1st jet)

Fig. 18. Separation between the Higgs and the leading jet for
Higgs plus one (inclusive) jet as computed by the Dipole shower
for resummation (red) and hfact (lime) profile compared to the
ME (black) prediction. Top ratio plot: same as before. Second
and third ratio plots: resummation respectively hfact profile
with full error band vs. variation of only either µH , µQ or µS .
Last ratio plot: resummation profile with full error band vs.
a subset where µH and µS are varied in a correlated (dark
purple) respectively anti-correlated (hatched) manner, while
µQ is held fixed.

arguments presented in Sec. 3. We therefore conclude that,
even with intrinsically restricted phase space, the hfact
profile does not provide controllable uncertainties and will
not be taken further into account in this study. We also
use Fig. 21 to perform an comprehensive breakdown of
the different variation directions in the ‘cube’ of possible
variations, showing that no individual variation actually
covers the full dynamics present. For LO plus PS simula-
tions, we therefore argue that the full band is taken into
consideration and improvements in the context of match-
ing and merging will be subject to future work.

We have so far considered processes with a colourless,
massive object that dominates the scale hierarchy at hand,
and, even in the presence of an additional jet, makes the
dynamics rather insensitive to additional radiation (as far
as this radiation is confined to reasonable phase-space re-
gions as identified above). A process where this is clearly
not the case is pure jet production in hadron collisions,
which also probes different colour structures that have
not been encountered in the hard processes considered
thus far. Owing to the back-to-back configuration at low-
est order, we expect considerable parton-shower effects in
comparison to the hard matrix element for a number of
observables and expect to make a more detailed compari-
son to fixed order only once NLO improvement has been
incorporated. Nevertheless, we can still test as to what
extent the shower variations match up to expectations
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Fig. 19. Separation between the Z and the leading jet for Z
plus one (inclusive) jet as computed by the QTilde shower for
resummation (red) and hfact (lime) profile compared to the
ME (black) prediction. Top ratio plot: same as before. Second
and third ratio plots: resummation respectively hfact profile
with full error band vs. variation of only either µH , µQ or µS .
Last ratio plot: resummation profile with full error band vs
a subset where µH and µS are varied in a correlated (dark
purple) respectively anti-correlated (hatched) manner, while
µQ is held fixed.

in signalling regions where the prediction should gener-
ally be considered unreliable. We also test, once more, if
the two showers are comparable within their uncertain-
ties. Following the previous arguments, we only consider
the resummation profile, with a hard scale again given
by the jet p⊥. Sample results comparing to the hard ma-
trix element are shown in Figs. 22, 23 and 25, which show
that the two showers preform in a very similar way both
in their central predictions and variations; they also show
that qualitatively we find a behaviour similar to the sin-
glet plus jet benchmarks as if we had replaced the hard,
colourless, object with a jet as hard probe. Quantitatively,
however, we observe significant changes in rates for the
second jet, which need to be confronted with the impact
of cut migration as well as the impact of higher order cor-
rections. We also note that choosing the hard veto scale in
this setting has a significant impact on showered results.

With the transverse momentum of the third jet and
the 2→ 3 resolution shown in Figs. 24 and 26 we consider
purely shower driven quantities; both of these nicely reveal
that the two showers, together with the resummation pro-
file, are perfectly compatible with each other, exhibiting
the same resummation accuracy.
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Fig. 20. Separation between the Z and the leading jet for Z
plus one (inclusive) jet as computed by the Dipole shower for
resummation (red) and hfact (lime) profile compared to the
ME (black) prediction. Top ratio plot: same as before. Second
and third ratio plots: resummation respectively hfact profile
with full error band vs. variation of only either µH , µQ or µS .
Last ratio plot: resummation profile with full error band vs
a subset where µH and µS are varied in a correlated (dark
purple) respectively anti-correlated (hatched) manner, while
µQ is held fixed.

6 Conclusions and Outlook

We have performed a comprehensive and detailed study of
the sources of uncertainty in parton showers, utilising the
two parton-shower algorithms available in Herwig 7. We
have investigated different choices of profile scales to ap-
proach the boundary of hard emissions, as these are highly
relevant to effects that appear in the context of NLO
plus PS matching. We have systematically categorised the
sources of uncertainty and outlined their interplay with
other simulation components, putting this study into con-
text of a bigger work programme to eventually establish
uncertainties for event generators in total.

Focussing on the perturbative, parton-shower part, of
the simulation, we have deliberately chosen LO plus PS
calculations to establish a baseline of controllable and con-
sistent variations that will allow us to subsequently iden-
tify improvements and reduction in these uncertainties as
higher order corrections are included. We have found that
profile scale choices are very constrained when applying
consistency conditions on both central predictions (which
should not alter input distributions of the hard process)
and uncertainties (with large uncertainties to be expected
in unreliable regions or regions dominated by hadronisa-
tion corrections), as well as stable results in the Sudakov
region. Particularly the hfact and power shower config-
urations do not admit results compatible with these cri-
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Fig. 21. k⊥–splitting scale for the transition from the one to
the two jet configuration in Higgs plus one (inclusive) jet as
computed with the QTilde shower. The base line in each plot
is the resummation profile choice. The main plot and the first
ratio plot show a comparison to the hfact profile choice. The
subsequent ratio plots compare the full error band to certain
subsets of scale variation choices, namely: variation of µH , µQ,
µS , µH with ξQ and ξS fixed to 2, µQ with ξH and ξS fixed to
2, µS with ξQ and ξH fixed to 2, µH with ξQ and ξS fixed to
0.5, µQ with ξH and ξS fixed to 0.5, µS with ξQ and ξH fixed
to 0.5, µS and µH in a correlated manner and µS and µH in
an anti-correlated manner.
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Fig. 22. Transverse momentum of the first jet in (inclusive)
di-jet production as computed by the QTilde (red) and Dipole
(blue) shower with the resummation profile compared to the
ME (black) prediction. Top ratio plot: same as before. Subse-
quent ratio plots: QTilde (second) and Dipole (third) with full
error band vs. variation of only either µH , µQ or µS .
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Fig. 23. Transverse momentum of the second jet in (inclusive)
di-jet production as computed by the QTilde (red) and Dipole
(blue) shower with the resummation profile compared to the
ME (black) prediction. Top ratio plot: same as before. Subse-
quent ratio plots: QTilde (second) and Dipole (third) with full
error band vs. variation of only either µH , µQ or µS .

teria. Utilising a resummation profile, which is very close
to the theta cutoff for hard emissions as implemented in
previous algorithms, we find that the angular-ordered and
dipole-based shower algorithms are compatible with each
other, both in central predictions and uncertainty claims,
despite their very different nature.
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Fig. 24. Transverse momentum of the third jet (inclusive) di-
jet production as computed by the QTilde (red) and Dipole
(blue) shower with the resummation profile compared to the
ME (black) prediction. Top ratio plot: same as before. Other
ratio plots: QTilde (second) and Dipole (third) with full error
band vs. variation of only either µH , µQ or µS .
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Fig. 25. Separation between the leading and second jet for
(inclusive) di-jet as computed by the QTilde (red) and the
Dipole (blue) shower together with the resummation profile.
Top ratio plot: same as before. Second and third ratio plots:
full error band vs. variation of only either µH , µQ or µS .

Acknowledgments

We are grateful to the other members of the Herwig col-
laboration for encouragement and helpful discussions; in
particular we would like to thank Stefan Gieseke, Peter
Richardson and Mike Seymour for a careful review of the
manuscript. We also acknowledge fruitful exchange with
Mrinal Dasgupta and Frank Tackmann.

The work of JB and PS has been supported by the Eu-
ropean Union as part of the FP7 Marie Curie Initial Train-



16 Johannes Bellm et al.: Parton Shower Uncertainties with Herwig 7: Benchmarks at Leading Order

Herwig 7
pp → 2j

LO ⊕ PS (res)
LO ⊕ Dipoles (res)

10 3

10 4

10 5

10 6

10 7

10 8

log10(k⊥ jet resolution 2 → 3 [GeV])

d
σ

/
d

lo
g 10

(d
23

/
G

eV
)

[p
b]

0.5
1

1.5
LO ⊕ PS (res) LO ⊕ Dipoles (res)

0.5
1

1.5
LO ⊕ PS (res) µH

µQ µS

0.5 1 1.5 2 2.5 3 3.5

0.5
1

1.5
LO ⊕ Dipoles (res) µH

µQ µS

log10(d23/GeV)

Fig. 26. k⊥–splitting scale for the transition from the two to
the three jet configuration in (inclusive) di-jet production as
computed with the QTilde (red) and the Dipole (blue) shower
together with the resummation profile. The base line in the first
plot is the QTilde shower. The subsequent ratio plots compare
the full error band to certain subsets of scale variation choices,
namely: variation of µH , µQ, µS . The second ratio plot presents
the QTilde shower, the last one the Dipole shower.

ing Network MCnetITN (PITN-GA-2012-315877). GN ac-
knowledges a short term student visit funded by MC-
netITN. SP acknowledges support by a FP7 Marie Curie
Intra European Fellowship under Grant Agreement PIEF-
GA-2013-628739. We are also grateful to the Cloud Com-
puting for Science and Economy project (CC1) at IFJ
PAN (POIG 02.03.03-00-033/09-04) in Cracow and the
U.K. GridPP project whose resources were used to carry
out some of the numerical calculations for this project.

Thanks also to Mariusz Witek and Mi losz Zdyba l for
their help with CC1 and Oliver Smith for his help with
grid computing.

References

1. M. Bahr et al., Herwig++ Physics and Manual, Eur.
Phys. J. C58 (2008) 639–707, [arXiv:0803.0883].

2. J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note,
Eur. Phys. J. C76 (2016), no. 4 196, [arXiv:1512.0117].
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