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A method is proposed for calibrating the radius of a rotating coil sensor by relaxing the
metrological constraints on alignment and field errors of the reference quadrupole. A coil
radius calibration considering a roll-angle misalignment of the measurement bench, the
magnet, and the motor-drive unit is analyzed. Then, the error arising from higher-order
harmonic field imperfections in the reference quadrupole is assessed. The method is vali-
dated by numerical field computation for both the higher-order harmonic errors and the
roll-angle misalignment. Finally, an experimental proof-of-principle demonstration is car-
ried out in a calibration magnet with sextupole harmonic.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In particle accelerators, magnetic measurements are
necessary for establishing a suitable experimental coher-
ence among machine requirements, beam physics simula-
tions, and magnet development [2]. Beam physicists
allocate a suitable budget for magnet misalignment and
require experimental magnetic field maps pointing out
the field errors (expressed as multipoles [3]). During mag-
net prototyping, measurements allow also design calcula-
tions, material properties, and fabrication methods to be
verified [4]. Fields are measured also for monitoring the
magnet behavior online; thus direct feedback to the accel-
erator control is provided for adjusting the beam bending
and for tuning the acceleration parameters.
Based on these depicted findings, different measure-
ments techniques are employed, based on various sensing
elements, such as induction coils, oscillating wires, and
Hall probes, among others [5,6]. The induction coil is based
on the Faraday’s law of induction, where the sensing ele-
ment [7] is turned inside the magnet’s aperture in order
to provide a spatial harmonic description of the field
(harmonic coil [3]). A coil consists of several rectangular
loops of conducting wire, usually stretched during the
winding on a rigid core and then glued to assure a well-
defined and stable geometry. Coils can be manufactured
by traditional winding methods or printed-circuit board
(PCB) [8] technology. The latter is especially suited for
small-aperture magnets [9].

Manufacturing errors leading to deviations from the
ideal design exist in both the technologies. For the PCBs,
a misalignment between layers of different radii is typical.
Therefore, an accurate calibration is needed: Several phys-
ical parameters of the coil, such as rotation radius, coil
area, phase angle, tilt, number of turns, and opening angle
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have to be measured carefully in order to reach the
required metrological target.

The calibration based on a reference quadrupole mag-
net [1] is currently used in rotating coil systems. The
magnetic-equivalent rotation radius can be obtained in a
reference quadrupole field either by measuring the focus-
ing strength, or rotating the coil by a given angle [1] or also
before and after a translation in the horizontal (xz) and ver-
tical (yz) planes.

The calibration assumes that the coil and the reference
magnet axes are perfectly aligned, limiting the mathemat-
ical analysis to two dimensions. However, if significant roll
and swing misalignment errors are present, this gives rise
to significant calibration errors. Moreover, the equations
used to calculate the radius is based on the feed-down
effect from the quadrupole component [1], by assuming
all the contributions of higher-order terms as negligible.
This is justified because the dominant field component in
the reference magnet is much larger than the field errors
of higher-order multipoles [10]. However, if this assump-
tion is not verified, a sextupole magnet is used as reference,
or an in-situ calibration is carried out in a nonideal magnet,
significant errors arise. Therefore, a reference magnet with
stringent metrological constraints of harmonic field quality
and alignment is required. This is difficult to achieve, how-
ever, for small-apertures or rare-earth permanent
magnets.

In this paper, a method is analyzed for calibrating the
rotation radius of coils using a reference quadrupole mag-
net with a higher-order harmonic error, or a misalignment
with the coil axis. In particular, in Section 2, the presence of
a roll-angle misalignment between the coil axis and the
reference magnetic field axis, and higher-order harmonics
of the reference quadrupole is analyzed. In Section 3, the
effect of coil radius calibration in a quadrupole with a sex-
tupole or octupole error component is simulated numeri-
cally by using the field computation program ROXIE [3].
In Section 4, experimental results for validating the pro-
posed method are given.

2. Calibration method

In the following, the two cases of radius calibration are
analyzed for rotating coils using a nonideal reference quad-
rupole having (i) roll-angle misalignment, or (ii) higher-order
harmonics.

2.1. Radius calibration considering roll-angle misalignment

The rotating-coil radius is calibrated by means of two
measurements, taken at two different positions of the coil
inside a reference quadrupole magnet. The following
hypotheses are assumed about the set up and the measure-
ment method:

⁄ The reference quadrupole magnet has a cylindrical sym-
metry along the longitudinal axis z defining the global
reference frame fx; y; zg.

⁄ The misalignment of the reference quadrupole is mod-
eled as a rotation (roll) around the z axis, without any
component of pitch and yaw. The effect on the calibra-
tion error of higher-multipole field errors in the refer-
ence magnet is neglected, an assumption that will be
challenged in the next section.

⁄ Possible misalignment errors among the reference mag-
net, the coil support, and the displacement stages
remain constant between the two measurements. This
is a reasonable assumption, owing to the solid structure
of the support posts and tables.

⁄ The angular encoder of the rotating coil system (rigidly
mounted between the driving system and the coil) is
ideal, except for a rotation uncertainty ue.

⁄ Between the two measurements, the coil is supposed to
be purely translated on the magnet section with respect
to the global reference frame from an initial position in
the complex plain z ¼ xþ iy by Dz ¼ zb � za (jDzj ¼ d),
without loss of generality, the displacement of the har-
monic coil is assumed to be confined to the horizontal
plane of the reference magnet, hence Dz coincides with
Dx. The distance d is known with an uncertainty of
�0.01 mm.

Let us consider only a transverse section of the mea-
surement setup in the global 2D reference frame fx; yg
and the frames shown in Fig. 1:

⁄ Gravity frame: fxh; yhg, used as external reference, and
ideally coincident with the global reference frame
fx; yg;

⁄ Magnet frame: fxm; ymg, misaligned by the angle um

with the magnet geometric frame which is (not shown
in Fig. 1 for the sake of clarity) defined according to
the physical dimensions of the magnet, and supposed
here as coincident with the gravity frame;

⁄ Coil Frame: fxc; ycg, related also to the coils polarity,
(represented in Fig. 1 as fxa; yag and fxb; ybg for the
two measurements, centered at za and zb, respectively),
and misaligned by the angle ua with respect to the
gravity frame fxh; yhg;

⁄ Shaft Frame: fxs; ysg: related to the shaft which supports
the coil assembly;

⁄ Encoder Frame: fxe; yeg: related to the frame of the
rotary encoder installed on the test-bench. This frame
can be rotated in order to be aligned according to the
horizontal plane by zeroing the encoder.

⁄ Stages Frame: fxt; ytg related to the linear stage used to
displace the magnet with respect to the coil during the
in-situ calibration. The misalignment ut (Fig. 1)
between the linear stage frame and the gravity frame
induces an error on the coil phase computed during
the coil in-situ calibration.

According to the measurement method of the harmonic
coils [3], the 2p periodic voltage signal, resulting from the
coil rotation inside the reference magnetic field, is devel-
oped into a Fourier series. The multipole field errors corre-
spond to the Fourier series coefficients of the radial
component of the magnetic flux density on the reference/
measurement radius. The measured raw data are the inte-
grated voltage signals that correspond to the flux linkage in



Fig. 1. Reference frames for the magnet and the measurement bench: (t) stages, (c) coil, (h) gravity, and (m) magnetic. Aperture of the calibration magnet in
the disk Dðz0Þ centered at z0.
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the coil. The stability constraints on the rotation speed are
relaxed by re-parametrizing the time-domain motion into
the angular position, by means of an encoder mounted
on the coil shaft.

An angular uncertainty ue between the frames related
to the encoder fxe; yeg and the gravity fxh; yhgmust be con-
sidered (Fig. 1). If the coil shaft is equipped with a tilt-
sensor, the encoder offset is zeroed by compensating the
deterministic component of this angular error. The angular
uncertainty ug between the frames of the linear stage and
the coil (Fig. 1) should be considered as well, by assuming
that the frames of the shaft and of the coil are coincident.
The corresponding deterministic error component is
assessed by reversing the magnet.

After the measurements in the two positions zb and za,
only the dipole C1 ¼ B1 þ iA1 and the quadrupole compo-
nents C2 ¼ B2 þ iA2 are measured (by considering the refer-
ence magnet without higher-multipole field errors). The
complex field harmonics Cn ¼ Bn þ iAn are calculated from

the discrete Fourier coefficients fCn of flux using the coil
sensitivity factors kn. These components are expressed in
the local coordinate system of the coils fxc; ycg.

In general, by considering all the harmonics, the two
sets of measured harmonics are linked by the feed-down
formula [1]:

CnðzbÞ ¼
X1
k¼n

CkðzaÞ
k� 1
n� 1

� � Mz
R

� �k�n

; ð1Þ

where CkðzaÞ are the field coefficients in za; CnðzbÞ the field
coefficients measured in zb (after the coil translation), R the
sensing-coil radius, and Dz ¼ zb � za; jDzj ¼ d the displace-
ment in the gravity frame (Fig. 1):
Dz ¼ deiut : ð2Þ

The equation relating the measured multipole field
errors C1 and C2 in the two local coordinate systems is
derived by rotating Dz into the global frame by the angle
�ue. Then, the feed-down equation can be written as:

C2ðzbÞ ¼ C2ðzaÞ; ð3Þ

C1ðzbÞ ¼ C1ðzaÞ þ C2ðzaÞde
iðut�ueÞ

R
: ð4Þ

Without higher-order multipoles field errors, the feed-
down does not affect the quadrupole component C2. The
systematic error of the displacement effect can be elimi-
nated by taking the difference between the two
measurements.

The multipole harmonics is not required to be known in
a global reference system (e.g., the gravity frame), because
the feed-down is related to the measurement at za:

R C1ðzbÞ � C1ðzaÞð Þ ¼ RDC1 ¼ C2ðzaÞdeiðut�ueÞ: ð5Þ
The polar representation of DC1 and C2 is made explicit:

RjDC1jeia1 ¼ jC2ðzaÞjeia2deiðut�ueÞ: ð6Þ
where a1 is the phase of the variation of the component C1

between the positions a and b, and a2 the phase of the
quadrupole component C2 in position Pa isomorphic to za
(Fig. 2).

Eq. (6) is fulfilled if both the modulus and the phase are
equal:

R ¼ djC2ðzaÞj
jDC1j ; ð7Þ



Fig. 2. Main phase angles involved in the calibration method (referred to
the reference gravity frame fxh ; yhg): a2, phase of the quadrupole
component C2 in position pa; ue, angular uncertainty of the encoder;
a1, phase of the variation of the component C1 between the positions pa

and pb; ut , misalignment of the linear stage.

P. Arpaia et al. /Measurement 87 (2016) 74–82 77
a1 � a2 ¼ ut �ue: ð8Þ
Eq. (7) gives the expression for the equivalent measure-
ment radius of the coil.

Notice that this calibration method is independent from
the alignment errors between the reference magnet and
the displacement stage. The only assumption remains that
the encoder error ue does not change between the two
measurements.

Under the hypotheses of a linear translation, and the
invariance of ue, the coil phase angle uc with respect to
the stage frame from (6) does not change between the
two measurements. Therefore, C1ðzbÞ and C1ðzaÞ have dif-
ferent modulus but equal phase. Furthermore, C2ðzaÞ has
a phase angle that is double that of C1ðzaÞ, because the
magnet is a quadrupole. Thus, the condition on the phases
resulting from (6) becomes:

a1 ¼ a2 þ ðut �ueÞ ð9Þ
where a2 ¼ 2a1, thus

a1 ¼ 2a1 þ ðut �ueÞ ð10Þ
and if a1 ¼ uc

a1 ¼ uc ¼ �ðut �ueÞ ð11Þ

argðRÞ ¼ uc ¼ �ðut �ueÞ: ð12Þ
In particular, if the stage frame has been previously

aligned with the gravity frame, the coil initial phase can
be determined with respect to the gravity. The argðRÞ is
affected by rotations of the stage frame, but not of the
magnet frame.
2.2. Radius calibration considering higher-order harmonics

The harmonic coils can be of the radial or tangential
type, intercepting the azimuthal and the radial flux compo-
nents, respectively. In the following, a radial coil is
assumed, but all the developments can be applied also to
tangential coils. Furthermore, consider a quadrupole con-
taining an unwanted sextupole harmonic field error due
to manufacturing errors or to variation in the remanent
field of rare-earth magnets used for exciting the magnet.
As an example, magnets with apertures less than 10 mm
for linear accelerators show sextupole field errors in the
range of 10�3, while remaining still acceptable for machine
installation.

In this case, the feed-down formula results in

C1ðzbÞ ¼ C1ðzaÞ þ C2ðzaÞ Mz
R

� �
þ C3ðzaÞ Mz

R

� �2
;

C2ðzbÞ ¼ C2ðzaÞ þ 2C3ðzaÞ Mz
R

� �
;

C3ðzbÞ ¼ C3ðzaÞ; ð13Þ

where Cn ¼ Bn þ iAn. In the special case of a translation
Mx in the horizontal plane, no skew field harmonics will
be excited, thus An ¼ 0. The component B3ðzaÞ is
therefore:

B3ðzaÞ ¼ 1
2

B2ðzbÞ � B2ðzaÞð Þ R
Mx

� �
ð14Þ

and,

B1ðzbÞ ¼ B1ðzaÞ þ Mx
2R

� �
B2ðzaÞ þ B2ðzbÞ½ �: ð15Þ

The relation between the coefficients obtained by Four-
ier analysis of the vector potential (corresponding to the
flux increment per trigger signal) are related to the multi-
pole field errors by means of the coil-sensitivity factors kn,
which depend on the number of coil turns Nt and on the
coil length L. Details about the calculation of the coil-
sensitivity factors are given for the radial and tangential
coils in [10]. The relation between the Fourier coefficients

of the vector potential eBn and the multipole field errors
Bn is given by

Bn ¼ Rn�1
eBnþ1

kn
; ð16Þ

where

kn ¼ NtL
n

Rn
2 � Rn

1

� �
: ð17Þ

The kn are the coil sensitivity coefficient of nth-order har-
monic, R1 is the internal coil radius, and R2 is the external
coil radius. Assuming W ¼ R2 � R1 as the width of the coil:

k1 ¼ NtLW ¼ Ac ð18Þ

k2 ¼ NtLW
ðR1 þ R2Þ

2
¼ AcR ð19Þ
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where Ac is the coil area, and R is the coil radius. The har-
monic field coefficients are computed using (16):

B1ðzÞ ¼
eB2ðzÞ
Ac

; ð20Þ

B2ðzÞ ¼
eB3ðzÞ
Ac

; ð21Þ

Substituting (20) and (21) into (15) for z ¼ za; zb yields:

eB2ðzbÞ ¼ eB2ðzaÞ þ 1
2
Mx

eB3ðzaÞ
R

þ 1
2
Mx

eB3ðzbÞ
R

; ð22Þ

and, therefore,

R ¼ Mx
2

eB3ðzbÞ þ eB3ðzaÞeB2ðzbÞ � eB2ðzaÞ
: ð23Þ

A similar reasoning for an octupole component within a
quadrupole magnet yields the following system of
equations:

B1ðzbÞ ¼ B1ðzaÞ þ B2ðzaÞ Mx
R

� �
þ B4ðzaÞ Mx

R

� �3
;

B2ðzbÞ ¼ B2ðzaÞ þ 3B4ðzaÞ Mx
R

� �2

;

B3ðzbÞ ¼ 3B4ðzaÞ Mx
R

� �
;

B4ðzbÞ ¼ B4ðzaÞ; ð24Þ

The coil radius can then be computed from the harmon-

ics eBnþ1 of the magnetic vector potential by

R ¼ Mx
3

2eB3ðzaÞ þ eB3ðzbÞeB2ðzbÞ � eB2ðzaÞ
; ð25Þ

which can be generalized for any single error harmonic
within a quadrupole:

R ¼ Mx
ðn� 1Þ

ðn� 2ÞeB3ðzaÞ þ eB3ðzbÞeB2ðzbÞ � eB2ðzaÞ
; ð26Þ

where n is the highest harmonic order, i.e., 2 for the quad-
rupole, 3 for the sextupole, etc.
3. Numerical results

The equations of the proposed calibration method are
derived for a rotating coil with a cross section very small
with respect to the spanned surface. For rotating coil to
be used in very-small aperture magnets, this assumption
is no more valid. Therefore, the calibration error arising
from the concepts of mean surface and mean radius is ana-
lyzed by means of numerical simulation. On account of
this, the CERN field computation program ROXIE [3], was
used. In particular, the two case studies of a reference
quadrupole with only an additional sextupole, and octu-
pole field component were analyzed.
3.1. Presence of a sextupole field component

The actual reference magnet is modeled by means of
current shells of an ideal, cos nH, current distribution that
generates a pure multipole field of order n. In particular, a
sextupole current shell is nested within the quadrupole.
The radii of the quadrupole and the sextupole are 70 and
50 mm. A 2D simulation is sufficient owing to the
assumption of a longitudinal homogeneity both in the
magnet and the rotating coil. The tangential coil section
used to test the proposed method is shown in Figs. 3 and
4. During a coil rotation, 180 samples of the voltage are
acquired in order to determine by Fourier coefficients of
the radial magnetic flux density.

The flux linkage has been computed at two coil posi-
tions within the magnet aperture. In the first position the
coil rotation axis and the magnetic axis of the calibration
magnet are identical, while in the second position Fig. 3,
the coil rotation center is displaced along the x-axis.

Several flux measurements were simulated using differ-
ent rotating coil radii and displacements Mx in order to
check the validity of Eq. (23) for thick coils. The proposed
calibration method gives more accurate and precise radius
values, while the classical method (not accounting for the
higher order multipole field errors.) yields errors of up to
4.5%.

Fig. 4 shows the modulus of the magnetic flux density
jBj of the simulated magnet obtained by overlapping an
ideal quadrupole and an ideal sextupole shell magnet.
The magnetic flux distribution is not symmetric and its
modulus is higher on the right-hand side. The coil radius
has been calculated through the classical method (with-
out considering the higher-order multipole) in an ideal
quadrupole shell magnet, for different position of coil
Mx inside the magnet aperture. These results can be com-
pared with the case of a higher-order harmonics. The
results obtained by Method 1 (see Ref. [1]) for an ideal
quadrupole are shown in Table 1. These results are
referred to an reference coil radius of 20 mm, as modeled
in ROXIE. Results of Method 1 differ by approximately
0.11 mm mainly owing to the effect of the insulation
between coil turns.

In Table 2, the results obtained using the classical
(Method 1) and the proposed method (Method 2) are com-
pared for an imposed coil radius of 20 mm in a quadrupole
magnet containing an additional sextupole harmonic.
These results show that the calibration error for the classi-
cal method [1] depends on the displacements Mx, while the
proposed method is more robust.

3.2. Presence of an additional sextupole field component

Table 3 shows, the results obtained for a quadrupole
magnet with an octupole field harmonic. The proposed
method gives more accurate results than the classical
one, because it takes into consideration the nonlinear
radius dependence on the magnetic flux density. Obvi-
ously, the most accurate results are obtained when
measurements are carried out close to the magnet
center.



Fig. 3. Actual reference magnet modeled by ROXIE as two current shells (sextupole nested within the quadrupole) and rotating coil section (with center
shifted from the magnet axis). The current density distribution J (A/mm2) shows the asymmetry introduced by the sextupole harmonic. The induced
magnetic field is magnified by ten thousand in order to display better its effect in the picture.

Fig. 4. Magnetic flux density in a tangential rotating coil inside the magnet aperture. The current density distribution J ðA=mm2Þ show the asymmetry
introduced by the sextupole harmonic. The induced magnetic field is 10,000 times larger in order to display better its effect in the picture.
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Fig. 5. Test-bench used for calibration experiment.

Table 2
Case study of quadrupole with one additional sextupole harmonic field
error: Percentage accuracy of radius calibrations for movements Dx from
position x1 to x2, using the traditional (Method 1 [1]) and the proposed
(Method 2) method, for a reference coil radius of 20.00 mm.

x1 (mm) x2 (mm) Method1 (%) Method2 (%)

10.00 20.00 �4:50 �0:55
15.00 20.00 �2:45 �0:50
10.00 15.00 �2:55 �0:55

Table 3
Case study of quadrupole with one octupole additional harmonic: Percent-
age accuracy of radius calibrations resulting from movements Dx from
position x1 to x2, with the traditional (Method 1) and proposed (Method 2)
method, for a reference coil radius of 20.00 mm.

x1 (mm) x2 (mm) Method1 (%) Method2 (%)

10.00 15.00 �1:65 �0:75
10.00 20.00 �3:40 �1:20
15.00 20.00 �2:40 �1:10

Table 1
Percentage accuracy of radius calibrations resulting for movements Dx from
position x1 to x2 using Method 1, see Ref. [1], for a reference coil radius of
20.00 mm.

x1 (mm) x2 (mm) Method1 (%)

5.00 10.00 �0:55
10.00 15.00 �0:60
5.00 15.00 �0:55
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4. Experimental results

The results of the experimental validation of the pro-
posed calibration method are reported for a case study in
the test facility I8 of the Magnetic Measurement Section at
CERN of a reference quadrupole magnet with a single
higher harmonic of error.
4.1. Experiment setup and procedure

The experimental setup for the validation test campaign
is shown in Fig. 5. The shaft is ceramic and measures
400 mm in length, with three hand-wound coils, two tan-
gential and one for the dipole (Fig. 7a).

The test bench is equipped with a stepping motor for
the coil rotation and a damper to reduce vibrations. The
rotation speed is 30 rpm and the number of samples
acquired per turn is 2048. The re-parametrization to
the angular position is carried out by reading the trigger
signals from an angular encoder, mounted on the oppo-
site side of stepping motor. The encoder is set to zero
for the coil shaft aligned with respect to the gravity,
using ceramic electrolytic tilt-meter, mounted on the
shaft. The magnet is displaced with respect to the coil
cross section by means of a 2D translation stage by
Physical Instruments. The data acquisition is carried
out by 3 Fast Digital Integrator (FDI) [11], one for each
coil. A magnet with 16-blocks of rare-earth PM material
(Fig. 6A) was used as reference for the tests. An 8-
blocks permanent magnet with an aperture of 22 mm
was shimmed to create a significant sextupole harmonic
(Fig. 6B). As illustrated in Fig. 6B, 3 blocks were moved
towards the external side of the magnet on the left,
while 3 blocks on the right were moved towards the
magnet aperture.

For the calibration tests, the limited remaining space
between the shaft and the magnet allowed only two steps
of 0.362 mm to be carried out. The radius was calculated
as the average over 7 turns both by the traditional
method and by the proposed calibration with sextupole
correction.

The field of the magnet does not cover all the shaft
length because the shaft is longer than the magnet
(Fig. 7b). During the calibration, the field of both the refer-
ence and shimmed magnets covers the same section of the
rotating coil. Otherwise due to the shaft length (400 mm),
the mean radius measured over the coil section covered
by the magnet field could change section by section owing
to the coil production errors.
4.2. Test results

The results for the two external coil rotation radius
in the two magnets are compared. The results of the
central coil are not considered for their higher uncer-
tainty on the sextupole, owing to central coil smaller
radius.

Table 4, the radius calibration results are reported for a
movement of Dx 0.362 mm in the reference and shimmed
magnets.

The results in Table 4 show that the proposed calibra-
tion with the sextupole harmonic correction performs
better than the traditional method for corrections rang-
ing from 10 to 20 lm. The sextupole harmonic intro-
duced in the shimmed magnet is high for well-
designed accelerator magnets, therefore for reference
magnets with lower-amplitude higher-order harmonics,
the effect of the harmonic can be neglected. On the con-
trary, considering the particular case of magnets with



Fig. 6. (A) 16-blocks, 22-mm aperture permanent reference magnet and (B) 8-blocks, 22-mm aperture permanent magnet with additional shims to create a
significant sextupole field error.

PERMANENT 
MAGNET

ENCODER MOTOR

(b)

(a)

Fig. 7. (a) Rotating coil shaft sections view, the cross indicates the sections of 3 tangential coils (dimensions in mm), and (b) rotating coil test-bench
longitudinal view: shaft, stepping motor and rotary encoder.

Table 4
Radius calibrations results for a movement Dx of 0.362 mm in the reference
and shimmed magnets.

Magnet Sextupole Correction Coil 1 (mm) Coil 2 (mm)

Reference Yes 7.00 5.62
Shimmed No 6.97 5.59
Shimmed Yes 6.99 5.61
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harmonic due to the assembly or to specific designs, the
correction with the proposed calibration method is
indeed to adopt.

The independence of the radius on the magnet frame
phase was verified by repeating the calibration with the
frame rotated by 45, 90, 135, and 180 degrees according
to the support by using a pin. The corresponding results



Table 5
Radius calibration vs reference magnet rotation for a displacement of
Dx ¼ 0:362 mm.

Central coil (mm) Coil 1 (mm) Rotation (degrees)

0.043 7.00 45
0.045 6.99 90
0.044 7.00 135
0.045 6.99 180
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of radius values are in Table 5. Each value is calculated
according to the same displacement Dx of 0.362 mm. The
proposed calibration, which consider a single higher order
harmonic, gives better results with a correction of 10–
20 lm.

The measured radius is stable when measured at dif-
ferent magnet angular positions. A variation in the order
of a micrometer is present, due to the fact that is a real
magnet.

5. Conclusion

A method for calibrating the rotation radius of a rotat-
ing coil sensor in a reference quadrupole magnet with a
roll-angle misalignment and a significant harmonic field
error or has been proposed. The method allows the metro-
logical constraints of field quality for the reference quadru-
pole to be released, by allowing a wider choice of magnets
to calibrate the rotating coils. Furthermore, the method can
be exploited in an in-situ calibration [1] by a sextupole
magnet.

Simulation results show that the worst case can yield a
calibration error of 6% for a displacement of 10 mm. The
results from the proposed method are accurate up to
0.1% for an additional sextupole harmonic, and up to 0.7%
for the additional octupole harmonic.
Acknowledgements

The authors thank Pierre Alexandre Thonet for
shimming the magnet for the experimental tests.

References

[1] P. Arpaia, M. Buzio, G. Golluccio, L. Walckiers, In-situ calibration of
rotating coil magnetic measurement systems sensor coil for magnet
testing, AIP Rev. Sci. Instrum. 83 (2) (2012).

[2] S. Russenschuck, O. Boine-Frankenheim, Establishing C3, the
coherence between accelerator physics requirements, magnet
manufacture, and magnetic measurements, in: Proc. of 20th IMEKO
TC4 Symposium, Benevento, Italy, September 15–17, 2014.

[3] S. Russenschuck, Field Computation for Accelerator Magnets:
Analytical and Numerical Methods for Electromagnetic Design and
Optimization, Wiley, 2011.

[4] M. Buzio, Fabrication and Calibration of Search Coils, in CERN
Accelerator School CAS 2009: Specialised Course on Magnets, Bruges,
16–25 June 2009, CERN, 2009.

[5] P. Arpaia, M. Buzio, J. Garcia Perez, C. Petrone, S. Russenschuck, L.
Walckiers, Measuring field multipoles in accelerator magnets with
small-apertures by an oscillating wire moved on a circular trajectory,
IOP J. Instrum. 7 (05) (2012) P05003.

[6] L. Walckiers, Magnetic Measurement with Coils and Wires in CERN
Accelerator School CAS 2009: Specialised Course on Magnets, Bruges,
16–25 June, CERN, 2009.

[7] A.K. Jain, Harmonic Coils, CERN Accelerator School on Measurement
and Alignment of Accelerator and Detector Magnets, Anacapri, Italy,
CERN Report 98-05.

[8] J. DiMarco, G. Chlachidze, A. Makulski, D. Orris, M. Tartaglia, J.C.
Tompkins, G.V. Velev, X. Wang, Application of PCB and FDM
technologies to magnetic measurement probe system
development, IEEE Trans. Appl. Supercond. 23 (3) (2013).

[9] P. Arpaia, M. Buzio, G. Golluccio, L. Walckiers, A polyvalent harmonic
coil testing method for small-aperture magnets, AIP Rev. Sci.
Instrum. 83 (8) (2012).

[10] L. Bottura, Standard Analysis Procedures for Field Quality
Measurements Part I: Harmonics, Document, LHC-M-ES-0007 Rev
1.0, CERN, 2001.

[11] P. Arpaia, L. Bottura, L. Fiscarelli, L. Walckiers, Performance of a fast
digital integrator in on-field magnetic measurements for particle
accelerators, AIP Rev. Sci. Instrum. 83 (2) (2012), http://dx.doi.org/
10.1063/1.3673000.

http://refhub.elsevier.com/S0263-2241(16)00148-2/h0005
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0005
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0005
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0015
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0015
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0015
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0015
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0025
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0025
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0025
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0025
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0040
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0040
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0040
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0040
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0045
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0045
http://refhub.elsevier.com/S0263-2241(16)00148-2/h0045
http://dx.doi.org/10.1063/1.3673000
http://dx.doi.org/10.1063/1.3673000

	Rotating-coil calibration in a reference quadrupole, considering roll-angle misalignment and higher-order harmonics
	1 Introduction
	2 Calibration method
	2.1 Radius calibration considering roll-angle misalignment
	2.2 Radius calibration considering higher-order harmonics

	3 Numerical results
	3.1 Presence of a sextupole field component
	3.2 Presence of an additional sextupole field component

	4 Experimental results
	4.1 Experiment setup and procedure
	4.2 Test results

	5 Conclusion
	Acknowledgements
	References


