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1 Introduction

An accurate treatment of heavy quark mass effects is an essential ingredient of modern PDF

fits [1–5]. Global PDF fits require the computation of physical cross sections over a range

of perturbative scales Q2 in order to incorporate a wide range of data from fixed target

experiments up to LHC. As these scales pass through (or close to) the thresholds for charm,

bottom and top, precision results require the incorporation of heavy quark mass effects close

to threshold, Q2 ∼ m2, and the resummation of collinear logarithms at scales far above

the threshold, Q2 � m2, m being the mass of the heavy quark. This is achieved through
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the use of a so-called variable flavour number scheme (VFNS): calculations involving heavy

quarks in DIS in different schemes with different numbers of active flavours participating

to DGLAP evolution are combined to derive an expression for the coefficient functions

which is valid both close to threshold, and far above it. A number of such VFNSs have

been proposed for DIS structure functions, including ACOT [6, 7], S-ACOT [8, 9], TR and

TR′ [10, 11], and FONLL [12–14].

A common feature of these various VFNSs is that they assume that the heavy quark

PDF is generated entirely perturbatively above threshold. This assumption is reasonable

enough for top and bottom, since both sit well within the accepted region of validity of

perturbative QCD, and an entirely perturbative treatment is appropriate. By contrast, the

distribution of gluons, and up, down and strange quarks in the proton is clearly nonper-

turbative, and can only be determined empirically through PDF fits.

The charm quark plays a special role, since the charm threshold sits at the borderline

between perturbative and nonperturbative behaviour. While at high scales most charm is

generated perturbatively through photo-gluon fusion (so that at HERA for example charm

contributes up to 25% of the measured structure functions), closer to threshold it is difficult

to rule out a priori a small nonperturbative component. Ideally one would like to admit

the possibility of an initial charm PDF at threshold, which then evolves perturbatively to

higher scales. The initial charm PDF could then be determined by fitting to data, just like

the gluon and light quark PDFs. While over the years a variety of nonperturbative models

of this ‘intrinsic charm’ have been proposed [15–17], and various attempts have been made

at an empirical determination [18–21], so far no conclusive evidence has been found.

In this paper we will construct a VFNS which can incorporate intrinsic heavy quark

PDFs, specifically intrinsic charm. We will take as given the existence to all orders in

perturbation theory of the usual massless MS factorization, and the complementary mas-

sive factorization proven in [22]. We then compare the ACOT and FONLL constructions,

all the time taking into account the possibility of an intrinsic component of the charm

PDF. We find in this way that for a specified renormalization and factorization scheme

(namely MS), the FONLL [12, 13] and ACOT [6, 7] constructions give formally identical

results, to all orders in perturbation theory. Moreover, in the limit of vanishing intrinsic

charm, the original FONLL procedure [14] is precisely equivalent to the S-ACOT prescrip-

tion [9, 23], again to all orders in perturbation theory: the only difference between them is

in formally subleading terms implemented through a damping factor (FONLL) or a phe-

nomenological χ-rescaling (S-ACOT-χ, [24]), which parametrize subleading ambiguities in

the implementation of the condition of zero intrinsic charm. The TR prescription in its

original formulation [10] was only specified at NLO, while at NNLO [11] it essentially re-

duces to S-ACOT [25]: as far as we are aware there is no formal extension to all orders, so

this prescription will not be considered further here.

The basic formalism of the schemes used for fixed order and resummed results and

their matching is developed in section 2. Then in section 3 we present the FONLL formal-

ism, we show the formal equivalence of FONLL and ACOT, the simplifications evident in

the limit of no intrinsic charm, and in particular show that when all charm is generated

perturbatively, FONLL is equivalent to S-ACOT. The inclusion of top and bottom quarks
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is discussed in section 4. Conclusions are drawn in section 5. In the appendices we derive

some technical results on matrix inversion, and write down explicit results for the structure

functions F c2 , F cL and F c3 to NNLO.

2 Heavy quarks and factorization

The definition of light and heavy quarks is somewhat arbitrary: being ‘light’ or ‘heavy’

is a relative concept. In the context of initial state factorization, a convenient definition

of ‘light’ quark is a quark whose mass m . ΛQCD, such that a perturbative treatment is

not applicable. According to this definition, the up, down and strange quarks are light.

Light quarks can be taken to be massless, because the factorization theorem is accurate

up to O(Λ2
QCD/Q

2) corrections, and light quark mass corrections are higher twist effects

O(m2/Q2) . Consistently, it is natural to define as ‘heavy’ a quark whose mass m� ΛQCD,

such that αs(m
2) is in the perturbative regime. With this definition, the bottom and top

quarks are heavy, and their description can be carried out using perturbation theory.

The charm mass mc sits somewhere around the boundary of the region of validity

of perturbative QCD: if we denote the initial scale of perturbative parton evolution by

Q0, such that for Q > Q0 evolution is perturbative, while for Q < Q0 nonperturbative

behaviour sets in, then Q0 ∼ mc. For this reason, the charm is special, since it is not

heavy enough to fully trust perturbation theory, but not light enough that its mass can be

ignored. Therefore, we cannot safely assume that at Q0 the charm distributions c(x,Q0)

and c̄(x,Q0) are strictly zero, even if Q0 is below the threshold for perturbative charm pro-

duction, since nonzero distributions (commonly called ‘intrinsic charm’) may be generated

by nonperturbative effects. To take this into account we need to treat charm in the same

way that we treat the light partons q = u, d, s, q̄ = ū, d̄, s̄ and g, with an initial (fitted)

PDF at Q0, evolved up to scales Q > Q0 using perturbation theory. However, unlike the

other light partons, charm mass effects cannot be neglected for scales Q which are not

much larger than mc, as typically encountered in DIS experiments.

The computation of coefficient functions can be performed in different factorization

and renormalization schemes, all leading to results for physical cross sections which must

be equivalent to all orders in perturbation theory, and must therefore differ at finite order

only by higher order corrections. For renormalization, the quark mass does not play an

important role, since a UV divergent massless-quark loop would be still divergent even if

the quark were massive. Renormalization can be performed in MS for all quark families;

however, all flavours would then participate to αs evolution at any scale, resulting in

unphysical heavy quark effects at scales much smaller than the heavy quark mass. It

is therefore more appropriate to use MS only for quarks with masses lighter than the

renormalization scale µR, and use the CWZ scheme [26] for quarks heavier than µR, since

this scheme, being based on a subtraction at zero external momenta, ensures decoupling

of the heavy quark with mass m for scales µR � m. In this way, resummation of large

logarithms of µR/m with µR � m is achieved, while the analogous logarithms when m� µR

are power suppressed as µ2
R/m

2. Since the choice of which renormalization scheme to use

with each quark depends on the relative size of the quark mass and the renormalization
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scale, which varies dynamically, a variable flavour number (renormalization) scheme is

generated.

On the other hand, the quark mass acts as an IR regulator. This means that radiative

corrections involving massive quarks are finite. Thus while for massless quarks factorization

is mandatory, for massive quarks one may choose whether to factorize massive collinear

logarithms or not. In principle, there is nothing wrong with using standard massless fac-

torization for the light quarks, while keeping massive collinear logarithms in the coefficient

functions: this is the so called 3 flavour scheme (3FS), discussed in section 2.1. However,

the collinear logarithms (appearing as single logarithms, so there are k logarithms of Q2/m2

at order αks(Q
2)) can become large at high scales, spoiling the perturbative convergence of

the 3FS result. In this case, it is more appropriate to factorize and resum the collinear log-

arithms associated in the first place to the charm, then the bottom and at very high scales

the top as well, leading to 4, 5 and 6 flavour schemes respectively. The 4FS is discussed in

section 2.2, with particular emphasis on the charm quark (since the bottom and the top

are treated identically in the 3FS and 4FS). This will give us the opportunity to discuss the

issues related to a possible intrinsic component of the charm PDF. The extension of this

discussion to the bottom and top quark is straightforward, so the details are postponed to

section 4.

2.1 The 3 flavour scheme

As already discussed, since the heavy quark mass regulates the IR behaviour, there is

no need to factorize the (finite) collinear logarithms due to splittings involving the charm,

bottom and top quarks. One can therefore use standard (MS) massless factorization for the

gluon and light quarks only, and leave explicit collinear logarithms due to massive charm,

bottom and top quarks unfactorized in the coefficient function. Together with the adoption

of the decoupling scheme for UV renormalization of charm, bottom and top loops, this gives

the so-called 3 flavour scheme (3FS) [8, 26]. In the context of heavy quark factorization,

this is also often called the ‘massive scheme’, since the quark mass dependence of each

massive quark, and in particular the charm, is exact. The coefficient functions will then

contain unresummed (and at high scales potentially large) mass collinear logarithms.

In this scheme, only the 3 flavours of light quarks (plus the gluon) evolve with standard

DGLAP equations, as a consequence of the massless MS factorization acting only on those

flavours. The contribution of the charm, bottom and top quarks (both in loops and trees)

is evaluated at fixed order in perturbation theory, without subtraction and resummation

of the related collinear logarithms. The 3FS is thus useful in the threshold region of the

charm, where in particular the effects of the charm quark mass are treated explicitly, but

breaks down at higher scales due to large unresummed logarithms of Q2/m2
c . Explicitly

we then have, for the generic structure function,1

F (3)(Q2,m2
c) =

∑
i=g,q,q̄,c,c̄

C
(3)
i

(
m2

c
Q2 , α

(3)
s (Q2)

)
⊗ f (3)

i (Q2) (2.1)

1Throughout this paper we will use consistently a superscript (n) to denote a coefficient function in a

scheme with n active flavours.
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where ⊗ is the usual x-space convolution, and we have suppressed all explicit dependence

on x. The coefficient functions C
(3)
i include the effects of the charm mass order by order in

perturbation theory, both in tree diagrams (for example a charm quark emerging from the

proton and being struck by a virtual photon) and in loops (for example a photon-gluon fu-

sion creating a charm-anticharm pair, or a virtual charm loop in a gluon propagator). This

dependence includes thresholds: for example the contribution to the coefficient function

from photon-gluon fusion includes a factor of θ(W 2−4m2
c), to ensure that it vanishes below

threshold. In writing eq. (2.1) we include from the start an explicit contribution from a

charm PDF (i.e., the sum runs also over i = c, c̄): if all charm were generated perturba-

tively we would set this contribution to zero, and the structure function would then depend

only on the light PDFs f
(3)
i with i = g, q, q̄. We write explicitly only the dependence on the

charm mass mc, since this is our main focus here, but we note in passing that the structure

function and the coefficient functions can also depend on the bottom and top quark masses

as well through virtual loops and, when kinematically allowed, pair production.

The label (3) means that there are only 3 ‘active’ quarks, by which we mean that they

evolve as

f
(3)
i (Q2) =

∑
j=g,q,q̄

Γ
(3)
ij

(
Q2, Q2

0

)
⊗ f (3)

j (Q2
0), i = g, q, q̄, (2.2)

where Γ
(3)
ij

(
Q2, Q2

0

)
is the solution of the DGLAP equation with three active flavours.

The charm is still present but not active, and in particular the Q2 dependence of the

charm contribution to the structure function is all in the coefficient function, so f
(3)
c,c̄ are

independent of Q2 for all Q2. Since in eq. (2.1) we have four flavours, even though only

three are active, it is convenient to write

f
(3)
i (Q2) =

∑
j=g,q,q̄,c,c̄

Γ̄
(3)
ij

(
Q2, Q2

0

)
⊗ f (3)

j (Q2
0), i = g, q, q̄, c, c̄, (2.3)

where

Γ̄
(3)
ij (Q2, Q2

0) =


Γ

(3)
ij (Q2, Q2

0) i, j = g, q, q̄

δij , i, j = c, c̄

0, otherwise.

(2.4)

The massive coefficient functions C
(3)
i (m2

c/Q
2, α

(3)
s (Q2)) are computed to a fixed order

in perturbation theory, retaining the full mass dependence of the diagrams, including in

particular the kinematic thresholds arising from the charm quarks in the final state. They

are fully known to O(α2
s) [27, 28] for incoming light partons, but only to O(αs) for incoming

heavy partons [29, 30]. If there is no initial state (intrinsic) charm, the structure function

eq. (2.1) does not include contributions from C
(3)
c,c̄ (m2

c/Q
2, α

(3)
s (Q2)). In this case, below

the threshold for charm pair production the only charm mass effect is through virtual loops;

the adoption of the CWZ renormalization scheme ensures that the charm quark decouples

completely below threshold W 2 < m2
c and thus at low scales Q2 � m2

c , so that in this limit

F (3)(Q2,m2
c) =

∑
i=g,q,q̄

C
(3)
i

(
α(3)
s (Q2)

)
⊗ f (3)

i (Q2) +O
(
Q2

m2
c

)
, (2.5)
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where the charm mass dependence has completely disappeared from the coefficient function.

While the heavy limit is clearly not perturbative in the case of charm, it applies equivalently

to bottom and top.

2.2 The 4 flavour scheme

In the 3FS the finite mass logarithms arising from the splittings of the charm quark appear

at fixed order in the coefficient functions C
(3)
i . Explicitly, the massive coefficients have a

decomposition

C
(3)
i

(
m2

c
Q2 , α

(3)
s (Q2)

)
=

∞∑
k=0

[
α(3)
s (Q2)

]k k∑
j=0

Ai,k,j

(
m2

c
Q2

)
logj m

2
c

Q2 , (2.6)

where the dependence on the logarithms has been made fully explicit, and the coefficients

Ai,k,j(m
2
c/Q

2) admit a power expansion on their argument. At large scales Q2 � m2
c ,

these logarithms become large, eventually spoiling the convergence of the fixed-order result

eq. (2.1). In this regime resummation of the collinear logarithms is necessary for reliable

predictions.

Therefore, at scales higher than the charm mass, it is advisable (and eventually nec-

essary) to use a different factorization scheme where these logarithms are factorized into

the definition of the PDFs, and resummed through PDF evolution, just as for the light

partons. This would be mandatory if one considered the charm quark as a massless flavour,

as appropriate in the high energy limit Q2 � m2
c : in this limit, all collinear divergences

including those from charm quarks have to be subtracted. Using standard massless MS

subtractions, the resulting evolution equation reads

f
(4)
i (Q2) =

∑
j=g,q,q̄,c,c̄

Γ
(4)
ij

(
Q2, Q2

0

)
⊗ f (4)

j (Q2
0) (2.7)

where Γ
(4)
ij is the DGLAP evolution factor to a given order in perturbation theory for

four active (massless) flavours, resumming all collinear logarithms of Q2/Q2
0, including

those generated by charm splittings. Collinear logarithms due to bottom and top quarks,

however, are not resummed in this scheme, and will therefore continue to appear at fixed

order in the coefficient functions.

We now focus on the computation of the coefficient functions. In the high energy

limit where all four active flavours are considered massless, we can obtain the structure

functions using standard massless MS collinear counterterms also for the charm quark, up

to corrections suppressed by powers of m2
c/Q

2. We thus get

F (4)(Q2,m2
c) = F (4)(Q2, 0) +O

(
m2

c
Q2

)
F (4)(Q2, 0) =

∑
i=g,q,q̄,c,c̄

C
(4)
i

(
0, α(4)

s (Q2)
)
⊗ f (4)

i (Q2), (2.8)

where C
(4)
i (0, α

(4)
s (Q2)) are the usual massless scheme coefficient functions, analogous to

the C
(3)
i of eq. (2.1) but with an additional massless quark, evaluated to the given order in

– 6 –
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perturbation theory in the four flavour running coupling α
(4)
s (Q2). Here, the first argument

has been set to zero to remind us that the charm mass has been neglected (while the bottom

and top masses are finite). These massless coefficient functions have been computed to

O(α3
s) [31]. Note that, while C

(3)
i (m2

c/Q
2, α

(3)
s ) is logarithmically divergent when m2

c → 0,

C
(4)
i (0, α

(4)
s ) is finite, due to the subtraction of the collinear divergences.

While eq. (2.8) is acceptable at high scales where the corrections of O(m2
c/Q

2) are

negligible, it is not legitimate for lower scales closer to the charm mass. In order to make

it valid at all scales, the neglected power corrections must be reinstated, at least at fixed

order (and this is sufficient, because at high scales they vanish faster than the growth of

the logarithms). This is the approach adopted in the FONLL prescription, and also in

the recently proposed derivation of ref. [32]. Once this is done, and the missing power

corrections are expressed in terms of the same 4 flavour PDFs evolving as in eq. (2.7), we

must have a factorized result of the form

F (4)(Q2,m2
c) =

∑
i=g,q,q̄,c,c̄

C
(4)
i

(
m2

c
Q2 , α

(4)
s (Q2)

)
⊗ f (4)

i (Q2), (2.9)

where C
(4)
i (m2

c/Q
2, α

(4)
s ) are coefficient functions which include the effects of the charm

mass. As we shall see later in section 3, the exact form of the mass-dependent part of these

coefficient functions is not uniquely fixed in the case of perturbatively generated charm:

this has led to the construction of several different (though equally valid) formulations in

the literature, such as ACOT [6, 7], S-ACOT [8, 9], TR and TR′ [10, 11], FONLL [12–14],

and the recent formulation of ref. [32].

A particular form of the coefficient functions, which does not depend on any assump-

tions about intrinsic charm, is the one obtained in the ACOT scheme [7], which uses a

special factorization scheme the existence of which has been proved to all orders in per-

turbation theory by Collins [8]. These coefficient functions are obtained by using massless

collinear counterterms for the light partons, and massive collinear counterterms (using the

quark mass as an infrared regulator) for the charm quark, and then applying the usual

subtraction procedure while keeping charm mass dependence everywhere. The resulting

anomalous dimensions correspond to the DGLAP anomalous dimensions, and lead there-

fore to the same evolution eq. (2.7). Hence, the Collins (ACOT) result can be interpreted

as a massive extension of the massless MS factorization scheme. We will regard at eq. (2.9)

as the result obtained in this scheme.

Note that, since in both eq. (2.8) and eq. (2.9) all collinear singularities are factorised

into the PDFs eq. (2.7), then if Q2 � m2
c ,

C
(4)
i

(
m2

c
Q2 , α

(4)
s (Q2)

)
= C

(4)
i

(
0, α(4)

s (Q2)
)

+O
(
m2

c
Q2

)
. (2.10)

It can be observed that, since the coefficient functions C
(4)
i (m2

c/Q
2, α

(4)
s (Q2)) contain the

correct mass dependence and do not contain mass logarithms, the result eq. (2.9) performs

the collinear resummation of charm massive logarithms as the massless result eq. (2.8), but

it additionally includes the exact charm mass dependence as the massive result eq. (2.1).

In this respect, this result already provides a satisfactory treatment of heavy quarks in the
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initial state. Practically, however, it has never been used beyond NLO, due to complications

in the computation of the massive coefficient functions C
(4)
i (m2

c/Q
2, α

(4)
s (Q2)).

2.3 Matching

The two results eqs. (2.1) and (2.9) are alternative expressions for the same structure

function, written in terms of different ingredients, specifically αs and the PDFs. It is the

purpose of this section to relate these ingredients in the two schemes.

This proceeds in two stages: first we must match the two renormalization and fac-

torization schemes at some matching scale µ2
c ∼ m2

c , and then we evolve to Q2. For the

running coupling this gives the relation

α(3)
s (µ2

c) = α(4)
s (µ2

c) +

∞∑
p=2

ap

(
α(4)
s (µ2

c)
)p
, (2.11)

with coefficients ap that are readily computed order by order, and are known up to four

loops [33]. The relation between α
(3)
s and α

(4)
s at the generic scale Q2 can be obtained using

renormalization group evolution from µ2
c to Q2. Given these coefficients, we can choose

to expand any perturbative quantity either in powers of α
(3)
s or in terms of α

(4)
s , by using

the relation eq. (2.11) or its inverse. Clearly when comparing coefficients in perturbative

expansions, it is necessary to expand all quantities consistently. In what follows we will

leave all αs dependence implicit, reinstating it only when we perform explicit perturbative

expansions in appendix B.

For the factorization the matching condition is likewise

f
(4)
i (µ2

c) =
∑

j=g,q,q̄,c,c̄

Kij

(
m2

c
µ2c

)
⊗ f (3)

j (µ2
c), (2.12)

Kij

(
m2

c
µ2c

)
= δij +

∞∑
p=1

(
α(4)
s (µ2

c)
)p
Kp
ij

(
m2

c
µ2c

)
, (2.13)

where the coefficients Kp
ij(m

2
c/µ

2
c) are determined perturbatively, by requiring that the 3FS

result eq. (2.1) and the 4FS result eq. (2.9) are equal order by order in (the same) αs. The

computation can be simplified by taking the massless limit: inserting eq. (2.12) in eq. (2.8),

we recover eq. (2.1) up to power suppressed contributions provided∑
i=g,q,q̄,c,c̄

C
(4)
i (0)⊗Kij

(
m2

c
Q2

)
= C

(3,0)
j

(
m2

c
Q2

)
(2.14)

where in the right hand side C
(3,0)
j is just C

(3)
j , but with all power suppressed contributions

be set to zero, keeping only mass independent terms and the mass logarithms. Using the

explicit form eq. (2.6), we can write exactly

∑
i=g,q,q̄,c,c̄

C
(4)
i (0)⊗Kij

(
m2

c
Q2

)
=
∞∑
k=0

(
α(4)
s (Q2)

)k k∑
l=0

Aj,k,l(0) logl m
2
c

Q2 (2.15)
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where the power suppressed contributions have been removed by computing the coeffi-

cients Aj,k,l for mc = 0. Thus, the matching coefficents Kij(m
2
c/µ

2
c) depend on its argu-

ment through the logarithms log(m2
c/µ

2
c) which are present and unresummed in the 3FS

coefficients C
(3)
i (m2

c/Q
2). Inverting eq. (2.14) we can write

lim
m2

c→0

∑
j=g,q,q̄,c,c̄

C
(3)
j

(
m2

c
Q2

)
⊗K−1

ji

(
m2

c
Q2

)
= C

(4)
i (0). (2.16)

which shows that K−1
ij (m2

c/Q
2) factor out the potentially large logarithms from the massive

3FS coefficient functions in order to ensure the correct massless limit, where all collinear

logarithms have been cancelled.

In practice the matching coefficients Kij(m
2
c/Q

2) are computed by comparing cal-

culations of deep inelastic coefficients functions in the 3FS and 4FS to a given order in

perturbation theory, and using eq. (2.14) or equivalently eq. (2.16).2 The components of

Kij with any i (light or heavy) and j = g, q, q̄ are fully known to O(α2
s) [12, 34], and some

of them also to O(α3
s) [35–38]. On the other hand, the components Kic and Kic̄ for any

value of i are only known to O(αs) [39]. The off-diagonal components with a gluon and a

heavy quark, namely Kcg, Kc̄g, Kgc and Kgc̄, start contributing at O(αs), while all other

off-diagonal components are nonzero only at O(α2
s). The diagonal quantities are all of the

form Kii = 1 +O(αs): while Kgg gets a contribution at O(αs) due to a heavy quark loop,

and Kcc = Kc̄c̄ are nontrivial at O(αs), the light quark components get corrections only

at O(α2
s).

It is important to realise that the matching condition eq. (2.12) only holds (to any fixed

order) at the particular matching scale µc ∼ mc, otherwise there would be unresummed

large logarithms. The 4FS PDFs f
(4)
j (Q2) at the generic scale Q2 > µ2

c are then obtained

by evolving up with DGLAP evolution, eq. (2.7),

f
(4)
i (Q2) =

∑
j,k=g,q,q̄,c,c̄

Γij(Q
2, µ2

c)⊗Kjk

(
m2

c
µ2c

)
⊗ f (3)

k (µ2
c), (2.17)

as standard in common VFNS PDF sets. Note that, to any fixed order, the 4FS PDFs

implicitly depend on the charm mass mc and the charm threshold µc, though the last

dependence is formally higher order. To transform f
(3)
j (Q2) to f

(4)
j (Q2) we must also

evolve to Q2 the 3FS PDFs using eq. (2.3). We thus find that

f
(4)
i (Q2) =

∑
j=g,q,q̄,c,c̄

Tij(Q
2, µ2

c ,m
2
c)⊗ f (3)

j (Q2), (2.18)

where we introduced the transformation matrix

Tij(Q
2, µ2

c ,m
2
c) =

∑
k,l=g,q,q̄,c,c̄

Γ
(4)
ik (Q2, µ2

c)⊗Kkl

(
m2

c
µ2c

)
⊗ Γ̄

(3)
lj (µ2

c , Q
2), (2.19)

and we have used the fact that the evolution matrices can be inverted by evolving back-

wards: Γij(µ
2
c , Q

2) is the inverse of Γij(Q
2, µ2

c). Note that while Kij(m
2
c/µ

2
c) contains no

2Alternatively, these coefficients can be computed as a matching between two effective theories of QCD,

as described in ref. [32].
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large logarithms (since µ2
c ∼ m2

c), the large logarithms of Q2/µ2
c resummed in the evolution

factors are mismatched, so Tij(Q
2, µ2

c ,m
2
c) also resums large logarithms. If the evolution

factors are expanded to any given fixed order in αs, the µc dependence of Tij disappears

and Tij(Q
2, µ2

c ,m
2
c) = Kij(m

2
c/Q

2).

Having established the relation between the PDFs in the two schemes, eq. (2.18), it is

now interesting to use it to write the massive 3FS result eq. (2.1) in terms of the 4FS PDFs

f
(4)
i (Q2) (and also in terms of α

(4)
s (Q2) through eq. (2.11), though we leave the dependence

implicit). This will be needed for the FONLL construction described in the next section.

Substituting the inverse of the transformation eq. (2.18) into eq. (2.1), we get

F (3)(Q2,m2
c) =

∑
i,j=g,q,q̄,c,c̄

C
(3)
i

(
m2

c
Q2

)
⊗ T−1

ij (Q2, µ2
c ,m

2
c)⊗ f (4)

j (Q2), (2.20)

where

T−1
ij (Q2, µ2

c ,m
2
c) =

∑
k,l=g,q,q̄,c,c̄

Γ̄
(3)
ik (Q2, µ2

c)⊗K−1
kl

(
m2

c
µ2c

)
⊗ Γ

(4)
lj (µ2

c , Q
2), (2.21)

and K−1
ij is obtained from eq. (2.13) by inverting term by term. The large logarithms of

m2
c/Q

2 in C
(3)
i must then cancel term by term with corresponding large logarithms in T−1

ij ,

resulting from the mismatch of the two evolution factors Γ
(4)
ij and Γ̄

(3)
ij : in other words T−1

ij

provides the correct subtraction terms for C
(3)
i . Moreover T−1

ij also gives automatically the

correct finite parts of the subtraction.

Comparing eq. (2.20) with eq. (2.9), and noting that to a given order in resummed

perturbation theory the structure function (being physical) must be independent of the

scheme, we see immediately that

C
(4)
i

(
m2

c
Q2

)
=

∑
j=g,q,q̄,c,c̄

C
(3)
j

(
m2

c
Q2

)
⊗ T−1

ji (Q2, µ2
c ,m

2
c). (2.22)

Note that once the coefficient function is expanded out to fixed order in αs, there is nothing

to prevent us from setting µ2
c = Q2 in eq. (2.22): this simplifies the expressions by setting

both evolution factors to unity, so that

C
(4)
i

(
m2

c
Q2

)
=

∑
j=g,q,q̄,c,c̄

C
(3)
j

(
m2

c
Q2

)
⊗K−1

ji

(
m2

c
Q2

)
, (2.23)

the large logarithms of Q2/m2
c now being those in K−1

ij . When truncated to any given

fixed order in perturbation theory, eq. (2.22) and eq. (2.23) will yield identical results for

the coefficient functions C
(4)
i , independent of the matching scale µc.

It is interesting to observe that the massive 4FS result eq. (2.9), introduced originally

as the result of a collinear factorization with massive quarks, has now been derived from the

massive 3FS result eq. (2.1) after scheme change, eq. (2.23), which removes all its collinear

logarithms. The matching condition eq. (2.16) then ensures that in the massless limit

lim
mc→0

C
(4)
i

(
m2

c
Q2

)
= C

(4)
i (0), (2.24)
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as expected from eq. (2.10). For this to work properly it is essential that the coefficient

function C
(3)
i and matching matrix Kij are always evaluated to the same fixed order: if

the coefficient function has terms of higher order than the matching matrix there will

be uncancelled logarithms, while if the matching matrix has terms of higher order than

the coefficient function it will be trying to cancel logarithms which are not there. This

observation is of great importance if one wishes to combine the results obtained in different

schemes, as done in the FONLL prescription.

We have thus shown that starting from the massive 3FS result eq. (2.1), and re-

expressing it in terms of 4FS PDFs, we obtain a result equivalent to the massive 4FS result

eq. (2.9): in other words we can use the resummation of the massless collinear logarithms

performed in the massless 4FS by the evolution eq. (2.7) to resum the large logarithms in

the massive 3FS. The result is at the heart of the ACOT scheme [6, 7]: formally order by

order in perturbation theory

FACOT(Q2,m2
c) =

∑
i=g,q,q̄,c,c̄

C
(4)
i

(
m2

c
Q2

)
⊗ f (4)

i (Q2),

=
∑

i,j=g,q,q̄,c,c̄

C
(3)
i

(
m2

c
Q2

)
⊗K−1

ij

(
m2

c
Q2

)
⊗ f (4)

j (Q2). (2.25)

The form of eq. (2.25) is interesting: it combines the PDFs f
(4)
i evolved in the 4FS with

the coefficient function C
(3)
i computed in the massive 3FS, the matching conditions Kij

linking the two schemes subtracting the unresummed collinear logarithms from the massive

coefficient functions so that the coefficients convoluted with the PDFs are free from collinear

logarithms and thus have a well behaved perturbative expansion.

3 Combining fixed order and resummation

In the previous section we showed that a consistent scheme change relates a 3FS calcu-

lation, which does not factorizes the collinear logarithms due to the charm quark, to a

4FS calculation, in which the collinear logarithms are resummed and the massive effects

are included into the 4FS coefficient function. An alternative way of combining massive

coefficient functions in the 3FS with massless coefficient functions in the 4FS is the FONLL

construction [12, 13].

In most applications so far FONLL has been used with the assumption that charm is

generated entirely perturbatively (so there is no ‘intrinsic’ charm): the structure function

in the 3FS can then be expressed entirely in terms of light partons. We thus require a

precise all-order definition of what we mean by ‘zero intrinsic charm’ before we can obtain

definite all-order results.

Here we will summarize the main features of the FONLL construction in section 3.1,

and explain its relation to ACOT in section 3.2. We then discuss the definition of intrinsic

charm, and the transition from 3FS PDFs to 4FS PDFs in section 3.3, and present FONLL

results for structure functions without intrinsic charm in section 3.4 (corresponding to the

NNLO results in [14], now formally generalized to all orders), and the corrections necessary

when intrinsic charm is included in section 3.5. We then go on to show the relation of the
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FONLL scheme without intrinsic charm and the S-ACOT schemes in section 3.6. We finally

discuss in section 3.7 a phenomenological damping factor included in the original FONLL

formulation.

3.1 The FONLL construction

The general FONLL construction [12, 13] is based on the observation that to evaluate cross-

sections consistently both in the threshold and the high energy region, it is sufficient to any

given order in perturbation theory to add the massive 3FS result (which includes all charm

mass effects to fixed order) to the massless 4FS result (which performs the resummation of

all large logarithms at high energy), and then subtract any doubly counted contributions.

The FONLL construction only involves physical quantities computed in well-defined

(massive 3F or massless 4F) factorization schemes, and thus side steps issues related to the

existence of more novel factorization schemes. In particular this means that in FONLL it is

straightforward to write down expressions at any order in perturbation theory: all one has

to do is evaluate the relevant massive diagrams in the massive scheme, and combine them

linearly with the corresponding massless calculations. The only nontrivial part is then to

identify the double counting.

Structure functions calculated with four flavours in the FONLL method are thus

given by

FFONLL

(
Q2,m2

c

)
= F (4)

(
Q2, 0

)
+ F (3)

(
Q2,m2

c

)
− d.c. . (3.1)

The double counting term can be obtained as the massless limit of the massive 3FS result,

and corresponds to the fixed-order expansion of the massless 4FS result. The massless

limit of the massive coefficient functions is however divergent, due to the presence of un-

subtracted massive collinear logarithms. A proper definition of this term is given by

F (3,0)(Q2,m2
c) =

∑
i=g,q,q̄,c,c̄

C
(3,0)
i

(
m2

c
Q2

)
⊗ f (3)

i (Q2), (3.2)

where we used eq. (2.14) to define the (singular) massless limit C
(3,0)
i (m2

c/Q
2) of the massive

coefficient functions C
(3)
i (m2

c/Q
2). In this limit all terms which vanish as m2

c → 0 are

removed, and all that remains are the finite terms and collinear logarithms, as explicitly

shown in eq. (2.15).

The structure functions in the FONLL prescription are thus given by

FFONLL

(
Q2,m2

c

)
= F (4)

(
Q2, 0

)
+
[
F (3)

(
Q2,m2

c

)
− F (3,0)

(
Q2,m2

c

)]
. (3.3)

Clearly eq. (3.3) does what we want it to: in particular when Q2 � m2
c the terms in square

brackets vanish as a power of m2
c/Q

2, and we recover the massless coefficient function in

the 4FS. Likewise, when Q2 ∼ m2
c , we can write

FFONLL

(
Q2,m2

c

)
= F (3)

(
Q2,m2

c

)
+
[
F (4)

(
Q2, 0

)
− F (3,0)

(
Q2,m2

c

)]
≡ F (3)

(
Q2,m2

c

)
+ F (d)

(
Q2,m2

c

)
. (3.4)
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where in ref. [14] the term in square brackets is referred to as the ‘difference term’ F (d).

While this term is nonzero for Q2 ∼ m2
c , it is subleading in αs(Q

2), since when Q2 ∼ m2
c

there are no large logarithms. Thus eq. (3.3) gives a structure function which is correct at

high energy, up to power suppressed corrections, and correct in the threshold region up to

subleading corrections.

3.2 Comparison to ACOT

One way of using the FONLL construction would be simply to compute the three ingre-

dients F (3), F (3,0) and F (4), using the factorized expression in the 3-flavour and 4-flavour

schemes, eqs. (2.1), (3.2), (2.8), and combine them linearly according to eq. (3.3). In

practice this is awkward, because it means one has to work simultaneously with PDFs in

two different schemes. Thus instead it is more convenient to use the matching of the two

schemes, eq. (2.12), to write eq. (3.3) in terms of PDFs in the 4FS and thus in the form

eq. (2.9). In this way we can identify explicit expressions for the mass dependent coefficient

functions C
(4)
i (m2

c/Q
2).

We showed in section 2.3 that using the scheme change we can write F (3) in the form

F (3)(Q2,m2
c) =

∑
i,j=g,q,q̄,c,c̄

C
(3)
i

(
m2

c
Q2

)
⊗K−1

ij

(
m2

c
Q2

)
⊗ f (4)

j (Q2). (3.5)

Consistently, in the massless limit, we have

F (3,0)(Q2,m2
c) =

∑
i,j=g,q,q̄,c,c̄

C
(3,0)
i

(
m2

c
Q2

)
⊗K−1

ij

(
m2

c
Q2

)
⊗ f (4)

j (Q2). (3.6)

Substituting into eq. (3.3), we have

FFONLL

(
Q2,m2

c

)
=

∑
i,j=g,q,q̄,c,c̄

[
C

(3)
i

(
m2

c
Q2

)
− C(3,0)

i

(
m2

c
Q2

)]
⊗K−1

ij

(
m2

c
Q2

)
⊗ f (4)

j (Q2)

+
∑

i=g,q,q̄,c,c̄

C
(4)
i (0)⊗ f (4)

i (Q2). (3.7)

Now however we find an interesting simplification: the difference term vanishes identically,

since due to the matching condition eq. (2.12) the terms with coefficient functions in the

4FS precisely cancel those from the massless limit of the 3FS, eq. (2.14). Eq. (3.7) can

thus be written simply as

FFONLL(Q2,m2
c) =

∑
i,j=g,q,q̄,c,c̄

C
(3)
i

(
m2

c
Q2

)
⊗K−1

ij

(
m2

c
Q2

)
⊗ f (4)

j (Q2)

=
∑

i=g,q,q̄,c,c̄

C
(4)
i

(
m2

c
Q2

)
⊗ f (4)

i (Q2)

= FACOT

(
Q2,m2

c

)
, (3.8)

with no massless coefficient functions at all. This shows that when we make no theoreti-

cal assumption about the 4FS PDFs at the initial scale, the FONLL construction of the

structure function is equivalent to ACOT order by order in perturbation theory. Indeed,
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the above manipulations can be viewed as an alternative all-order derivation of the ACOT

result using the FONLL construction. The only essential ingredients are the existence of

the 3-flavour and 4-flavour factorization schemes, and the matching relations which allow

them to be related together.

In retrospect this result should not have been too surprising. When Q2 � m2
c , the

massless 4FS PDFs f
(4)
i (Q2) i, j = g, q, q̄, c, c̄ resum all large logarithms through solution of

the evolution equations eq. (2.7). It follows, as explained after eq. (2.23), that the coefficient

functions convoluted with these PDFs, which contain all dependence on m2
c , must be free of

large logarithms, and thus have a well behaved perturbative expansion in α
(4)
s (Q2). Since

the structure function is a physical quantity, the coefficients in the perturbative expansion

of the coefficient function must (for a given factorization and renomalization scheme) be

then unique to each order, which is indeed what we find.

It is important to note however that in deriving this result we made no assumption

about the origin of charm, and in particular we did not assume that charm is generated

purely perturbatively. To make contact with other work on FONLL, in particular ref. [14],

where this assumption is an integral part of the construction, we first need to define carefully

what we mean when we assume that all charm is generated perturbatively, i.e. when there

is no ‘intrinsic’ charm. This will tell us how to modify the expressions given in ref. [14] to

incorporate intrinsic charm, and in turn help us to understand better the role of intrinsic

charm in the formulation of ACOT.

3.3 Intrinsic charm

In the previous sections we made no attempt to distinguish between extrinsic (perturba-

tive) and intrinsic charm: we have been agnostic about the nature of the initial charm

distributions at Q0, in either 3- or 4-flavour schemes, which can be fitted at that scale and

then perturbatively evolved to the scale Q. However in the more conventional formalisms

there are no fitted charm PDFs: zero ‘intrinsic’ charm is an implicit part of the construc-

tion. The definition of intrinsic charm is in truth rather ambiguous, and any condition

of zero intrinsic charm must reflect this ambiguity: conditions can be made in different

schemes and at different scales, and will in general all differ by subleading terms. Thus

the only formalism devoid of such ambiguities is the complete 4-flavour formalism adopted

above, where the charm PDF takes part to DGLAP evolution and it is fitted together with

the light flavour PDFs. Nevertheless it is interesting to consider the case of zero intrinsic

charm, appropriately defined, in order to make contact with previous work, in particular

ref. [14].

We first note that due to factorization all the information about the nature of the target

hadron, and in particular whether or not it contains intrinsic charm, is contained in its

PDFs. Since in a particular renormalization and factorization scheme the PDF evolution is

also target independent, the only place where intrinsic charm can enter is in the boundary

conditions for the perturbative evolution of the PDFs.

This necessarily implies that once the massive coefficient functions C
(4)
i (m2

c/Q
2) have

been correctly computed to a given order for calculations with intrinsic charm, the very

same coefficient functions must also hold to the same order when there is no intrinsic charm.
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The same is true of the matching matrix Kij(m
2
c/Q

2), since this can be defined entirely

in terms of coefficient functions. This is a straightforward consequence of factorization:

coefficient functions are by construction hard cross sections, and are thus independent of

the target hadron. Unfortunately however the converse is not true: coefficient functions

computed to a given order for the special case of no intrinsic charm might need correcting

in the more general case when intrinsic charm is included. We shall see below that this is

indeed the case.

A naive definition of zero intrinsic charm would be that it vanish in the 4-flavour

scheme at the initial scale: f
(4)
c (x,Q2

0) = f
(4)
c̄ (x,Q2

0) = 0. Unfortunately this definition

is rather ambiguous: instead of the rather arbitrary starting scale Q0, one might instead

prefer the scale of the charm mass mc, or indeed the threshold scale W = 2mc. However

once the scale is chosen, this would mean that in the 4FS all charm is ‘extrinsic’, i.e. it

is generated dynamically by perturbative evolution, so f
(4)
c (x,Q2) and f

(4)
c̄ (x,Q2) can be

expressed entirely in terms of light quark PDFs.

A much better characterization of intrinsic charm is to define it as the charm PDF in

the 3FS, where the charm PDF does not evolve, and thus, one could argue, there is no

extrinsic charm. Thus, zero intrinsic charm means that

f (3)
c = f

(3)
c̄ = 0. (3.9)

This is a very natural assumption to make, since in the massive 3FS scheme the charm

PDFs are scale independent, so there is no ambiguity about scale choice. Unfortunately it

means that there is in general no scale at which the 4FS charm PDFs vanish, as can be seen

from the matching condition eq. (2.12): if charm in one scheme is zero, in the other it will

be generally nonzero already at O(αs) if µ 6= mc, due to the off-diagonal term Kcg in the

matching condition, and at O(α2
s) even for µ = mc due to the presence of non-logarithmic

terms at this order.

The condition eq. (3.9) can however always be turned into a nonzero boundary con-

dition for perturbative massless evolution. To see how this works, we first write out the

matching conditions eq. (2.12) separating out the light partons from the charm partons:

f
(4)
i (µ2

c) =
∑

j=g,q,q̄

Kij

(
m2

c
µ2c

)
⊗ f (3)

j (µ2
c) +

∑
j=c,c̄

Kij

(
m2

c
µ2c

)
⊗ f (3)

j , i = g, q, q̄, (3.10)

f
(4)
i (µ2

c) =
∑

j=g,q,q̄

Kij

(
m2

c
µ2c

)
⊗ f (3)

j (µ2
c) +

∑
j=c,c̄

Kij

(
m2

c
µ2c

)
⊗ f (3)

j , i = c, c̄. (3.11)

When there is no intrinsic charm, eq. (3.9), the second term in each of these equations

vanishes, and in particular eq. (3.11) becomes simply

f (4)
c (µ2

c) =
∑

j=g,q,q̄

Kcj

(
m2

c
µ2c

)
⊗ f (3)

j (µ2
c),

(
f

(3)
c,c̄ = 0

)
. (3.12)

Thus when there is no intrinsic charm case, it is possible (and often convenient) to invert

eq. (3.10) to express the light 3FS PDFs in terms of only light 4FS PDFs, as

f
(3)
i (µ2

c) =
∑

j=g,q,q̄

K̃−1
ij

(
m2

c
µ2c

)
⊗ f (4)

j (µ2
c), i = q, q̄, g,

(
f

(3)
c,c̄ = 0

)
, (3.13)
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where K̃ij is the matching matrix restricted to the subspace of light partons, i, j = g, q, q̄, so

that the inverse is taken in this subspace. Substituting into eq. (3.12) we find, for Q0 ∼ mc

f (4)
c (Q2

0) =
∑

j,k=g,q,q̄

Kcj

(
m2

c

Q2
0

)
⊗ K̃−1

jk

(
m2

c

Q2
0

)
⊗ f (4)

k (Q2
0),

(
f

(3)
c,c̄ = 0

)
, (3.14)

which is the required boundary condition expressing the charm PDF in terms of the light

PDFs at the starting scale. Note that if we choose Q0 = mc, f
(4)
c (Q2

0) will be O(α2
s) and

thus presumably very small: still, it is always nonzero in general. However all charm, at any

scale, is still determined perturbatively from the light parton PDFs, and is thus extrinsic.

The condition eq. (3.14) may be consistently applied at any scale Q0 ∼ mc: changes in Q0

only introduce subleading corrections. However it will not hold for Q0 � mc, since then

these formally subleading corrections will be accompanied by large logarithms.

3.4 FONLL with zero intrinsic charm

Now that we have a definition of intrinsic charm, we can apply the FONLL construction

under the assumption that all charm is generated perturbatively [14]. The treatment given

here will be entirely explicit, to any order in perturbation theory.

When there is no intrinsic charm, it is possible to write the structure function in the

massive scheme, F (3), entirely in terms of the light partons in the 4FS: combining eq. (2.1)

and eq. (3.13),

F (3)(Q2,m2
c)
∣∣∣
zic

=
∑
i=g,q,q̄

C
(3)
i

(
m2

c
Q2

)
⊗ f (3)

i (Q2)

=
∑

i,j=g,q,q̄

C
(3)
i

(
m2

c
Q2

)
⊗ K̃−1

ij

(
m2

c
Q2

)
⊗ f (4)

j (Q2), (3.15)

where the subscript ‘zic’ stands for ‘zero intrinsic charm’. Thus when there is no intrinsic

charm the coefficient functions C
(3)
c,c̄ are not needed, and likewise the matching terms Kic,

Kic̄. Of course these terms are still nonzero, but when eq. (3.9) holds they are no longer

needed for the evaluation of F (3), and can thus be ignored. Like eq. (2.1), this expression

only holds for Q2 ∼ m2
c : although the light PDFs are in the 4FS, and thus resum collinear

logarithms in the light sector, eq. (3.13) is fixed order, so the large logarithms of m2
c/Q

2

in the heavy quark sector are not resummed.

In ref. [14] eq. (3.15) is written as

F (3)(Q2,m2
c)
∣∣∣
zic

=
∑
i=g,q,q̄

B
(4)
i

(
m2

c
Q2

)
⊗ f (4)

i (Q2), (3.16)

having defined

B
(4)
i

(
m2

c
Q2

)
=

∑
j=g,q,q̄

C
(3)
j

(
m2

c
Q2

)
⊗ K̃−1

ji

(
m2

c
Q2

)
, (3.17)

with inverse

C
(3)
i

(
m2

c
Q2

)
=

∑
j=g,q,q̄

B
(4)
j

(
m2

c
Q2

)
⊗Kji

(
m2

c
Q2

)
, i = g, q, q̄. (3.18)
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The similarity with the more general ACOT expression eq. (2.25) is obvious: the only

difference in fact is that the sum extends only over the light partons, and the inverse of

the matching matrix, K̃−1, is likewise taken in the light parton subspace.

Substituting eq. (3.16) in the general expression eq. (3.3), and eq. (2.8) for the massless

term, we immediately obtain the FONLL expression for the structure function when there

is no intrinsic charm:

FFONLL(Q2,m2
c)
∣∣∣
zic

=
∑
i=g,q,q̄

[
B

(4)
i

(
m2

c
Q2

)
−B(4,0)

i

(
m2

c
Q2

)
+ C

(4)
i (0)

]
⊗ f (4)

i (Q2)

+
∑
i=c,c̄

C
(4)
i (0)⊗ f (4)

i (Q2). (3.19)

Here, in analogy to eq. (3.17),

B
(4,0)
i

(
m2

c
Q2

)
=

∑
j=g,q,q̄

C
(3,0)
j

(
m2

c
Q2

)
⊗ K̃−1

ji

(
m2

c
Q2

)
=

∑
j=g,q,q̄

∑
k=g,q,q̄,c,c̄

C
(4)
k (0)⊗Kkj

(
m2

c
Q2

)
⊗ K̃−1

ji

(
m2

c
Q2

)
= C

(4)
i (0) +

∑
k=c,c̄

∑
j=g,q,q̄

C
(4)
k (0)⊗Kkj

(
m2

c
Q2

)
⊗ K̃−1

ji

(
m2

c
Q2

)
, (3.20)

where we have used eq. (2.14) in the second step, and eq. (A.11) (see appendix A) in the

last. For Q2 � m2
c , the first two terms in eq. (3.19) are manifestly of order m2

c/Q
2, and

thus the massless limit eq. (2.8) is recovered. The diagrams contributing to the FONLL

result in the zero intrinsic charm case are shown schematically in figure 1 (upper row).

Substituting the last line into eq. (3.19) gives the alternative expression

FFONLL(Q2,m2
c)
∣∣∣
zic

=
∑
i=g,q,q̄

B
(4)
i

(
m2

c
Q2

)
⊗ f (4)

i (Q2) +
∑
i=c,c̄

C
(4)
i (0)⊗ f (4)

i (Q2)

−
∑
k=c,c̄

∑
i,j=g,q,q̄

C
(4)
k (0)⊗Kkj

(
m2

c
Q2

)
⊗K̃−1

ji

(
m2

c
Q2

)
⊗f (4)

i (Q2). (3.21)

The last two terms are the difference term eq. (3.4). At the initial scale Q0 the difference

term is thus precisely zero, due to the boundary condition eq. (3.14) used when there is

no intrinsic charm. For Q > Q0, since the 4FS PDFs are constrained to evolve using

4FS evolution eq. (2.7), generating charm perturbatively, they will contain higher order

logarithms which do not cancel: with the matching matrix truncated to order αps,

f
(4)
i (Q2)−

∑
j,k=g,q,q̄

Kij

(
m2

c
Q2

)
⊗ K̃−1

jk

(
m2

c
Q2

)
⊗ f (4)

k (Q2) ∼ O
(
αp+1
s logp+1 m2

c
Q2

)
. (3.22)

It follows that whenever Q ∼ mc, so that log(m2
c/Q

2) is not too large, the difference term

is always subleading, as required.
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FONLL

FONLL|zic

nothing

3FS 3FS 3FS

3FS 3FS 3FS

4FS

4FS4FS

4FS

4FS

4FS

+ +

+

+ +

++ + +

+ + + +

O(↵0
s) O(↵1

s) O(↵2
s)

Figure 1. Representative diagrams included at each order in αs in the massive 3FS and massless

4FS components entering the FONLL formula eq. (3.3), in the simpler case of no intrinsic charm

(upper line, corresponding to eq. (3.19)) and in the full case (lower line, corresponding to eq. (3.32)).

All quark lines represent the charm quark: bold lines means that mass effects are retained in the

coefficient function, while light lines means that the charm mass has been set to zero. Diagrams

with corrections to the gluon propagator through a virtual heavy quark loop are not shown.

3.5 FONLL including intrinsic charm

When we drop the assumption that the intrinsic charm is zero, we can go through the

same argument as in the previous section expressing F (3) in terms of f
(4)
i , but keeping the

nonzero f
(3)
c,c̄ terms: we then find

F (3)(Q2,m2
c) =

∑
i=g,q,q̄

C
(3)
i

(
m2

c
Q2

)
⊗ f (3)

i (Q2) +
∑
i=c,c̄

C
(3)
i

(
m2

c
Q2

)
⊗ f (3)

i

=
∑

i,k=g,q,q̄

B
(4)
k

(
m2

c
Q2

)
⊗Kki

(
m2

c
Q2

)
⊗ f (3)

i (Q2) +
∑
i=c,c̄

C
(3)
i

(
m2

c
Q2

)
⊗ f (3)

i

=
∑

k=g,q,q̄

B
(4)
k

(
m2

c
Q2

)
⊗ f (4)

k (Q2)

+
∑
i=c,c̄

[
C

(3)
i

(
m2

c
Q2

)
−
∑

k=g,q,q̄

B
(4)
k

(
m2

c
Q2

)
⊗Kki

(
m2

c
Q2

)]
⊗ f (3)

i , (3.23)

where in the second line we used eq. (3.18), and in the third eq. (3.10). We recognize in

the first term the zero intrinsic charm result, eq. (3.16), so defining

F (3)(Q2,m2
c) = F (3)(Q2,m2

c)
∣∣∣
zic

+ ∆F (3)(Q2,m2
c), (3.24)

the intrinsic charm contribution to the structure function in the massive 3FS scheme is

∆F (3)(Q2,m2
c) =

∑
i=c,c̄

[
C

(3)
i

(
m2

c
Q2

)
−
∑

j=g,q,q̄

B
(4)
j

(
m2

c
Q2

)
⊗Kji

(
m2

c
Q2

)]
⊗ f (3)

i . (3.25)
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Note that this precise form derives from having used the coefficient functions B(4) for

writing the zero intrinsic charm contribution.

We can no longer use eq. (3.13) to express f
(3)
c,c̄ in terms of 4FS PDFs: instead we have

to use the inverse of eq. (2.12): for i = c, c̄

f
(3)
i =

∑
j=g,q,q̄,c,c̄

K−1
ij

(
m2

c
Q2

)
⊗ f (4)

j (Q2)

=
∑
j=c,c̄

K−1
ij ⊗

[
f

(4)
j (Q2)−

∑
k,l=g,q,q̄

Kjk

(
m2

c
Q2

)
⊗ K̃−1

kl

(
m2

c
Q2

)
⊗ f (4)

l (Q2)

]
, (3.26)

where in the second line we used eq. (A.9) in appendix A, or equivalently solved

eqs. (3.10), (3.11) for f
(3)
i . We thus find that

∆F (3)(Q2,m2
c) =

∑
i=c,c̄

[
C

(3)
i

(
m2

c
Q2

)
−
∑

k=g,q,q̄

B
(4)
k

(
m2

c
Q2

)
⊗Kki

(
m2

c
Q2

)]
⊗

∑
j=g,q,q̄,c,c̄

K−1
ij

(
m2

c
Q2

)
⊗ f (4)

j (Q2). (3.27)

Using eq. (3.27) in the generic FONLL formula eq. (3.3) then gives

FFONLL(Q2,m2
c) = FFONLL(Q2,m2

c)
∣∣∣
zic

+ ∆FFONLL(Q2,m2
c), (3.28)

where the intrinsic charm contribution

∆FFONLL

(
Q2,m2

c

)
=
∑
i,j=c,c̄

[(
C

(3)
i

(
m2

c
Q2

)
− C(3,0)

i

(
m2

c
Q2

))
−

∑
m=g,q,q̄

(
B(4)
m

(
m2

c
Q2

)
−B(4,0)

m

(
m2

c
Q2

))
⊗Kmi

(
m2

c
Q2

)]
⊗K−1

ij

(
m2

c
Q2

)
⊗
[
f

(4)
j (Q2)−

∑
k,l=g,q,q̄

Kjk

(
m2

c
Q2

)
⊗ K̃−1

kl

(
m2

c
Q2

)
⊗ f (4)

l (Q2)

]
. (3.29)

At large Q2 this term is manifestly O(m2
c/Q

2), so has no effect on the high energy limit.

Near threshold it is in general O(1), unless the intrinsic charm vanishes: then using

eq. (3.22) it is easy to see that ∆FFONLL is subleading (down by one power of αs(Q
2)).

We stress that eq. (3.24), with the two terms given by eqs. (3.19), (3.29), is actually

identical to the simple expression eq. (3.8) order by order in perturbation theory. In a sense

this is obvious because both equations have been derived with the FONLL construction,

eq. (3.3), systematically rewriting expressions involving 3FS PDFs in terms of 4FS PDFs

using the matching conditions eq. (2.12). This said, it is perhaps useful, if only as a cross

check, to verify by explicit computation that the two expression are indeed identical.

To do this, it is clearly sufficient to show that eq. (3.24), with the two terms given by

eq. (3.16) and eq. (3.27), is equivalent to eq. (3.5). We first rewrite it, by collecting the

coefficients of f
(4)
i (and suppressing the arguments of the functions to lighten the notation),
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as

F (3) =
∑

k=g,q,q̄

[
B

(4)
k +

∑
i=c,c̄

(
C

(3)
i −

∑
j=g,q,q̄

B
(4)
j ⊗Kji

)
⊗K−1

ik

]
⊗ f (4)

k

+
∑
i,j=c,c̄

(
C

(3)
i −

∑
k=g,q,q̄

B
(4)
k ⊗Kki

)
⊗K−1

ij ⊗ f
(4)
j

=
∑

k=g,q,q̄

[ ∑
i=g,q,q̄

C
(3)
i ⊗

(
K̃−1
ik −

∑
j=g,q,q̄

∑
l=c,c̄

K̃−1
ij ⊗Kjl ⊗K−1

lk

)
+
∑
i=c,c̄

C
(3)
i ⊗K−1

ik

]
⊗f (4)

k

+
∑
k=c,c̄

[ ∑
i=c,c̄

C
(3)
i ⊗K−1

ik −
∑

i,j=g,q,q̄

∑
l=c,c̄

C
(3)
i ⊗ K̃−1

ij ⊗Kjl ⊗K−1
lk

]
⊗ f (4)

k , (3.30)

using eq. (3.17). Now using the expressions in appendix A, specifically eqs. (A.9), (A.6) in

the first line and eq. (A.8) in the second, we find

F (3) =
∑

k=g,q,q̄

[ ∑
i=g,q,q̄

C
(3)
i ⊗K−1

ik +
∑
i=c,c̄

C
(3)
i ⊗K−1

ik

]
⊗ f (4)

k

+
∑
k=c,c̄

[ ∑
i=g,q,q̄

C
(3)
i ⊗K−1

ik +
∑
i=c,c̄

C
(3)
i ⊗K−1

ik

]
⊗ f (4)

k

=
∑

i,k=g,q,q̄,c,c̄

C
(3)
i ⊗K−1

ik ⊗ f
(4)
k , (3.31)

which is the desired result, eq. (3.5).

It follows that the formulation of FONLL in ref. [14], eq. (3.19), in which it is assumed

that all charm is generated perturbatively, plus the extra ‘intrinsic charm’ contribution

eq. (3.29), is identical to the full ACOT result through eq. (3.8), irrespective of any condi-

tion on the charm at the initial scale.

Note that this means that we can write the full FONLL (or equivalently ACOT)

expression eq. (3.28) as simply

FFONLL

(
Q2,m2

c

)
=
∑
i=g,q,q̄

B
(4)
i ⊗ f

(4)
i (Q2)

+
∑
i=c,c̄

[
C

(3)
i −

∑
k=g,q,q̄

B
(4)
k ⊗Kki

]
⊗

∑
j=g,q,q̄,c,c̄

K−1
ij ⊗ f

(4)
j , (3.32)

which follows directly from eq. (3.23) and the observation made in section 3.2 that all the

massless contributions (and thus the difference term in eq. (3.4)) cancel when no assumption

is made about instrinsic charm. The second term is now essential to obtain the correct

high Q2 behaviour, even in the limit of zero intrinsic charm. The diagrams contributing to

the full FONLL result eq. (3.32) are shown schematically in figure 1 (lower row).

Comparison of the ACOT representation eq. (2.25) with the original zero intrinsic

charm representation of FONLL eq. (3.19) gives us a new way to understand the origin

of intrinsic charm contribution eq. (3.29): taking the difference, and using the definitions
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eq. (3.17) and eq. (3.20)

∆FFONLL =
∑

i,j=g,q,q̄,c,c̄

[
C

(3)
i − C

(3,0)
i

]
⊗K−1

ij ⊗ f
(4)
j −

∑
i,j=g,q,q̄

[
C

(3)
i − C

(3,0)
i

]
⊗ K̃−1

ij ⊗ f
(4)
j

=
∑

i,j=g,q,q̄,c,c̄

[
C

(3)
i − C

(3,0)
i

]
⊗
[
K−1
ij − K̂−1

ij

]
⊗ f (4)

j , (3.33)

where the matrix K̂−1
ij acts as a projector onto the space of light partons

K̂−1
ij =

{
K̃−1
ij i, j = g, q, q̄

0, otherwise.
(3.34)

The expression eq. (3.33) is particularly transparent: when intrinsic charm is included

the massless coefficient functions in the charm sector must be mass corrected, with addi-

tional collinear subtractions for the incoming charm quarks lines, these subtractions being

factorized multiplicatively.

From eq. (3.33) it is also possible to derive another useful form of ∆FFONLL in terms

of 4FS coefficient functions. Substituting the inverse of eq. (2.23),

C
(3)
i

(
m2

c
Q2

)
=

∑
j=g,q,q̄,c,c̄

C
(4)
j

(
m2

c
Q2

)
⊗Kji

(
m2

c
Q2

)
, (3.35)

and eq. (2.14) into eq. (3.33) we find immediately

∆FFONLL

(
Q2,m2

c

)
=

∑
i=g,q,q̄,c,c̄

[
C

(4)
i

(
m2

c
Q2

)
−C(4)

i (0)
]
⊗
[
f

(4)
i −

∑
k,l=g,q,q̄

Kik ⊗ K̃−1
kl ⊗ f

(4)
l

]
.

(3.36)

When i = g, q, q̄ in the sum, the difference in the second square brackets vanishes, because

of eq. (A.11). Therefore eq. (3.36) simplifies to

∆FFONLL

(
Q2,m2

c

)
=
∑
i=c,c̄

[
C

(4)
i

(
m2

c
Q2

)
−C(4)

i (0)
]
⊗
[
f

(4)
i −

∑
k,l=g,q,q̄

Kik⊗K̃−1
kl ⊗f

(4)
l

]
. (3.37)

This is a very compact expression, and manifestly shows that the missing mass corrections

in eq. (3.19) due to intrinsic charm are entirely determined by the mass dependence of the

charm initiated contribution in the 4FS.

3.6 Comparison to S-ACOT

Finally, we consider the connection to S-ACOT [8, 9, 23], a simplified variant of ACOT

whose validity is based on the assumption that the charm is generated perturbatively.

Under this assumption, the authors of ref. [9] claim that in the construction of the ACOT

(massive 4FS) coefficient functions the mass dependence in all diagrams with an incoming

charm quark can be systematically ignored, i.e. C
(4)
c,c̄ (m2

c/Q
2) can be replaced with C

(4)
c,c̄ (0)

in all steps of the construction.

More precisely, the structure functions in S-ACOT are written as in eq. (2.9),

FS-ACOT(Q2,m2
c) =

∑
i=g,q,q̄,c,c̄

C̄
(4)
i

(
m2

c
Q2

)
⊗ f (4)

i (Q2) (3.38)
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but with new coefficient functions C̄
(4)
i . Those must be determined by consistency with

the unresummed result, eq. (2.1); using eq. (2.12) we find

C
(3)
i

(
m2

c
Q2

)
=

∑
i=g,q,q̄,c,c̄

C̄
(4)
j

(
m2

c
Q2

)
⊗Kji

(
m2

c
Q2

)
. (3.39)

In the general case which can account for intrinsic charm, this has a unique solution,

C̄
(4)
i = C

(4)
i for i = g, q, q̄, c, c̄, giving back ACOT. However, in the absence of intrinsic

charm, f
(3)
c,c̄ = 0, and thus eq. (3.39) can only be derived for i = g, q, q̄. This means that

the system of eq. (3.39) is under-constrained, in the sense that solving it for C̄
(4)
j (m2

c/Q
2)

is ambiguous: there are only 7 equations for 9 unknowns. This is another manifestation

of the ambiguity in inverting eq. (3.12) discussed in section 3.3. When this is the case, we

are free to choose two of the coefficient functions C̄
(4)
j (m2

c/Q
2) as we please, subject only

to the constraint that we recover the massless coefficient functions when Q2 � m2
c . The

most natural choice is then the S-ACOT simplification [9]

C̄
(4)
i

(
m2

c
Q2

)
= C

(4)
i (0), i = c, c̄. (3.40)

Given this, we can then solve eq. (3.39) for the remaining components, giving immediately

C̄
(4)
i

(
m2

c
Q2

)
=

∑
j=g,q,q̄

[
C

(3)
i

(
m2

c
Q2

)
−
∑
k=c,c̄

C
(4)
k (0)⊗Kkj

]
⊗ K̃−1

ji , i = g, q, q̄. (3.41)

These are the S-ACOT coefficient functions, which can be determined order by order

in perturbation theory starting from the massive 3FS coefficients for light channels and

the massless 4FS coefficients for the heavy channel. The physical interpretation is very

transparent: the collinear logarithms due to the charm quark are completely subtracted

off C
(3)
i , while power suppressed contributions are all left untouched.

We now want to compare this result to FONLL. We saw in section 3.4 that when all

charm is generated perturbatively, eq. (3.19) does not depend on C
(4)
c,c̄ (m2

c/Q
2): in the full

FONLL expression eq. (3.28) (which we just showed is equivalent to ACOT) all the mass

dependence of the incoming charm quark lines is contained in the 4FS coefficient functions

C
(4)
c,c̄ (m2

c/Q
2) in the ∆FFONLL term eq. (3.37). When we set C

(4)
c,c̄ (m2

c/Q
2) → C

(4)
c,c̄ (0) as

in S-ACOT, ∆FFONLL vanishes identically, whether or not we have intrinsic charm (i.e.

whether or not the PDF term in square brackets in eq. (3.37) vanishes). It follows that

S-ACOT is equivalent order by order in perturbation theory to FONLL as formulated in

ref. [14] with all charm generated perturbatively, eq. (3.19). This of course accounts for

the numerical equivalence of FONLL and S-ACOT at NLO discovered in ref. [40].3

The equivalence between FONLL with zero intrinsic charm eq. (3.19) and S-ACOT

eq. (3.38) implies the relation

C̄
(4)
i

(
m2

c
Q2

)
= B

(4)
i

(
m2

c
Q2

)
−B(4,0)

i

(
m2

c
Q2

)
+ C

(4)
i (0), (3.42)

3There are other sources of differences at finite order between FONLL and S-ACOT, due to a damping

factor adopted in ref. [14] and the χ rescaling sometimes used in practical applications of S-ACOT. See

discussion in section 3.7.
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for i = g, q, q̄. It is straightforward to check that eq. (3.42) is identical to eq. (3.41), as ex-

pected. It is interesting to observe that while in S-ACOT the subtraction of charm-induced

collinear logarithms is achieved identifying the logarithms in a factorized form, in the

FONLL formulation the collinear logarithms are subtracted using the ‘massless limit’ B
(4,0)
i

which includes also constant (non-log) terms, which are then restored through C
(4)
i (0).

In summary, we have shown that

FACOT ≡ FFONLL (3.43)

FS-ACOT ≡ FFONLL

∣∣∣
zic

(3.44)

to all orders in perturbation theory. The first of these equivalences is a direct consequence of

the fact that both ACOT and FONLL express their final result in terms of PDFs factorised

in the 4FS: since the PDFs are then formally identical, the coefficient functions must also

be identical, order by order in perturbation theory. The second equivalence is more subtle:

it states that suppressing the mass dependence in the coefficient functions with incoming

charm is actually equivalent to the simplified result obtained when there is no intrinsic

charm PDF, where suppressed contributions proportional to eq. (3.22) are neglected. It

is particularly useful, since it means that it is unnecessary to compute massive coefficient

functions with incoming charm if all charm is generated perturbatively: in this situation

S-ACOT is exact. However reliable calculations with a fitted charm distribution do require

knowledge of these coefficient functions: in this circumstance S-ACOT can only be an

approximation (and not necessarily a very reliable one [41]).

3.7 Damping factor

Our discussion so far was mostly formal, focussing on all-order expressions. When the

various contributions are computed at finite order, higher order interference terms may

spoil the accuracy of the results, as discussed in section 2.3. To avoid this problem, the

computations in ref. [14] also include a phenomenological damping factor: in place of

eq. (3.4) one writes

FFONLL(Q2,m2
c) = F (3)(Q2,m2

c) +D
(
m2

c
Q2

) [
F (4)(Q2, 0)− F (3,0)(Q2,m2

c)
]

≡ F (3)(Q2,m2
c) +D

(
m2

c
Q2

)
F (d)(Q2,m2

c) , (3.45)

where

D
(
m2

c
Q2

)
= Θ(Q2 −m2

c)
(

1− m2
c

Q2

)2
(3.46)

suppresses the difference term F (d) close to threshold, i.e. when Q2 ∼ m2
c . This is the region

where the resummation of collinear logarithms, added to the fixed-order result F (3)(Q2,m2
c)

through the difference term F (d)(Q2,m2
c), is not needed and can therefore be artificially

suppressed. This suppression turns out to be important when working at O(αs), where

the O(α2
s) interference terms are sizeable, but becomes almost negligible already at O(α2

s),

where the O(α2
s) interference terms are small.
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With this damping eq. (3.19) becomes

FFONLL(Q2,m2
c)
∣∣∣
zic

=
∑
i=g,q,q̄

B
(4)
i

(
m2

c
Q2

)
⊗ f (4)

i (Q2)

+D
(
m2

c
Q2

)[ ∑
i=g,q,q̄

(
C

(4)
i (0)−B(4,0)

i

(
m2

c
Q2

))
⊗ f (4)

i (Q2)+
∑
i=c,c̄

C
(4)
i (0)⊗ f (4)

i (Q2)

]
(3.47)

and, likewise, eq. (3.29) becomes

∆FFONLL(Q2,m2
c) =

∑
i=c,c̄

[(
C

(3)
i

(
m2

c
Q2

)
−D

(
m2

c
Q2

)
C

(3,0)
i

(
m2

c
Q2

))
−

∑
m=g,q,q̄

(
B(4)
m

(
m2

c
Q2

)
−D

(
m2

c
Q2

)
B(4,0)
m

(
m2

c
Q2

))
⊗Kmi

(
m2

c
Q2

)]
⊗

∑
j=g,q,q̄,c,c̄

K−1
ij

(
m2

c
Q2

)
⊗ f (4)

j (Q2) . (3.48)

However since when when add ∆FFONLL to FFONLL

∣∣
zic

the difference term vanishes iden-

tically (and thus for example in eq. (3.32) there are no massless terms to damp), it is clear

that when there is intrinsic charm the damping has no effect whatsoever.

It may seem paradoxical that while the limit of zero intrinsic charm should be unique,

the zero intrinsic charm result eq. (3.47) clearly depends on the arbitrary function D. The

reason of course is that in taking the limit the ∆F term eq. (3.48) is suppressed, since it

becomes formally subleading: although small, it is still not entirely negligible, and indeed

must be similar in size to the subleading variation achieved through changing the damping

factor D. The FONLL damping factor is thus another manifestation of the ambiguity in

the treatment of the zero intrinsic charm limit, discussed in the previous section.

The χ-rescaling prescription plays a similar role in S-ACOT-χ. In this case, however,

rather than damping the (massless) resummation contribution, the massive kinematics is

restored in those contributions which are computed in the massless limit. In this way, the

S-ACOT-χ result becomes closer to ACOT, since (the dominant) part of the neglected

power corrections are reinstated. This means that, even in the presence of intrinsic charm,

S-ACOT-χ can be a reasonable approximation. Given the restriction of the exact massive

results for the charm initiated contributions to O(αs) (the O(α2
s) diagrams with incoming

massive quark lines have yet to be calculated), the usage of S-ACOT-χ might be a useful

tool for improving the accuracy of calculations in the presence of intrinsic charm to O(α2
s)

and beyond (see e.g. ref. [42]).

4 From charm to bottom and top

So far in this paper we have not considered the third generation quarks, ignoring in par-

ticular top and bottom mass dependence in the coefficient functions. This means in effect

that we assumed that top and bottom were infinitely heavy, so that we were always well
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below threshold for their production. Virtual effects are suppressed by powers of the quark

mass, provided a decoupling renormalization scheme is used for these quarks.

In practice, the bottom quark is not much heavier than the charm quark, so, while

the top quark can be safely ignored at small scales, considering the bottom quark to be

infinitely heavy is not a very good approximation even at the charm threshold. Virtual

bottom quark loops cost a power of αs in a gluon propagator, so bottom mass effects appear

first at NNLO. Their effects are thus small, but not completely negligible.

It is the purpose of this section to extend the discussion in section 2 and section 3

to include the bottom and top quarks, in a complete and coherent framework. We first

concentrate on the bottom quark, and then generalise to the top quark. We will also discuss

the possibility of intrinsic beauty.

4.1 The bottom quark

In both the schemes (3FS and 4FS) discussed in section 2, bottom quark effects can appear

in the perturbative coefficient functions through additional diagrams, either as virtual

loops or, when kinematically allowed, through pair production. In both schemes the UV

divergences due to bottom loops are renormalized in the decoupling (CWZ) scheme, so the

bottom mass effects are formally suppressed as Q2/m2
b when Q2 � m2

b . However in practice

this condition is never really satisfied, and while pair production vanishes below threshold,

the effect of virtual bottom quark loops should be included at NNLO and beyond.

Hence, all coefficient functions discussed so far implicitly include a dependence on the

bottom mass. We thus replace

C
(3)
i

(
m2

c
Q2

)
→ C

(3)
i

(
m2

c
Q2 ,

m2
b

Q2

)
(4.1)

C
(4)
i

(
m2

c
Q2

)
→ C

(4)
i

(
m2

c
Q2 ,

m2
b

Q2

)
(4.2)

and equivalently the massless limit C
(4)
i (0) → C

(4)
i (0,m2

b/Q
2); the same extension applies

also for derived quantities such as B
(4)
i or C

(3,0)
i . The mb dependence is computed at fixed

order: below threshold it can appear at O(α2
s) through a 1-loop correction to a gluon

propagator, while above threshold it will appear already as an O(αs) contribution to the

structure function (e.g. F2) through the production of bottom quarks in the final state (see

figure 1).

Since one naturally performs the resummation of charm collinear logarithms first, the

4FS plays for beauty the same role that the 3FS plays for charm. Entirely analogous to

eq. (2.1) we thus have

F (4)(Q2,m2
c ,m

2
b) =

∑
i=g,q′,q̄′,b,b̄

C
(4)
i

(
m2

c
Q2 ,

m2
b

Q2

)
⊗ f (4)

i (Q2) (4.3)

where now q′ = d, u, s, c, and we have included the theoretical possibility of intrinsic

beauty through the addition of a b-quark PDF. In this expression all the large loga-

rithms log(m2
c/Q

2) have been resummed, but at large Q2 the potentially large logarithms
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log(m2
b/Q

2) remain unresummed in the coefficient functions C
(4)
i (m2

c/Q
2,m2

b/Q
2). The

4FS PDF evolution eq. (2.7) can be trivially extended to include the bottom quark PDF as

f
(4)
i (x,Q2) =

∑
j=g,q′,q̄′,b,b̄

Γ̄
(4)
ij

(
Q2, Q2

0

)
⊗ f (4)

j (Q2
0); (4.4)

where

Γ̄
(4)
ij (Q2, Q2

0) =


Γ

(4)
ij (Q2, Q2

0) i, j = g, q′, q̄′

δij , i, j = b, b̄

0, otherwise.

(4.5)

The Q2 dependence of the b contribution to the structure function is all in the coefficient

function, so f
(4)

b,b̄
is independent of Q2. Note that it is precisely the fact that the b quarks

do not mix with the lighter partons in the 4FS that makes the extension of the previous

formalism to include bottom quark effects trivial. If we wish to assume that there is no

intrinsic beauty, we can simply take

f
(4)
b = f

(4)

b̄
= 0, (4.6)

in analogy with eq. (3.9) for no intrinsic charm.

At high scales Q2 � m2
b , the logarithms of m2

b/Q
2 in C

(4)
i become large and need to

be resummed. We must therefore factorize the large logarithms due to the bottom quark

into the PDF, just as we did for the charm, leading naturally to a 5 flavor scheme (5FS).

PDFs in the 5FS evolve as

f
(5)
i (Q2) =

∑
j=g,q′,q̄′,b,b̄

Γ
(5)
ij

(
Q2, Q2

0

)
⊗ f (5)

j (Q2
0). (4.7)

and are related to 4FS PDFs by matching conditions analogous to eq. (2.12),

f
(5)
i (µ2

b) =
∑

j=g,q′,q̄′,b,b̄

K
(5)
ij

(
m2

b

µ2b

)
⊗ f (4)

j (µ2
b), (4.8)

where we have introduced new matching functions K
(5)
ij , using a label (5) to distinguish them

from the previous Kij ≡ K(4)
ij : in practice they are the same quantities, except that there is

one more active flavour, and the ‘heavy’ index is now b. The scale µb ∼ mb is the threshold

scale at which the 4FS PDFs are converted into 5FS PDF, during perturbative evolution.

In analogy with the ACOT expression eq. (2.25), equivalent to FONLL when there is

intrinsic beauty, the resummed result can be thus be written as

FACOT(Q2,m2
c ,m

2
b) =

∑
i,j=g,q′,q̄′,b,b̄

C
(4)
i

(
m2

c
Q2 ,

m2
b

Q2

)
⊗K(5)

ij

−1 (m2
b

Q2

)
⊗ f (5)

j (Q2)

=
∑

i,j=g,q′,q̄′,b,b̄

C
(5)
i

(
m2

c
Q2 ,

m2
b

Q2

)
⊗ f (5)

j (Q2), (4.9)
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or equivalently, using the FONLL construction eqs. (3.19), (3.29), as

FFONLL(Q2,m2
c ,m

2
b)

=
∑

i=g,q′,q̄′

[
B

(5)
i

(
m2

c
Q2 ,

m2
b

Q2

)
−B(5,0)

i

(
0,

m2
b

Q2

)
+ C

(5)
i (0, 0)

]
⊗ f (5)

i (Q2)

+
∑
i=b,b̄

C
(5)
i (0, 0)⊗ f (5)

i (Q2)

+
∑
i,j=b,b̄

[
C

(4)
i

(
m2

c
Q2 ,

m2
b

Q2

)
− C(4,0)

i

(
0,

m2
b

Q2

)
−

∑
m=g,q′,q̄′

(
B(5)
m

(
m2

c
Q2 ,

m2
b

Q2

)
−B(5,0)

m

(
0,

m2
b

Q2

))
⊗K(5)

mi

(
m2

b
Q2

)]
⊗K(5)

ij

−1 (m2
b

Q2

)
⊗
[
f

(5)
j (Q2)−

∑
k,l=g,q′,q̄′

K
(5)
jk

(
m2

b
Q2

)
⊗ K̃(5)

kl

−1 (m2
b

Q2

)
⊗ f (5)

l (Q2)
]
,

(4.10)

where K̃
(5)
ji

−1
is the inverse of K

(5)
ij restricted to the subspace of i, j = g, q′, q̄′. Note that

although the massive coefficient functions now depend on both m2
c and m2

b , all the matching

matrices depend only on m2
b/Q

2, since all the large logarithms of m2
c/Q

2 were resummed

in the previous step. Furthermore in the massless terms, we set both mb and mc to zero,

since m2
b/Q

2 > m2
c/Q

2: the corresponding definitions of the massless subtractions are thus

B
(5)
i

(
m2

c
Q2 ,

m2
b

Q2

)
=

∑
j=g,q′,q̄′

C
(4)
j

(
m2

c
Q2 ,

m2
b

Q2

)
⊗ K̃(5)

ji

−1 (m2
b

Q2

)
(4.11)

B
(5,0)
i

(
0,

m2
b

Q2

)
=

∑
j=g,q′,q̄′

C
(4,0)
j

(
0,

m2
b

Q2

)
⊗ K̃(5)

ji

−1 (m2
b

Q2

)
(4.12)

where C
(4,0)
j (0,m2

b/Q
2) is the singular massless limit of C

(4)
j (0,m2

b/Q
2), which can be writ-

ten as

C
(4,0)
j

(
0,

m2
b

Q2

)
=

∑
j=g,q′,q̄′,b,b̄

C
(5)
j (0, 0)⊗K(5)

ji

(
m2

b
Q2

)
. (4.13)

This last equation then gives the correct definition of the matching coefficients

K
(5)
ij (m2

b/Q
2), corresponding to eq. (2.14). Note that the subtraction of B

(5,0)
i (0,m2

b/Q
2)

from the massive B
(5)
i (m2

c/Q
2,m2

b/Q
2), while removing all the large logarithms log(m2

b/Q
2),

leaves untouched mc dependent terms: this is fine since at large Q2 such terms are always

suppressed by m2
c/Q

2, so can never become large even if enhanced by large logarithms

log(m2
b/Q

2). Note that if there were no intrinsic charm, C
(4)
j (m2

c/Q
2,m2

b/Q
2) in eq. (4.11)

would be replaced by C̄
(4)
j (m2

c/Q
2,m2

b/Q
2).

Of course the intrinsic beauty distribution must be very small indeed, suppressed by

roughly m2
c/m

2
b compared to the intrinsic charm distribution. We can set it to zero by

hand by taking as a boundary condition f
(4)
b = f

(4)

b̄
= 0, or in the massless scheme with
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five active flavours at µ2
b ∼ m2

b taking

f
(5)
b (µ2

b) =
∑

j,k=g,q′,q̄′

K
(5)
bj

(
m2

b

µ2b

)
⊗ K̃(5)

jk

−1 (m2
b

µ2b

)
⊗ f (5)

k (µ2
b); (4.14)

the last three lines in eq. (4.10) can then be dropped as they are subleading. Just as in

eq. (3.37) we can write them in the compact form

∆FFONLL

(
Q2,m2

c ,m
2
b

)
=
∑
i=b,b̄

[
C

(5)
i

(
m2

c
Q2 ,

m2
b

Q2

)
− C(5)

i (0, 0)
]

⊗
[
f

(5)
i −

∑
k,l=q′,q̄′,g

K
(5)
ik ⊗ K̃

(5)
kl

−1
⊗ f (5)

l

]
. (4.15)

From this we see that when there is no intrinsic beauty, in coefficient functions C
(5)

b,b̄
with

an incoming bottom quark we can ignore both charm mass dependence and bottom mass

dependence, treating both quarks as massless in these diagrams. We then get the S-ACOT

expression for the structure function, corresponding to just the first two lines of eq. (4.10):

FS-ACOT(Q2,m2
c ,m

2
b) =

∑
i=g,q′,q̄′,b,b̄

C̄
(5)
i

(
m2

c
Q2 ,

m2
c

Q2

)
⊗ f (5)

i (Q2) (4.16)

where

C̄
(5)
i

(
m2

c
Q2 ,

m2
b

Q2

)
=

B
(5)
i

(
m2

c
Q2 ,

m2
b

Q2

)
−B(5,0)

i

(
0,

m2
b

Q2

)
+ C

(5)
i (0, 0), i = g, q′, q̄′,

C
(5)
i (0, 0), i = b, b̄.

(4.17)

This is in contrast to the charm case: when there is no intrinsic charm, we can ignore the

charm mass dependence in the coefficient functions C
(4)
c,c̄ with incoming charm quark but

not in principle the bottom mass dependence, arising through virtual loops.

4.2 The top quark

The whole procedure described in section 4.1 can be repeated at the top threshold: here of

course it is clear that all the top quarks are generated perturbatively, but the necessity to

resum large logarithms of m2
t /Q

2 remains, and can be a performed by evolution of a top

PDF in a 6FS. Here S-ACOT corresponds to setting mc = mb = mt = 0 in all diagrams

with an incoming top quark: writing q′′ = q, c, b and including explicit mt dependence in

the coefficient functions, then with the definitions

B
(6)
i

(
m2

c
Q2 ,

m2
b

Q2 ,
m2

t
Q2

)
=

∑
j=g,q′′,q̄′′

C̄
(5)
j

(
m2

c
Q2 ,

m2
b

Q2 ,
m2

t
Q2

)
⊗ K̃(6)

ji

−1 (m2
t

Q2

)
(4.18)

B
(6,0)
i

(
0, 0,

m2
t

Q2

)
=

∑
j=g,q′′,q̄′′

C
(5,0)
j

(
0, 0,

m2
t

Q2

)
⊗ K̃(6)

ji

−1 (m2
t

Q2

)
(4.19)

C
(5,0)
j

(
0, 0,

m2
t

Q2

)
=

∑
j=g,q′′,q̄′′,t,t̄

C
(6)
j (0, 0, 0)⊗K(6)

ji

(
m2

t
Q2

)
, (4.20)
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we have

C̄
(6)
i

(
m2

c
Q2 ,

m2
b

Q2 ,
m2

t
Q2

)
=

B
(6)
i

(
m2

c
Q2 ,

m2
b

Q2 ,
m2

t
Q2

)
−B(6,0)

i

(
0, 0,

m2
t

Q2

)
+ C

(6)
i (0, 0, 0), i = g, q′′, q̄′′,

C
(6)
i (0, 0, 0), i = t, t̄.

(4.21)

These are the coefficient functions which enter the structure functions

FS-ACOT(Q2,m2
c ,m

2
b ,m

2
t ) =

∑
i=g,q′′,q̄′′,t,t̄

C̄
(6)
i

(
m2

c
Q2 ,

m2
c

Q2 ,
m2

t
Q2

)
⊗ f (6)

i (Q2) (4.22)

in the 6 flavour S-ACOT scheme.

4.3 Variable flavour number scheme

Putting all this together, we can now construct a variable flavour number scheme with

charm, bottom and top quarks. For definiteness we will assume that both bottom and top

are generated perturbatively, while charm may have an intrinsic component, which is the

setup that is likely to be used when performing a PDF fit. The generic structure function

can then be written equivalently in the various different nf -flavour schemes, leading in

principle to identical results (to all orders in αs). In practice, at finite order, each of them

is more appropriate for a specific range of scales. In particular, the 3FS is appropriate only

for Q ∼ mc, the 4FS for mc . Q . mb the 5FS for mb . Q . mt and the 6FS for Q & mt.

For scales above these ranges the results of a finite order calculation will be spoiled by

large unresummed logarithms.

Therefore, one can construct a variable flavour number scheme using each result in its

specific region of validity, using the heavy quark thresholds to switch from one result to

another:

F (Q2,m2
c ,m

2
b ,m

2
t ) =



∑
i=q,q̄,g,c,c̄

C
(3)
i

(
m2

c
Q2 ,

m2
b

Q2 ,
m2

t
Q2

)
⊗ f (3)

i (Q2) Q2 < µ2
c∑

i=q,q̄,g,c,c̄

C
(4)
i

(
m2

c
Q2 ,

m2
b

Q2 ,
m2

t
Q2

)
⊗ f (4)

i (Q2) µ2
c ≤ Q2 < µ2

b∑
i=q,q̄,g,c,c̄,b,b̄

C̄
(5)
i

(
m2

c
Q2 ,

m2
b

Q2 ,
m2

t
Q2

)
⊗ f (5)

i (Q2) µ2
b ≤ Q2 < µ2

t∑
i=q,q̄,g,c,c̄,b,b̄,t,t̄

C̄
(6)
i

(
m2

c
Q2 ,

m2
b

Q2 ,
m2

t
Q2

)
⊗ f (6)

i (Q2) µ2
t ≤ Q2

(4.23)

Notice that the sum in the 3FS runs also over the charm, to accomodate a possible intrinsic

component, while the bottom and top PDFs are generated perturbatively and therefore

appear in 5FS and 6FS (bottom) and 6FS (top) only; consistently, we have used the S-

ACOT coefficient functions C̄
(5)
i and C̄

(6)
i in the 5FS and 6FS formulations. In principle

the thresholds µi do not need to coincide with the analogous thresholds in the perturbative

evolution of PDFs, as pointed out e.g. in refs. [43, 44], provided in both cases µi ∼ mi, for

i = c, b, t. Note that for all practical purposes the result in the 3FS can be ignored, since
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it is not needed to describe the structure function in the region of validity of perturbative

QCD, Q & 1 GeV, in particular in the case of a fitted charm PDF.

It is useful to observe that in general discontinuities arise at the thresholds when

switching from one scheme to another: these are formally higher order effects, and are

ultimately due to interference between the coefficient functions and the matching functions

Kij in the perturbative evolution of the PDFs. If a strict expansion in αs in all the contri-

butions entering each formulation of eq. (4.23) is performed, these higher order interference

is eliminated and the VFNS is continuous at threshold [32].

Keeping track of the mass dependence from all three heavy flavors in each coefficient

function of eq. (4.23) is rather complicated in general, as one has to deal with calcula-

tions with three different masses. The simplest implementation of the VFNS, which can

be seen as the minimally improved version of the zero-mass VFNS, is to deal with only

one mass scale at a time: for instance in the 5FS the charm is considered massless and

the top infinitely heavy. The advantage of this simpler VFNS, which is often used in

practical applications,4 is its simplicity: the problem with it is that there are uncontrolled

approximations, with some of the terms that are dropped (for example the effect of bottom

quark loops, appearing at O(α2
s), just below the bottom threshold, or charm mass effects

at around the bottom threshold appearing already at LO with intrinsic charm, or O(αs)

with perturbative charm) being potentially quite significant.

At low orders in αs, including the full mass dependence is straightforward. At NNLO

(i.e. O(α2
s)) for contributions with an incoming light parton, and NLO (i.e. O(αs)) for dia-

grams with an incoming heavy parton, the diagrams have at most one heavy quark, so the

contributions from charm, bottom and top can simply be added. At the next order (N3LO

for contributions with an incoming light parton, and NNLO for diagrams with an incoming

heavy parton) diagrams can contain two heavy quarks, possibly of different flavour, and so

here the various combinations must be added. The expressions with two masses are already

rather complicated (see e.g. [45–47]). Diagrams with three different masses only occur at

N4LO (N3LO for an incoming heavy parton). Of course the dependence one the top quark

mass at scales below or around the bottom mass, and on the charm mass at scales of order

the top mass, must both be so small that they can be ignored for all practical purposes.

5 Summary and outlook

We have described the construction of a VFNS for inclusive deep-inelastic processes to any

order in perturbation theory, assuming as a starting point the existence of the MS and

decoupling (CWZ) renormalization schemes and the massless MS factorization scheme.

We further assume the formal existence of all PDFs (whether corresponding to massless or

massive partons) at all scales: thresholds are taken account of through the hard coefficient

functions. The result we find is essentially unique to any given order in perturbation theory:

in particular we obtain the same result from the ACOT procedure and from the FONLL

procedure. The reason for this is clear: once the renormalization and factorization scheme

4With some observable-dependent exceptions: if one considers for instance bottom production in DIS,

this could be described in a 4FS, but clearly keeping the exact bottom mass dependence.
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is fixed, and thus the PDFs and their evolution, the coefficient functions, containing all the

dependence on quark masses, must also be fixed uniquely order by order in perturbation

theory.

Of course assuming the formal existence of a charm (or indeed bottom or top) PDF at

a given scale is not the same as assuming it is non-negligible, still less observable. The the-

oretical assumption that the PDFs vanish at threshold can always be implemented through

imposition of a boundary condition on the perturbative evolution. This introduces a sub-

leading ambiguity in the formalism, which (being subleading) is small but not resolvable at

any given order in perturbation theory. It is only this ambiguity (and differences regard-

ing the ordering of the perturbation expansion) that distinguishes phenomenologically the

S-ACOT and FONLL schemes.

The way this ambiguity arises in the usual construction of a VFNS is through the

addition of a charm quark PDF in the transition from the massive scheme (valid near

threshold) to the massless scheme (valid far above it). This increases the size of the space

of active partons: the matching matrix is then not square, and thus has no unique inverse.

We have side stepped this ambiguity by adopting a slightly different procedure: we add the

charm quark PDF by extending the space of light partons in the massive scheme (where

the charm quark PDF does not mix with the light quark and gluon PDFs, and is thus

decoupled), and only then match to the massless scheme. The matching matrix is then

square, with a unique inverse, and the charm PDF below threshold can be interpreted

as ‘intrinsic’ charm. The limit of no instrinsic charm can then be taken a posteriori, as

a theoretical assumption, or instead the intrinsic charm can be determined empirically

through a PDF fit - ‘fitted charm’. The construction can be trivially extended to beauty

and top.

Whether in practice one adopts an empirical procedure (determining the heavy quark

distribution through a fit to data), or a theoretical prejudice (setting the heavy quark

distribution in the massive scheme to zero) then depends critically on the heavy quark

mass, and the precision of existing data. For charm, the charm mass is sufficiently low

(at around 1.3 GeV), and the data are sufficiently precise (at the level of a few per cent),

that the empirical approach may be necessary. For beauty it is probably at present still

best to set the intrinsic distribution to zero, since measurements of a few per mille are out

of reach. It is difficult to foresee the need for an intrinsic top distribution, since the top

quark decays before there is time for nonperturbative effects to be significant. We hope

to perform an empirical determination of intrinsic charm by fitting a charm PDF in the

NNPDF formalism in the near future, as set out in ref. [41].
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A Inversion of matching matrices

Here we give various expressions useful for the inversion of block diagonal matrices, with

particular application to the inversion of the matching matrix K when restricted to light

and heavy subspaces.

Consider a block diagonal matrix (
A B

C D

)
(A.1)

where A is m×m, D is n× n, and both are invertible with inverses A−1 and D−1, while

B is m× n and C is n×m. Then the inverse of this matrix is(
A B

C D

)−1

=

(
E−1 −A−1BF−1

−D−1CE−1 F−1

)
, (A.2)

where

E = A−BD−1C, F = D − CA−1B. (A.3)

The following results are also useful:

A−1BF−1 = E−1BD−1, D−1CE−1 = F−1CA−1, (A.4)

and

E−1 = A−1 +A−1BF−1CA−1, F−1 = D−1 +D−1CE−1BD−1. (A.5)

Applying these general results to the matching matrix Kij , i, j = g, q, q̄, c, c̄, separated

into light and heavy subspaces, thus with m = 7 and n = 2, we find that on the diagonal

K−1
ij = K̃−1

ij +
∑

k,l=g,q,q̄

∑
m,n=c,c̄

K̃−1
ik ⊗Kkm ⊗K−1

mn ⊗Knl ⊗ K̃−1
lj , i, j = g, q, q̄ (A.6)

K−1
ij = K̃−1

ij +
∑
k,l=c,c̄

∑
m,n=g,q,q̄

K̃−1
ik ⊗Kkm ⊗K−1

mn ⊗Knl ⊗ K̃−1
lj , i, j = c, c̄ (A.7)

while the off-diagonal mixing is given by

K−1
ij = −

∑
k=g,q,q̄

∑
l=c,c̄

K̃−1
ik ⊗Kkl ⊗K−1

lj

= −
∑

k=g,q,q̄

∑
l=c,c̄

K−1
ik ⊗Kkl ⊗ K̃−1

lj , i = g, q, q̄, j = c, c̄ (A.8)

K−1
ij = −

∑
k=c,c̄

∑
l=g,q,q̄

K̃−1
ik ⊗Kkl ⊗K−1

lj

= −
∑
k=c,c̄

∑
l=g,q,q̄

K−1
ik ⊗Kkl ⊗ K̃−1

lj , i = c, c̄, j = g, q, q̄ . (A.9)
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In all these expressions the inverses of the matrices K̃ij are taken in the light and heavy

subspaces, while those of Kij are taken in the full space:∑
k=g,q,q̄,c,c̄

K−1
ik Kkj =

∑
k=g,q,q̄,c,c̄

KikK
−1
kj = δij , i, j = g, q, q̄, c, c̄ (A.10)

∑
k=g,q,q̄

K̃−1
ik Kkj =

∑
k=g,q,q̄

KikK̃
−1
kj = δij , i, j = g, q, q̄ (A.11)

∑
k=c,c̄

K̃−1
ik Kkj =

∑
k=c,c̄

KikK̃
−1
kj = δij , i, j = c, c̄. (A.12)

Note in particular that if we restrict to a subspace, K−1 is not the inverse of K, rather∑
k=g,q,q̄

K−1
ik

[
Kkj −

∑
m,n=c,c̄

KkmK̃
−1
mnKmj

]
= δij , i, j = g, q, q̄ (A.13)

∑
k=c,c̄

K̃−1
ik

[
Kkj −

∑
m,n=g,q,q̄

KkmK
−1
mnKmj

]
= δij , i, j = c, c̄. (A.14)

B Explicit results

We present in this appendix explicit expressions for neutral current DIS in terms of primary

ingredients such as massive 3FS and massless 4FS coefficient functions. We restrict our

study to the charm structure functions (defined for present purposes to be that part of the

structure function in which the struck quark is a charm quark) F c2 (Q2,m2
c), F

c
L(Q2,m2

c)

and F c3 (Q2,m2
c) since this is where the effect of any intrinsic charm will be most visible:

extension to other structure functions (both neutral and charged current) is straightfor-

ward.

B.1 F c2 to NNLO

F c2 receives contributions from incoming charm quarks (starting at LO), incoming gluons

(starting at NLO), and incoming light quarks (starting at NNLO):

F c2 (Q2,m2
c) = F c2,c(Q

2,m2
c) + F c2,g(Q

2,m2
c) +

∑
q

F c2,q(Q
2,m2

c). (B.1)

As explained in section 3, each of these contributions can be further decomposed into the

contribution from standard FONLL without intrinsic charm, computed using eq. (3.19),

and what may be thought of as an intrinsic charm correction, computed using eq. (3.29):

F c2,i(Q
2,m2

c) = F c2,i(Q
2,m2

c)
∣∣
zic

+ ∆F c2,i(Q
2,m2

c) (B.2)

with i = c, g, q. The ‘zero intrinsic charm’ contributions are then given by (ignoring the

damping factor discussed in section 3.7)

F c2,c(Q
2,m2

c)
∣∣
zic

= C
(4)
2,c

(
0, αs

)
⊗ f (4)

c+ (Q2), (B.3)

F c2,g(Q
2,m2

c)
∣∣
zic

=
[
B

(4)
2,g

(
m2

c
Q2 , αs

)
−B(4,0)

2,g

(
m2

c
Q2 , αs

)
+ C

(4)
2,g

(
0, αs

)]
⊗ f (4)

g (Q2), (B.4)

F c2,q(Q
2,m2

c)
∣∣
zic

=
[
B

(4)
2,q

(
m2

c
Q2 , αs

)
−B(4,0)

2,q

(
m2

c
Q2 , αs

)
+ C

(4)
2,q

(
0, αs

)]
⊗ f (4)

q+ (Q2), (B.5)
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where

f
(4)
q+ (Q2) = f (4)

q (Q2) + f
(4)
q̄ (Q2), f

(4)
c+ (Q2) = f (4)

c (Q2) + f
(4)
c̄ (Q2). (B.6)

In what follows we will expand each of these contributions out to NNLO in αs ≡ α(4)
s (Q2),

using eq. (2.11), and we will employ the following notation for the expansion of the various

coefficient and matching functions:

C
(4)
i (0, αs) =

∞∑
p=0

(
α(4)
s (Q2)

)p
C

(4),p
i (0), (B.7)

C
(3)
i

(
m2

c
Q2 , αs

)
=

∞∑
p=0

(
α(4)
s (Q2)

)p
C

(3),p
i

(
m2

c
Q2

)
, (B.8)

C
(3,0)
i

(
m2

c
Q2 , αs

)
=
∞∑
p=0

(
α(4)
s (Q2)

)p
C

(3,0),p
i

(
m2

c
Q2

)
, (B.9)

Kij

(
m2

c
Q2

)
= δij +

∞∑
p=1

(
α(4)
s (Q2)

)p
Kp
ij

(
m2

c
Q2

)
, (B.10)

The expansions of K−1
ij and K̃−1

ij can be straightforwardly related to the expansion of Kij .

Many of the O(αs) coefficients vanish,

K1
qq = K1

qg = K1
gq = K1

cq = K1
qc = 0, (B.11)

(and all combinations with a quark replaced with an anti quark) further simplifying the

expansions. For FONLL-A we need only the O(αs) contributions, while for FONLL-C (and

B) we also need the O(α2
s) contributions for a full implementation. All of the coefficient

functions and matching coefficients are known up to O(α2
s), except for those whose second

index is a heavy quark which are known only up to O(αs). In the following, we will omit

the argument m2
c/Q

2 in the expansion coefficients of Kij , while we will keep the argument

in the coefficient functions for clarity; we will also use αs ≡ α(4)
s (Q2).

Expanding eqs. (B.3)–(B.5) to NNLO, we have

F c2,c(Q
2,m2

c)
∣∣
zic

=
[
C

(4),0
2,c (0) + αsC

(4),1
2,c (0) + α2

sC
(4),2
2,c (0)

]
⊗ f (4)

c+ (Q2), (B.12)

F c2,g(Q
2,m2

c)
∣∣
zic

= αs

[
C

(3),1
2,g

(
m2

c
Q2

)
− C(3,0),1

2,g

(
m2

c
Q2

)
+ C

(4),1
2,g (0)

]
⊗ f (4)

g (Q2)

+ α2
s

[
C

(3),2
2,g

(
m2

c
Q2

)
− C(3,0),2

2,g

(
m2

c
Q2

)
+ C

(4),2
2,g (0)

−
(
C

(3),1
2,g

(
m2

c
Q2

)
− C(3,0),1

2,g

(
m2

c
Q2

))
⊗K1

gg

]
⊗ f (4)

g (Q2), (B.13)

F c2,q(Q
2,m2

c)
∣∣
zic

= α2
s

[
C

(3),2
2,q

(
m2

c
Q2

)
− C(3,0),2

2,q

(
m2

c
Q2

)
+ C

(4),2
2,q (0)

]
⊗ f (4)

q+ (Q2), (B.14)

where we also expanded B
(4)
2,g (and its massless limit) using the definition eq. (3.17).
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We now focus on the new terms ∆F c2,i(Q
2,m2

c): using eq. (3.29), and dropping terms

which do not contribute at NNLO, we have

∆F c2,c(Q
2,m2

c) =
∑
i=c,c̄

[
C

(3)
2,i

(
m2

c
Q2 , αs

)
− C(3,0)

2,i

(
m2

c
Q2 , αs

) ]
⊗K−1

ic ⊗ f
(4)
c+ (Q2)

−
[
C

(3)
2,g

(
m2

c
Q2 , αs

)
− C(3,0)

2,g

(
m2

c
Q2 , αs

) ]
⊗Kgc ⊗ f (4)

c+ (Q2) +O(α3
s), (B.15)

∆F c2,g(Q
2,m2

c) = −2
[
C

(3)
2,c

(
m2

c
Q2 , αs

)
− C(3,0)

2,c

(
m2

c
Q2 , αs

) ]
⊗K−1

cc ⊗Kcg ⊗K−1
gg ⊗ f (4)

g (Q2) +O(α3
s), (B.16)

∆F c2,q(Q
2,m2

c) = −2
[
C

(3)
2,c

(
m2

c
Q2 , αs

)
− C(3,0)

2,c

(
m2

c
Q2 , αs

) ]
⊗Kcq ⊗ f (4)

q+ (Q2) +O(α3
s),

(B.17)

where the second line in eq. (B.15) comes from the B terms in eq. (3.29) which do not

contribute at this order in the other two cases. Expanding to NNLO we find

∆F c2,c(Q
2,m2

c) =
[
C

(3),0
2,c

(
m2

c
Q2

)
− C(3,0),0

2,c

(
m2

c
Q2

) ]
⊗ f (4)

c+ (Q2)

+ αs

[
C

(3),1
2,c

(
m2

c
Q2

)
− C(3,0),1

2,c

(
m2

c
Q2

)
−
(
C

(3),0
2,c

(
m2

c
Q2

)
− C(3,0),0

2,c

(
m2

c
Q2

))
⊗K1

cc

]
⊗ f (4)

c+ (Q2)

+ α2
s

[
C

(3),2
2,c

(
m2

c
Q2

)
− C(3,0),2

2,c

(
m2

c
Q2

)
−
(
C

(3),1
2,c

(
m2

c
Q2

)
− C(3,0),1

2,c

(
m2

c
Q2

))
⊗K1

cc

−
(
C

(3),0
2,c

(
m2

c
Q2

)
−C(3,0),0

2,c

(
m2

c
Q2

))
⊗
(
K2
cc+K

2
c̄c−2K1

cg⊗K1
gc−K1

cc⊗K1
cc

)
−
(
C

(3),1
2,g

(
m2

c
Q2

)
− C(3,0),1

2,g

(
m2

c
Q2

))
⊗K1

gc

]
⊗ f (4)

c+ (Q2), (B.18)

∆F c2,g(Q
2,m2

c) = −αs2
[
C

(3),0
2,c

(
m2

c
Q2

)
− C(3,0),0

2,c

(
m2

c
Q2

) ]
⊗K1

cg ⊗ f (4)
g (Q2)

− α2
s2
[ (
C

(3),1
2,c

(
m2

c
Q2

)
− C(3,0),1

2,c

(
m2

c
Q2

))
⊗K1

cg

+
(
C

(3),0
2,c

(
m2

c
Q2

)
− C(3,0),0

2,c

(
m2

c
Q2

))
⊗
(
K2
cg −K1

cg ⊗K1
gg −K1

cc ⊗K1
cg

) ]
⊗ f (4)

g (Q2), (B.19)

∆F c2,q(Q
2,m2

c) = −α2
s2
[
C

(3),0
2,c

(
m2

c
Q2

)
− C(3,0),0

2,c

(
m2

c
Q2

) ]
⊗K2

cq ⊗ f (4)
q+ (Q2). (B.20)

Note that the LO coefficient functions are proportional to δ-functions, so their convolutions

with the matching terms are trivial. While the LO and NLO terms can all be computed in

full, many of the other terms at NNLO cannot yet be computed since the NNLO diagrams

with an incoming heavy quark line have yet to be evaluated.

Using eq. (2.14), we can re-express the coefficients C
(3,0),k
2,i appearing in the previous
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equations in terms of the expansion coefficients of C
(4)
2,i and Kij . Up to O(α2

s) we have

C
(3,0)
2,c

(
m2

c
Q2

)
= C

(4),0
2,c (0) + αs

[
C

(4),1
2,c (0) + C

(4),0
2,c (0)⊗K1

cc

]
+ α2

s

[
C

(4),2
2,c (0) + C

(4),1
2,c (0)⊗K1

cc + C
(4),1
2,g (0)⊗K1

gc + C
(4),0
2,c (0)⊗ (K2

cc +K2
c̄c)
]

+O(α3
s), (B.21)

C
(3,0)
2,g

(
m2

c
Q2

)
= αs

[
C

(4),1
2,g (0) + 2C

(4),0
2,c (0)⊗K1

cg

]
+ α2

s

[
C

(4),2
2,g (0) + C

(4),1
2,g (0)⊗K1

gg + 2C
(4),1
2,c (0)⊗K1

cg + 2C
(4),0
2,c (0)⊗K2

cg

]
+O(α3

s), (B.22)

C
(3,0)
2,q

(
m2

c
Q2

)
= α2

s

[
C

(4),2
2,q (0) + 2C

(4),0
2,c (0)⊗K2

cq

]
+O(α3

s). (B.23)

Substituting these into eqs. (B.12)–(B.20) we obtain expressions for F c2,i
∣∣
zic

and ∆F c2,i in

terms of the expansion coefficients of C
(3)
i (m2

c/Q
2), C

(4)
i (0) and Kij(m

2
c/Q

2), which can be

regarded as primary quantities.

When we evaluate the sum F c2,c(Q
2,m2

c)
∣∣
zic

+ ∆F c2,c(Q
2,m2

c) there are considerable

cancellations between the two terms: in fact we find using eq. (3.32)

F c2,c(Q
2,m2

c) = C
(3),0
2,c

(
m2

c
Q2

)
⊗ f (4)

c+ (Q2)

+ αs

[
C

(3),1
2,c

(
m2

c
Q2

)
− C(3),0

2,c

(
m2

c
Q2

)
⊗K1

cc

]
⊗ f (4)

c+ (Q2)

+ α2
s

[
C

(3),2
2,c

(
m2

c
Q2

)
− C(3),1

2,c

(
m2

c
Q2

)
⊗K1

cc

− C(3),0
2,c

(
m2

c
Q2

)
⊗
(
K2
cc +K2

c̄c − 2K1
cg ⊗K1

gc −K1
cc ⊗K1

cc

)
− C(3),1

2,g

(
m2

c
Q2

)
⊗K1

gc

]
⊗ f (4)

c+ (Q2), (B.24)

F c2,g(Q
2,m2

c) = αs

[
C

(3),1
2,g

(
m2

c
Q2

)
− 2C

(3),0
2,c

(
m2

c
Q2

)
⊗K1

cg

]
⊗ f (4)

g (Q2)

+ α2
s

[
C

(3),2
2,g

(
m2

c
Q2

)
− C(3),1

2,g

(
m2

c
Q2

)
⊗K1

gg − 2C
(3),1
2,c

(
m2

c
Q2

)
⊗K1

cg

− 2C
(3),0
2,c

(
m2

c
Q2

)
⊗
(
K2
cg −K1

cg ⊗K1
gg −K1

cc ⊗K1
cg

) ]
⊗ f (4)

g (Q2), (B.25)

F c2,q(Q
2,m2

c) = α2
s

[
C

(3),2
2,q

(
m2

c
Q2

)
− 2C

(3),0
2,c

(
m2

c
Q2

)
⊗K2

cq

]
⊗ f (4)

q+ (Q2). (B.26)

Note that we can choose to order these expansions in different ways: the FONLL scheme

naming FONLL-A includes all terms to O(αs), FONLL-C includes all terms to O(α2
s),

while in FONLL-B one adds the logarithmic parts of the O(α2
s) contributions not origi-

nated by a charm quark to FONLL-A. Note however that the massive NNLO coefficients

C
(3),2
2,c (m2

c/Q
2) and the NNLO matching functions K2

ic are not known: for this reason

FONLL-B and FONLL-C cannot be fully computed at present if one has to account for a

possible intrinsic charm. The best option for going beyond NLO is to use full FONLL-A

plus the ‘zero intrinsic charm’ contribution at higher orders, the ∆F terms being set to zero

beyond O(αs). Alternatively, as proposed in ref. [42], it is possible to use a χ rescaling on

the massless NNLO charm initiated coefficients to mimic the dominant charm mass effects.
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B.2 F cL to NNLO

Precisely the same arguments can be used for other structure functions, in particular F cL
and F c3 . Writing

F cL(Q2,m2
c) = F cL,c(Q

2,m2
c) + F cL,g(Q

2,m2
c) +

∑
q

F cL,q(Q
2,m2

c). (B.27)

we find for the zero intrinsic charm contributions

F cL,c(Q
2,m2

c)
∣∣
zic

=
[
αsC

(4),1
L,c (0) + α2

sC
(4),2
L,c (0)

]
⊗ f (4)

c+ (Q2), (B.28)

F cL,g(Q
2,m2

c)
∣∣
zic

= αs

[
C

(3),1
L,g

(
m2

c
Q2

)
− C(3,0),1

L,g

(
m2

c
Q2

)
+ C

(4),1
L,g (0)

]
⊗ f (4)

g (Q2)

+ α2
s

[
C

(3),2
L,g

(
m2

c
Q2

)
− C(3,0),2

L,g

(
m2

c
Q2

)
+ C

(4),2
L,g (0)

−
(
C

(3),1
L,g

(
m2

c
Q2

)
− C(3,0),1

L,g

(
m2

c
Q2

))
⊗K1

gg

]
⊗ f (4)

g (Q2), (B.29)

F cL,q(Q
2,m2

c)
∣∣
zic

= α2
s

[
C

(3),2
L,q

(
m2

c
Q2

)
− C(3,0),2

L,q

(
m2

c
Q2

)
+ C

(4),2
L,q (0)

]
⊗ f (4)

q+ (Q2), (B.30)

while

∆F cL,c(Q
2,m2

c) = C
(3),0
L,c

(
m2

c
Q2

)
⊗ f (4)

c+ (Q2)

+ αs

[
C

(3),1
L,c

(
m2

c
Q2

)
− C(3,0),1

L,c

(
m2

c
Q2

)
− C(3),0

L,c

(
m2

c
Q2

)
⊗K1

cc

]
⊗ f (4)

c+ (Q2)

+ α2
s

[
C

(3),2
L,c

(
m2

c
Q2

)
− C(3,0),2

L,c

(
m2

c
Q2

)
−
(
C

(3),1
L,c

(
m2

c
Q2

)
− C(3,0),1

L,c

(
m2

c
Q2

))
⊗K1

cc

− C(3),0
L,c

(
m2

c
Q2

)
⊗
(
K2
cc +K2

c̄c − 2K1
cg ⊗K1

gc −K1
cc ⊗K1

cc

)
−
(
C

(3),1
L,g

(
m2

c
Q2

)
− C(3,0),1

L,g

(
m2

c
Q2

))
⊗K1

gc

]
⊗ f (4)

c+ (Q2), (B.31)

∆F cL,g(Q
2,m2

c) = −αs2C(3),0
L,c

(
m2

c
Q2

)
⊗K1

cg ⊗ f (4)
g (Q2)

− α2
s2
[ (
C

(3),1
L,c

(
m2

c
Q2

)
− C(3,0),1

L,c

(
m2

c
Q2

))
⊗K1

cg

+ C
(3),0
L,c

(
m2

c
Q2

)
⊗
(
K2
cg −K1

cg ⊗K1
gg −K1

cc ⊗K1
cg

) ]
⊗ f (4)

g (Q2),

(B.32)

∆F cL,q(Q
2,m2

c) = −α2
s2C

(3),0
L,c

(
m2

c
Q2

)
⊗K2

cq ⊗ f (4)
q+ (Q2). (B.33)

Note that although C
(3,0),0
L,c = 0, C

(3),0
L,c (m2

c/Q
2) is nontrivial, though power suppressed.

One can use expressions similar to eqs. (B.21)–(B.23) to re-express the structure functions

above in terms of only C
(3)
L,i , C

(4)
L,i and Kij . When we evaluate the sum F cL,c(Q

2,m2
c)
∣∣
zic

+
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∆F cL,c(Q
2,m2

c) we find

F cL,c(Q
2,m2

c) = C
(3),0
L,c

(
m2

c
Q2

)
⊗ f (4)

c+ (Q2)

+ αs

[
C

(3),1
L,c

(
m2

c
Q2

)
− C(3),0

L,c

(
m2

c
Q2

)
⊗K1

cc

]
⊗ f (4)

c+ (Q2)

+ α2
s

[
C

(3),2
L,c

(
m2

c
Q2

)
− C(3),1

L,c

(
m2

c
Q2

)
⊗K1

cc

− C(3),0
L,c

(
m2

c
Q2

)
⊗
(
K2
cc +K2

c̄c − 2K1
cg ⊗K1

gc −K1
cc ⊗K1

cc

)
− C(3),1

L,g

(
m2

c
Q2

)
⊗K1

gc

]
⊗ f (4)

c+ (Q2), (B.34)

F cL,g(Q
2,m2

c) = αs

[
C

(3),1
L,g

(
m2

c
Q2

)
− 2C

(3),0
L,c

(
m2

c
Q2

)
⊗K1

cg

]
⊗ f (4)

g (Q2)

+ α2
s

[
C

(3),2
L,g

(
m2

c
Q2

)
− C(3),1

L,g

(
m2

c
Q2

)
⊗K1

gg − 2C
(3),1
L,c

(
m2

c
Q2

)
⊗K1

cg

− 2C
(3),0
L,c

(
m2

c
Q2

)
⊗
(
K2
cg −K1

cg ⊗K1
gg −K1

cc ⊗K1
cg

) ]
⊗ f (4)

g (Q2), (B.35)

F cL,q(Q
2,m2

c) = α2
s

[
C

(3),2
L,q

(
m2

c
Q2

)
− 2C

(3),0
L,c

(
m2

c
Q2

)
⊗K2

cq

]
⊗ f (4)

q+ (Q2). (B.36)

B.3 F c3 to NNLO

Similarly we write

F c3 (Q2,m2
c) = F c3,c(Q

2,m2
c) +

∑
q

F c3,q(Q
2,m2

c) (B.37)

and

f
(4)
q− (Q2) = f (4)

q (Q2)− f (4)
q̄ (Q2), f

(4)
c− (Q2) = f (4)

c (Q2)− f (4)
c̄ (Q2). (B.38)

At NLO the valence distributions f
(4)
c− and f

(4)
q− evolve independently, but at NNLO they

mix. Thus even if there is no intrinsic charm, a small valence charm distribution f
(4)
c− will

be generated dynamically above threshold. We thus find that

F c3,c(Q
2,m2

c)
∣∣
zic

=
[
C

(4),0
3,c (0) + αsC

(4),1
3,c (0) + α2

sC
(4),2
3,c (0)

]
⊗ f (4)

c− (Q2), (B.39)

F c3,q(Q
2,m2

c)
∣∣
zic

= α2
s

[
C

(3),2
3,q

(
m2

c
Q2

)
− C(3,0),2

3,q

(
m2

c
Q2

)
+ C

(4),2
3,q (0)

]
⊗ f (4)

q− (Q2), (B.40)
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while

∆F c3,c(Q
2,m2

c) =
[
C

(3),0
3,c

(
m2

c
Q2

)
− C(3,0),0

3,c

(
m2

c
Q2

) ]
⊗ f (4)

c− (Q2)

+ αs

[
C

(3),1
3,c

(
m2

c
Q2

)
− C(3,0),1

3,c

(
m2

c
Q2

)
−
(
C

(3),0
3,c

(
m2

c
Q2

)
− C(3,0),0

3,c

(
m2

c
Q2

))
⊗K1

cc

]
⊗ f (4)

c− (Q2)

+ α2
s

[
C

(3),2
3,c

(
m2

c
Q2

)
− C(3,0),2

3,c

(
m2

c
Q2

)
−
(
C

(3),1
3,c

(
m2

c
Q2

)
− C(3,0),1

3,c

(
m2

c
Q2

))
⊗K1

cc

−
(
C

(3),0
3,c

(
m2

c
Q2

)
− C(3,0),0

3,c

(
m2

c
Q2

))
⊗ (K2

cc +K2
c̄c − 2K1

cg ⊗K1
gc −K1

cc ⊗K1
cc)
]
⊗ f (4)

c− (Q2), (B.41)

∆F c3,q(Q
2,m2

c) = −2α2
s

[
C

(3),0
3,c

(
m2

c
Q2

)
− C(3,0),0

3,c

(
m2

c
Q2

) ]
⊗K2

cq ⊗ f (4)
q− (Q2). (B.42)

Now when we evaluate the sum F c3,c(Q
2,m2

c

∣∣
zic

+ ∆F c3,c(Q
2,m2

c) we have

F c3,c(Q
2,m2

c) = C
(3),0
3,c

(
m2

c
Q2

)
⊗ f (4)

c− (Q2)

+ αs

[
C

(3),1
3,c

(
m2

c
Q2

)
− C(3),0

3,c

(
m2

c
Q2

)
⊗K1

cc

]
⊗ f (4)

c− (Q2)

+ α2
s

[
C

(3),2
3,c

(
m2

c
Q2

)
− C(3),1

3,c

(
m2

c
Q2

)
⊗K1

cc

− C(3),0
3,c

(
m2

c
Q2

)
⊗ (K2

cc +K2
c̄c − 2K1

cg ⊗K1
gc −K1

cc ⊗K1
cc)
]
⊗ f (4)

c− (Q2),

(B.43)

F c3,q(Q
2,m2

c) = α2
s

[
C

(3),2
3,q

(
m2

c
Q2

)
− 2C

(3),0
3,c

(
m2

c
Q2

)
⊗K2

cq

]
⊗ f (4)

q− (Q2). (B.44)
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