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Abstract. We find multi-scalar effective field theories (EFTs) that can achieve a slow in-
flationary roll despite having a scalar potential that does not satisfy Gab∂aV ∂bV � V 2/M2

p

(where Gab is the target-space metric). They evade the usual slow-roll conditions on V be-
cause their kinetic energies are dominated by single-derivative terms rather than the usual
two-derivative terms. Single derivatives dominate during slow roll and so do not require a
breakdown of the usual derivative expansion that underpins calculational control in much of
cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking
during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides
one particular example of a UV theory that can generate the multi-field single-derivative
terms we consider, and we argue that the EFT we find indeed captures the slow-roll con-
ditions for its background evolution. We also show that our EFT can be understood as a
multi-field generalization of the single-field Cuscuton models. The multi-field case introduces
a new feature, however: the scalar kinetic terms define a target-space 2-form, Fab, whose
antisymmetry gives new ways for slow roll to be achieved.
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1 Introduction

Primordial fluctuations provide a rare observational window into the high-energy physics of
the pre-nucleosynthesis universe. Remarkably, the observed properties of these fluctuations
are consistent with vacuum fluctuations stretched out to very large scales by the accelerated
expansion of spacetime [1–7]. Much effort has been invested in determining the origins
of both the fluctuations and the accelerated expansion, with inflationary models [2, 8–10]
emerging as the simplest framework within which both are understood within a controlled
semiclassical approach.

Simple phenomenological models of inflation are easy to write down [11], typically re-
lying on slowly rolling scalar fields. These models require slow roll in order to exploit a
proximity to the exponentially expanding de Sitter geometry that is obtained when grav-
ity is dominated by a static scalar potential energy, Tµν = V0 gµν . The scalar motion (and
its gravitational response) can be analyzed using a derivative expansion, leading to generic
inflaton Lagrangians of the form1

L = −√−g
{
V(φ) +

1

2
gµν
[
F 2 Gab(φ) ∂µφ

a∂νφ
b −M2

p Rµν

]
+ · · ·

}
, (1.1)

1Because we use dimensionless fields a squared-mass scale, F 2, is extracted from the scalar kinetic term

in order to allow the target-space metric, Gab, to be dimensionless. We adopt MTW curvature conventions in

what follows.
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where Rµν is the metric’s Ricci tensor and V(φ) and Gab(φ) are two functions whose specifi-
cation defines the precise model.

The ellipses in (1.1) denote terms with more than two derivatives, and these are normally
negligible to first approximation precisely because the assumed scalar motion is slow. They
can in principle play a role at higher order, with terms like (∂φ)4 introducing small differences
between the relevant speed of sound and that of light, δc2s = 1− c2s, but the whole framework
of expanding in derivatives becomes suspicious to the extent that these corrections are large.2

Despite the simplicity of derivative expansions, such models prove to be notoriously
difficult to embed plausibly into a sensible physical framework at higher energies (see, how-
ever, [21–27]). A major reason for this is the fairly generic slow-roll requirement for very
shallow scalar potentials. This is usually quantified by asking sufficiently small values for the
slow-roll parameters [28],

εst =
M2
p

2F 2
Gab

(V,aV,b
V2

)
. 10−2 , (1.2)

(plus a similar condition on second derivatives of V to ensure that inflation lasts sufficiently
long) where V,a denotes ∂aV while Gab is the inverse target-space metric, defined by GabGbc =
δac . These conditions are difficult from the point of view of a UV completion both because it
is typically hard to arrange sufficiently small derivatives — e.g. V,a/V in (1.2) — and to get3

F &Mp (see, however, [39–44]).
The purpose of this paper is to try to evade these obstructions by describing a new class

of inflationary models that arise within a systematic derivative expansion, but for which
inflationary slow-roll does not require either shallow potentials or trans-Planckian values for
F . We do so by supplementing the Lagrangian of (1.1) — i.e. L → L + ∆L — with terms
with fewer than two derivatives. The new terms can easily be arranged to dominate the two-
derivative terms of (1.1) during slow roll without having unnaturally large coefficients. Single
derivative terms in L are nominally excluded by Lorentz invariance, and so we are forced to
work within a framework wherein Lorentz symmetry is broken in the UV. We mostly focus
on the case where this breaking is characterized by a timelike 4-vector order parameter, Uµ,
whose expectation chooses a preferred frame. Other symmetry breaking patterns include
Chromo-natural inflation [45] (see also [46]), where a UV completion is known (see also [47]
for an effective description).

The new interactions we explore are given by the term

∆L = −√−g Aa(φ)Uµ∂µφ
a , (1.3)

where Aa(φ) is a new set of coefficient functions that must be specified and Uµ is a time-like
unit vector. When relevant, we also consider the additional interactions that arise at the
two-derivative level due to the presence of the new field Uµ, but our main focus is when
the term of (1.3) dominates. For dimensionless fields Aa has dimensions µ3 for a UV scale

2Higher derivative terms can play a more significant role during inflation [12], but semiclassical calculations

using such terms are only under control [13–16] to the extent that the underlying approximation is no longer a

simple derivative expansion. DBI Inflation [17–19] is the poster child for such models, where an implicit (non-

linearly realized) Lorentz symmetry protects the expansion (see also [20] for an example with an emergent

shift symmetry).
3This is most crisply stated within string theory, for which axion-like Goldstone bosons — such as gen-

erate the trigonometric potentials of ‘natural inflation’ models [29] — typically satisfy F . Ms � Mp,

while scale-breaking Goldstone-boson inflatons [30, 31] — such as arise for extra-dimensional moduli [32–38]

— have F .Mp.
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µ, whose value may or may not be related to F , or the scale M of Lorentz breaking (more
on this in section 2.1). Because the Lagrangian (1.3) — together with the spatial-derivative
(∇φ)2 terms — describes spin waves within ferromagnets4 [48, 49], we call this class of models
Magnon Inflation.

We compute how slowly rolling scalar fields evolve when governed by L+∆L and identify
the circumstances where the two-derivative terms are dominated by the potential and the
one-derivative term of ∆L. When µ ∼ F ∼ M this happens for frequencies, Γ, satisfying
Γ � M . Computing the gravitational response gives a different dependence of the slow-roll
parameters on the scalar potential, for instance with (1.2) replaced by

ε := − Ḣ

H2
=

3

2

(
F̃abAaV,b
V

)
, (1.4)

with
Fab := ∂aAb − ∂bAa, F̃abFbc = δac , (1.5)

assumed to be non-degenerate. This depends very differently on the scales of the Lagrangian
and so imposes qualitatively different slow-roll conditions on V. In particular, the antisym-
metry of F̃ab implies ε vanishes identically whenever the target-space vectors Aa and V,a are
parallel to one another regardless of how steep the scalar potential is. Notice that at least
two scalar fields are required to have nonzero Fab and so for eq. (1.4) to apply.

It is noteworthy that the sign of eq. (1.4) need not be positive when nonzero, in contrast
to eq. (1.2). Since ε ∝ p+%, this means that, for some parameters, magnon models can violate
the Null Energy Condition (NEC). Although this need not imply instability in general [50],
whether it does or not must be checked in any particular instance. We examine stability
for these models and argue that they can be stable for both signs of ε. The models with
vanishing ε are typically marginally stable if only the single-derivative terms are included. An
assessment of the stability of slow evolution for these models requires including the leading
higher-derivative terms, and we evaluate the combination of two-derivative couplings that
controls the sign of ε in simple models.

For nonzero ε the stability analysis can be done by explicitly integrating out all con-
straints, leading to a classically equivalent theory involving a multiple-field but single-clock
(and finite speed of sound) generalization of the Cuscuton models considered in [51–53]. As
special cases, this equivalent classical reformulation also contains other standard inflationary
models, such as canonical and derivatively coupled P (X) models [12].

Magnon inflation also superficially resembles Ghost Inflation [54–56], Inflaton-Aether
models [57, 58], and ΘCDM [59] inasmuch as these also include Lorentz-breaking interactions
that are linear in time derivatives. However, these other models usually involve only a single
scalar field and as a result Fab vanishes.

2 Lowest derivative action

This section outlines the action, field equations and conserved quantities for the system of
interest, including only the leading derivative interactions. The main point is to show that
the slow-roll parameters can vanish completely in some cases for this action, despite the
Lagrangian including a potential subject to no steepness conditions. We return in later
sections to how the dominant subleading corrections modify this picture.

4Because a ferromagnet breaks time-reversal invariance, ferromagnetic spin waves have low-energy disper-

sion relations ω ∝ k2, unlike the more familiar ω2 ∝ k2 dispersion of magnons in antiferromagnets.
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2.1 Action, scales and field equations

We examine the mutual interactions of a collection of scalars, φa, and the metric, gµν . These
interactions happen at energies well below a scale M characterizing the breaking of Lorentz
invariance. We focus in the scenario where this happens through an order parameter, Uµ,
which transforms as a time-like contravariant 4-vector and whose magnitude is heavy enough
to be frozen at low energies (so gµνU

µUν = −1). It is useful to enforce this condition through
the term in the action

Sξ = −
∫

d4x
√−g ξ

(
gµνU

µUν + 1
)
, (2.1)

where ξ is a Lagrange-multiplier field.5

The most relevant operators are given by all possible interactions with the lowest number
of derivatives in each sector: i.e. S = SEH + SM where SEH is the standard Einstein-Hilbert
action and

SM = −
∫

d4x
√−g

[
V(φ) +Aa(φ)Uµ∂µφ

a + B(φ)∇µUµ + · · ·
]
. (2.2)

Here the ellipses involve terms with more than two derivatives and all of the independent
fields, φa, Uµ and gµν are to be varied. We assume that whatever the UV Lorentz-violating
physics is, it does not also generate an O(M4) contribution to the scalar potential, V (i.e. we
do not solve the cosmological-constant problem).

Notice that if we make the substitutions δAa = ∂aΩ and δB = Ω for any scalar target-
space function, Ω = Ω(φ), the change in the action becomes

δSM = −
∫

d4x
√−g

[
Uµ∂µφ

a ∂aΩ(φ) + Ω(φ)∇µUµ
]

= −
∫

d4x∂µ

[√−g UµΩ(φ)
]
, (2.3)

which reveals this to be a symmetry of the classical equations, up to surface terms. When
boundary effects are not important it is useful to use this symmetry to choose the gauge
B = 0, as we now do.6 Notice that the possible distinction between Aa and B disappears
in the case where there is only one scalar field because we can always choose A = −B′. In
particular, Fab = 0 in the single-field case.

Scales

Before exploring the field equations following from the previous action we first pause to discuss
the scales implicit in the problem, since these — together with the derivative expansion that
underlies the entire formalism — define the domain of validity of any such analysis. For
the purposes of doing so it is convenient to work with dimensionless fields, φa and Uµ. The
action defines the following important energy scales (summarized in figure 1):

• Gravitational response: we denote the coefficient of the Einstein-Hilbert action by M2
p ,

though once Lorentz-breaking fields like Uµ are present, the coupling G defined by
8πG = M−2p need not be the precise physical Newton constant, GN , as measured, say,

5The special case where Uµ is hyper-surface orthogonal is the so-called khronometric case, though we do

not here restrict ourselves to this case (see [60, 61] for a discussion relating the more general Einstein-aether

and khronometric preferred frame scenarios).
6For applications where ∇ · U = 0 (such as for flat space) this argument also reveals Aa to be a gauge

potential on the target space (up to boundary terms), with physical quantities only depending on ‘gauge-

invariant’ combinations like Fab = ∂aAb − ∂bAa [48].
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µ

m M F MpH ∼ m2/Mp

Figure 1. Scales relevant for magnon inflation. The are three UV scales: M ∼ F and Mp and two

infrared scales m and H. The scale m is assumed to be protected by some symmetry. The scale µ

can lie in a wide interval without compromising naturalness (see the main text).

in the solar system or in cosmology [62, 63]. Our interest in what follows is mainly
situations for which G is of the same order of magnitude as GN , and so for which Mp

has its traditional order of magnitude.

• Scalar kinetic energy: at high enough energies two-derivative scalar interactions are no
longer negligible relative to the single-derivative terms considered up to this point. For
dimensionless scalars the kinetic terms are multiplied by a scale, which we denote by
F 2. The scale F can be, but need not be, of order Mp, depending on the origin of the
scalars. For instance, for would-be goldstone bosons F is of order the size of the vev
that spontaneously breaks the corresponding approximate symmetry.

• Uµ kinetic energy: kinetic terms for the field Uµ are also possible once two-derivative
interactions are considered and are also accompanied by a scale, which we denote by
M2. Just as for the scalars, the scale M is likely the scale at which the dynamics of
the order parameter Uµ is inevitably modified.

• Time-reversal breaking: we denote the energy scale set by the single-derivative terms by
µ. For dimensionless fields, this means that Aa ∼ µ3 in order of magnitude. Because
these terms are the lowest-dimension interactions that break both time-reversal and
Lorentz invariance, it can be natural for µ to be much smaller than other scales like M
and Mp.

• Scalar potential energy and H: for dimensionless fields we denote the generic energy
scale set by the potential to be m, so the potential is V = m4v(φ) where v(φ) is
a dimensionless function. It is possible for this scale to be much smaller than the
previous scales if the scalars enjoy an approximate shift symmetry, as indeed would be
the case for pseudo-Goldstone bosons. For inflationary applications, we assume that
the Hubble scale during inflation is H ∼ m2/Mp, and so we take m � Mp and so
also H � m.

In the applications envisioned here we regard all of the scales7 — i.e. F , M and µ — as
being bounded above by the Planck scale, M,F, µ .Mp, while at the same time being much
larger than the natural scale, Γ ∼ φ̇/φ, of the time-dependence of any background evolution.
In making estimates below for simplicity we often assume all UV scales to be similar in size:
M ∼ F ∼ µ .Mp.

For order-unity fields — i.e. φ,Uµ ∼ O(1) — the action’s two derivative terms are order
F 2φ̇2 ∼ F 2Γ2 and M2(∇U)2 ∼ M2Γ2 in size, so their neglect relative to the one-derivative

7The UV Lorentz-breaking scale M is subject to strong observational constraints should the field Uµ

survive into the present-day universe [63]. We remain agnostic to this possibility and here focus only on its

influence on inflationary predictions.
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term — whose size is Aaφ̇a ∼ Γµ3 — requires Γ to satisfy

Γ� min

(
µ3

F 2
,
µ3

M2

)
, (2.4)

which becomes Γ � M when F ∼ µ ∼ M . For cosmological applications this must hold
in particular for Γ ∼ H ∼ m2/Mp, where, as above, V ∼ m4 sets the scale of the scalar
potential. Figure 1 indicates how the UV scales are related and shows that (2.4) can easily
be accommodated if m is much smaller than the other scales in the problem.

Field equations

The equations of motion for the fields ξ and Uµ are algebraic,

gµνU
µUν = −1 , (2.5)

and
Aa(φ) ∂µφ

a + 2ξ Uµ = 0 . (2.6)

Contracting (2.6) with Uµ and using (2.5) then gives an expression for ξ:

2ξ = Aa(φ)Uµ∂µφ
a . (2.7)

Notice that in the special case Aa = ∂aΩ (and for nonzero ξ) eq. (2.6) implies Uµ is pro-
portional to a gradient, Uµ = −(2ξ)−1 ∂µΩ and so is hypersurface-orthogonal, with the
level-surfaces of Ω providing a natural notion of time.

Our interest is in backgrounds for which the scalars depend only on a time coordinate,
φa = φa(t), and thus define a ‘cosmic’ frame (with 4-velocity uµ). In this case, equation (2.6)
implies the aligned solution Uµ = uµ (whenever ξ 6= 0). This corresponds to a homogeneous
and isotropic situation for which it is natural to look for metrics of the standard FRW form,

ds2 = −dt2 + a2(t) gij(x)dxi dxj . (2.8)

This yields
∇µUν = ∇µuν = H

(
δνµ + UµU

ν
)
, (2.9)

and so in particular ∇ · U = ∇ · u = 3H where, as usual, H = ȧ/a. Of course homogeneity
and isotropy themselves imply Uµ ∝ uµ even if ξ = 0.8

The scalar field equation is (recalling (1.5))

− ∂aV − Fab Uµ∂µφb +Aa∇ · U = 0 . (2.10)

Notice that if the target space is two-dimensional, then Fab ∝ εab where εab is the target-
space volume form. In the one-dimensional case, the term involving derivatives of φa cancels
which obscures the analysis of the propagating degrees of freedom at scales dominated by
the single-derivative term (cf. section 3.2).

If the inverse of Fab exists, then (2.10) implies

φ̇a := Uµ∂µφ
a = F̃ab

[
Ab∇ · U − ∂bV

]
, (2.11)

8It has been argued more generally that a Uµ not initially aligned with uµ often evolves to align with uµ

at later times once the two-derivative terms in the action are also included [64, 65].
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and so the antisymmetry of F̃ab means that φ̇a is orthogonal (in the tangent to the target-
space manifold) to ∂bV −Ab∇ · U . Combined with (2.7) this gives

2ξ = Aa Uµ∂µφa = −F̃abAa ∂bV . (2.12)

The Einstein equation relates Gµν = Rµν − 1
2 Rg

µν to the stress-energy, Tµν , which is
given by

Tµν =
2√−g

(
δSm
δgµν

)
= −gµν

(
V +Aa Uλ∂λφa

)
− 2ξ UµUν (2.13)

= −gµν V −Aa φ̇a
(
gµν + UµUν

)
= −gµν V + F̃abAa ∂bV

(
gµν + UµUν

)
,

and so UνT
µν = −%Uµ, where the energy density is given by

% := UµUνTµν = V . (2.14)

Similarly the pressure is
p := NµNνTµν = F̃abAa ∂bV − V , (2.15)

for any spacelike Nµ satisfying N · U = 0 and N ·N = 1.
Notice that the condition F̃abAa ∂bV = 0 is sufficient to ensure p = −%, such as is true

when Aa is parallel in field space to ∂aV. In this case % is constant and spacetime is de Sitter.9

2.2 Slow-roll parameters

Given the aligned configuration Uµ = uµ, the Friedmann equation becomes

3M2
pH

2 = % = V . (2.16)

We seek the slow-roll conditions to contrast with those for scalars with a regular kinetic
term. The first slow-roll parameter is

ε := − Ḣ

H2
=

%+ p

2M2
pH

2
=

3

2

(
F̃abAa∂bV
V

)
, (2.17)

where the first line uses the Friedmann equation, eq. (2.16), and its rate of change together
with stress-energy conservation, %̇ = −3H(% + p). Note that, using the equation of motion
for φa, eq. (2.11), this equation may also be expressed as

ε = − ϕ̇cAc
2H2M2

p

. (2.18)

In order of magnitude, writing V ∼ m4v(φ) and A ∼ µ3α(φ) — and so also F ∼ µ3α′(φ)
— eq. (2.17) implies ε ∼ (v′/v)/(α′/α). Since both scales µ and m dropped out, asking
|ε| � 1 generically demands v′/v � O(1) (and the condition can be even weaker than this
— see below). The corrections to the previous formula do not modify the slow-roll condition
provided F 2/M2

p � 1. Notice finally that ε = 0 corresponds to ξ = 0 (cf. eq. (2.12)) for which

9Notice that because ξ also vanishes in this case no preferred time-slicing exists even if Aa = ∂aΩ.
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the dynamics of Uµ is governed by the higher order operators (still, the aligned configuration
can be a solution).

The expression at eq. (2.17) is to be compared with the usual slow-roll equation that
follows from a two-derivative Lagrangian of the form of eq. (1.1). In this case slow roll would
predict 3Hφ̇a ' −Gab∂bV and 1

2Gabφ̇aφ̇b � V and so give the standard formula

εst '
3

2

(
Gabφ̇aφ̇b
V

)
'
M2
p

2

(Gab∂aV∂bV
V2

)
∼
(
Mpv

′

Fv

)2

, (2.19)

instead of (2.17). The requirement εst � 1 asks the dimensionless function v to satisfy
(v′/v)2 � F 2/M2

p . Given that most known systems give F . Mp the conditions on V
required to ensure |ε| � 1 are generically weaker than those required to achieve εst � 1.

The conditions for small ε can be even weaker than just asking v′/v to be order unity.
This is because the antisymmetry of Fab means that ε can vanish identically even if ∂aV 6= 0,
such as if Aa is parallel in field space to ∂aV. Notice also that because F̃ab is antisymmetric
eq. (2.17) does not imply ε must be nonnegative (or, equivalently, it allows p + % to be
negative) and so the motion need not satisfy the NEC. We return below — see section 3 —
to whether or not this should give us pause.

When ε does not vanish identically, the second slow-roll parameter can be evalua-
ted using

η :=
ε̇

Hε
= φ̇a

∂aε

Hε
, (2.20)

in which we can evaluate φ̇a using eq. (2.11) to get

η =

(
∂aε

Hε

)
F̃ab

(
3HAb − ∂bV

)
. (2.21)

Here ∂aε is evaluated by differentiating eq. (2.17). In order of magnitude this implies η ∼
y(ε′/ε) with y ∼ α/α′ or y ∼ (m4/Hµ3)(v′/α′) ∼ (HM2

p /µ
3)(v′/α′), depending on which

term dominates in the rightmost bracket of eq. (2.21). The suppression of the latter term
by H ensures its contribution can be small if µ . Mp, leading to a generic condition on

α/α′. The antisymmetry of F̃ab potentially allows even this condition to be avoided if ∂aε is
appropriately aligned relative to 3HAb − ∂bV.

2.3 An equivalent effective description

In this section we derive a classically equivalent reformulation of the above single-derivative
model involving only scalar fields but with a more complicated kinetic sector. This refor-
mulation is only possible when ξ 6= 0 and is obtained by integrating out the non-dynamical
fields Uµ and ξ.

We begin with the one-derivative magnon inflation action given earlier (repeated here
for convenience)

SM =

∫
d4x
√−g

{
−V(φ)−Aa(φ)Uµ∂µφ

a − ξ
(
gµνU

µUν + 1
)}

. (2.22)

If we take this action at face value (i.e. neglecting higher derivative contributions), the Uµ

appears in the action as an auxiliary field and its functional integral is gaussian so we can
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straightforwardly integrate it out once and for all. The result is equivalent to evaluating (2.22)
at the saddle point for Uµ found from its equation of motion, eq. (2.6)

Uµ = − 1

2ξ
Aa∂µφa , (2.23)

and substituting the above back into (2.22). (We see here why ξ = 0 must be avoided in this
reformulation.) The result is

SM =

∫
d4x
√−g

{
−V(φ) +

1

4ξ
AaAb∂µφa∂µφb − ξ

}
. (2.24)

Similarly solving for ξ using the saddle-point approximation (this time not an exact
result, but perfectly adequate for the classical applications of interest), we find

1

4ξ2
AaAb∂µφa∂µφb + 1 = 0 and so ξ =

ι

2

√
−AaAb∂µφa∂µφb . (2.25)

Here we use eq. (2.7) to resolve the apparent sign ambiguity in taking the square root, with
ι = sign(Aaφ̇a) = sign(AaUµ∂µφa). Substituting this into (2.24) then leads to

SM = −
∫

d4x
√−g

{
V(φ) + ι

√
−AaAb∂µφa∂µφb

}
. (2.26)

Thus magnon inflation is classically equivalent to (2.26), which bears a superficial resem-
blance to the Cuscuton model [51–53] (see also [66]), though with multiple fields and with a
dyadic (and so degenerate — more about which below) target space metric: G̃ab(φ) = AaAb.
(we show in section 3.2, however, that magnon inflation has perturbations that can propagate
at finite cs, unlike Cuscuton models.) Notice that the appearance of the square root in (2.26)
indicates the alternative formulation runs into trouble whenever gµνAa∂µφaAb∂µφb > 0,
which in our metric conventions corresponds to the vector Aa∂µφa becoming space-like.
When Aa∂µφa is space-like, Uµ cannot be time-like (due to eq. (2.23)), which is required by
the constraint UµUµ = −1 enforced by the ξ integration.

To verify classical equivalence with the original formulation of the theory, we calculate
the energy-momentum tensor

Tµν = − 2√−g
δS

δgµν
= gµνL −

ιAaAb∂µφa∂νφb√
−AcAd∂λφc∂λφd

, (2.27)

where ι

√
AaAbφ̇aφ̇b = Aaφ̇a. For homogeneous backgrounds the energy density and pres-

sure are

% = V(φ), p = −V(φ)−Aaφ̇a, (2.28)

as found in eqs. (2.14) and (2.15). The scalar field equations following from eq. (2.22)
similarly are

1√−g∂µ
(

ι
√−g AaAb∂µφb√
−AcAd∂νφc∂νφd

)
+ V,a −

ιAb,aAc∂µφb∂µφc√
−AdAe∂νφd∂νφe

= 0 . (2.29)
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Once specialized to spatially homogeneous solutions these become

− 1√−g∂0
(√−gAa)+ V,a +Ab,aφ̇b = 0, or − 3HAa + Fabφ̇b + V,a = 0 , (2.30)

identical to eq. (2.11).

Because the target space metric G̃ab = AaAb is constructed from a product of a vector
with itself, it has rank one. Consequently there is only one scalar fluctuation that appears in
the kinetic term regardless of the nominal dimension of the target space, leaving all but one
of the φa as auxiliary fields. Therefore, despite involving multiple scalars in its formulation,
magnon inflation is effectively a single-clock theory and so gives only adiabatic perturbations
(as we demonstrate explicitly further on). We remark in passing that one can also recover
the standard canonical and derivatively coupled (k-inflationary) class of inflationary models
through appropriate choices for V and Aa after integrating out the auxiliary variables.

2.4 Background evolution for magnon inflation through two-field examples

It is instructive to see how the background evolution responds to choices made for the target-
space quantities V and Aa, so we next explore in more detail the field evolution in a few
illustrative two-field examples. Of particular interest are the circumstances under which the
evolution allows (or forbids) transitions between different signs for Ḣ (and so also for ε).

2.4.1 Relation to Chromo-natural inflation

We start by showing how the Chromo-natural inflation model [45] motivates the single-
derivative terms considered here. In this model, the inflaton is a gauge potential for a gauge
group that contains an O(3) factor, with an inflationary vev, ψ̃, that preserves invariance
under simultaneous rotations in physical and gauge space: Abi ∝ aψ̃ δbi where a = a(t) is
the scale factor b = 1, 2, 3 is a gauge index while i = 1, 2, 3 counts spatial coordinates. The
preferred frame is the one within which this residual rotational invariance is defined. This
symmetry breaking pattern differs from the one related to Uµ, and the fluctuation spectrum
is different in both theories. Still, for the aligned background both possibilities are equivalent
and share the same slow-roll analysis (in particular the possibility to relax the conditions on
the steepness of the potential).

To make this more concrete, recall that in addition to the gauge potential, ψ̃, Chromo-
natural inflation also has an axion field, χ̃. For slow motion, the background evolution of
these fields in FRW spacetime is dominated by the action [45, 47, 67–70]:

SCN =

∫
d4x a3


 3

2a2

[
∂(ψ̃a)

∂t

]2
− 3g̃2

2
ψ̃4

+
˙̃χ2

2
−µ̃4

[
1+cos

(
χ̃

f̃

)]
− 3g̃λ

f̃

(
χ̃ψ̃2

a

)
∂(ψ̃a)

∂t

 ,

(2.31)

where the terms involving only ψ̃ come from the Maxwell action while those with only χ
descend from the axion kinetic term and potential. The ψ̃ − χ interaction starts life as an
axion-F ∧F term (with coupling λ). Here f̃ is the axion decay constant and µ̃ is the scale of
explicit axion symmetry breaking while g̃ is a gauge coupling of the underlying theory. This
can be put into the form of the Lagrangian considered here by integrating the last term by
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parts and normalizing the fields appropriately, so that

SCN '
∫

d4x a3

{
−3g̃2F 4

2
ψ4−µ̃4

[
1+cos

(
Fχ

f̃

)]
+

(
g̃λ

f̃

)
F 4ψ3χ̇+

3F 2

2a2

[
∂(ψa)

∂t

]2
+
F 2χ̇2

2

}
.

(2.32)

From this we read off the zero- and one-derivative components: B = 0 while

Aa dφa = A(ψ) dχ = −
(
g̃λF 4

f̃

)
ψ3 dχ, Fχψ = −Fψχ =

3g̃λF 4

f̃
ψ2,

and V(ψ, χ) =
3g̃2F 4

2
ψ4 + µ̃4

[
1 + cos

(
χ

f̃

)]
. (2.33)

The scales µ and m read from these potentials can be small provided the gauge coupling
satisfies g̃ � 1. In this model Aa is not parallel to ∂aV. As a result,

ε = − φ̇a

2H
∂a lnV = −3F̃abAb∂aV

2V =
3g̃2F 4ψ4

V , (2.34)

up to second-derivative corrections, in agreement with what was found in [45].

2.4.2 Two-field example with nonzero ∂aV but vanishing ε

Consider the simplest two-field example with fields ψ = φ1 and χ = φ2 with the choices

V = V(ψ) and Aadφa = A1dφ
1 = A(χ)dψ , (2.35)

so F12 = −F21 = −A′(χ). This yields F̃12 = −F̃ 21 = 1/A′(χ). The action becomes

S =

∫
d4x
√−g

{
M2
p

2
R− V(ψ)−A(χ)Uµ∂µψ − ξ

(
gµνU

µUν − 1
)}

. (2.36)

The equations of motion obtained by varying ξ and Uµ are eqs. (2.5) and (2.6). The
aligned solution yields

χ̇ =
V ′(ψ)− 3HA(χ)

A′ and ψ̇ = 0 . (2.37)

These field equations can be integrated explicitly to give the solutions (assuming A′ 6= 0)

ψ = ψ̂ and A(χ(t)) =
V̂ ′
3Ĥ

+

[
A(χ0)−

V̂ ′
3Ĥ

]
e−3Ĥ(t−t0) , (2.38)

where ‘hats’ indicate evaluation at the constant value ψ = ψ̂ (e.g. V̂ ′ = V ′(ψ̂)) while subscript
‘0’ indicates evaluation at the initial time ( e.g. χ0 = χ(t = t0)). This solution shows how χ
relaxes to a steady-state value, χ∞, with A(χ∞) = V̂ ′/3Ĥ, on timescales of order the Hubble
time. Because the equations are first order a constant force, V ′(ψ̂), determines the late-time
value of χ rather than the late-time field velocities.

Notice that because Aa and ∂aV are chosen parallel in this example it follows that

F̃abAa∂bV = 0, (2.39)
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vanishes identically. As a consequence ε and ξ also vanish (cf. eqs. (2.12) and (2.17)). This
achieves the vacuum equation of state — and so also a de Sitter gravitational geometry — for
free; a result that is trivially consistent with the equation of motion for ψ whenever A′ 6= 0
because eq. (2.37) implies ψ̇ = 0 and so ensures that V(ψ) remains constant along the flow
lines of Uµ. Notice that ε = 0 is true for all t along these trajectories, even as χ rolls towards
χ∞. Most importantly, this is true regardless of the size of the slope, V ′(ψ), at the field-point
of interest. We note in passing that ξ = 0 means that Uµ is not specified from the equations
of motion. The aligned configuration is then a choice of ‘initial condition’ which is compatible
with the higher order corrections (cf. section 3.1.3).

2.4.3 Potentials with linear Aa

Let us now consider the case of gaussian kinetic terms, for which Aa is linear so that

Aadφa = −λφµ3χdφ+ λχµ
3φ dχ , (2.40)

where λφ, λχ, and the fields φ and χ are dimensionless. The target-space 2-form has compo-
nents

−Fχφ = Fφχ = (λφ + λχ)µ3 . (2.41)

The case λχ = −λφ gives A = −λφµ3 d(φχ) while λχ = λφ gives the case where Aa is
‘pure curl’.

With these choices, one has generically ξ 6= 0 (and thus alignment) and the background
equations of motion become

(λφ + λχ)φ̇ = −3Hλχφ+
1

µ3
∂V
∂χ

,

(λφ + λχ)χ̇ = −3Hλφχ−
1

µ3
∂V
∂φ

, (2.42)

and so the sign of ε is driven by

M2
p Ḣ = −1

2
Aaφ̇a =

µ3

2

(
λχ φ χ̇− λφ χ φ̇

)
= − 1

2(λφ + λχ)

(
λφχ

∂V
∂χ

+ λχφ
∂V
∂φ

)
. (2.43)

Notice that this is not changed by a simultaneous change of sign for both the λ s. It is clear
that this can take either sign, even if V itself is strictly non-negative.

Evolution with ε changing sign

To explore further when ε can change sign we specialize to rotation-invariant potentials that
are functions only of the single variable x = φ2 + χ2. Then

ẋ = −6H(λχφ
2 + λφχ

2)/(λχ + λφ), (2.44)

and

ε = 3

(
λχφ

2 + λφχ
2

λφ + λχ

) V ′
V , (2.45)

where V ′ = dV/dx. Potentials with negative slopes (V ′ < 0) have ε < 0 and so violate the
null energy condition while those with positive slopes (V ′ > 0) do not.
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Suppose we have a potential with both signs of V ′. Can the field equations evolve from
one region to the other? It is fairly straightforward to see that such crossing is not possible
so long as H = 0 whenever V ′ = 0. In this case, this point is a fixed point of the cosmological
evolution (see eq. (2.44) or eq. (2.42)). However, if V ′ passes through zero somewhere where
H 6= 0 (due to V 6= 0, or possibly due to contribution to H from other forms of matter)
then the evolution can pass through to change the sign of ε. In this case, provided H > 0,
the scalar field dynamics in the regime ε < 0 is such that the fields move towards the origin
(where x = 0, where ε vanishes). This happens independent of the form of the potential. In
the case of symmetry breaking potentials, e.g.

V(x) = g
(
φ2 + χ2 − v2

)2
+ V0 , (2.46)

the fields climb up the potential towards its maximum. This leads to a static late-time de
Sitter configuration.

A more general linearized analysis of homogeneous configurations near ε = 0 back-
grounds using the single-derivative action is provided in subsequent sections.

Purely gaussian systems

The simplest possibility is provided by a quadratic potential

V =
1

2

(
m4
φφ

2 +m4
χχ

2
)
, (2.47)

the scalar field equations are linear[
φ̇
χ̇

]
=

1

λφ + λχ

[−3Hλχ m4
χ/µ

3

−m4
φ/µ

3 −3Hλφ

] [
φ
χ

]
, (2.48)

and so can be solved explicitly. Notice that the case λφ + λχ = 0 is singular, because in
this case the kinetic term reduces to a total derivative when H = 0. For this reason we
assume this sum does not vanish, and so that Fab 6= 0 (giving dynamics requiring at least
two scalar fields).

From eq. (2.44) we know that the fields will roll to the point φ = χ = 0. To understand
the nature of the solutions, let us point out that for the quadratic potential

ε =
3Aaφ̇a

2V =
3

λχ + λφ

(
m4
φλχφ

2 +m4
χλφχ

2

m4
φφ

2 +m4
χχ

2

)
, (2.49)

which is always positive (provided both λa’s share the same sign and both m2
a’s share the

same sign). The result reduces to ε = 3
2 when λφ = λχ, and this case is similar to mat-

ter domination.
Inflationary solutions are possible when λχ 6= λφ. Let us take for simplicity mφ =

mχ =: m and assume the hierarchy λφ � λχ. In this case evolution in the (φ, χ) plane
very generically passes through an inflationary solution on its way to the global minimum at
φ = χ = 0, as may be seen in the left and middle panels of figure 2. Starting from its initial
condition the system rolls quickly towards a region where Aa and V ,a are close to parallel
(φ sits at its initial position while χ rolls down to χ2 � φ2). During this time the slow-roll
parameter ε becomes small, indicating that the spacetime geometry is inflating. Eventually
φ rolls off towards its minimum after which the system performs damped oscillations about
the potential minimum φ = χ = 0.
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Figure 2. Left panel: blue radially directed arrows denote the direction and size of V,a while the red

horizontal arrows give the direction and size of Aa. Middle panel: arrows show (φ̇, χ̇) as predicted by

the field equations, with the black line giving the trajectory followed by a homogeneous field evolving

towards the origin from a specific initial condition. Most of the time is spent on the horizontal section

of black curve, where the spacetime geometry inflates. Right panel: the evolution of the fields φ and

χ is shown, as well as the evolution of the slow-roll parameter ε. In all cases, the numerical results

are shown in black curves, while dashed green shows the analytic result of eq. (2.52) for φ, dotted

blue shows eq. (2.53) for χ and dot-dashed red shows eq. (2.54) for ε. In all panels, parameters are

chosen to be λφ = 10, λχ = 0.01, µ = 0.01 Mp, m = 0.0005 Mp.

To understand the inflationary stage of the solution analytically, consider the regime
φ2/χ2 � 1, λφ/λχ � 1, in which case eq. (2.49) becomes ε ' 3λχ/λφ, while the Friedmann
equation reads 6M2

pH
2 ' m4φ2. After switching to e-folding number, the equations of motion

eq. (2.48) read

dφ

dN
=− 3

λχ
(λφ + λχ)

φ+

√
6

(λφ + λχ)

Mpm
2

µ3
χ

φ
, (2.50)

dχ

dN
=− 3

λφ
(λφ + λχ)

χ−
√

6

(λφ + λχ)

Mpm
2

µ3
. (2.51)

These equations have solution, which can be found by direct integration

φ = φ0

√
e
−6 λχN

(λφ+λχ)

(
1 +

2M2
pm

4

3µ6λφλχφ
2
0

)
−

2M2
pm

4

3µ6λφλχφ
2
0

, (2.52)

χ =

(
χ0 +

√
6Mpm

2

3µ3λφ

)
e
−3

λφN

(λφ+λχ) −
√

6Mpm
2

3λφµ3
, (2.53)

where χ0 and φ0 are the initial values of the field, which we take to be φ0 = 1 and χ0 = 1
in the numerical example shown in figure 2. Note that the evolution of χ is governed by
λφ/(λφ + λχ) ≈ 1. Thus the solution for χ quickly becomes a constant, with χ̇ ≈ 0. The
evolution of φ is governed by λχ/(λφ + λχ)� 1, and is slow.

A more precise value for ε evaluated on this solution is

ε ' 3

λφ

(
λχ +

2m4M2
p

3µ6λφ

1

φ2

)
, (2.54)
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and thus, we see that in order to get an inflationary solution, for order unity fields, we require

m2Mp

µ3
� λφ. (2.55)

When this condition is satisfied, initially ε is suppressed by λχ/λφ but then begins to evolve
as φ shrinks towards the origin. Using the solutions for the fields, we can find where inflation
ends and estimate the number of e-folds

N ≈λφ + λχ
6λχ

ln


(
φ20 +

2M2
pm

4

3µ6λφλχ

)
2
m4M2

p

µ6λ2φ

(
1 +

λφ
3λχ

)
 . (2.56)

Taking the log to be order 1, we see that a hierarchy or the order of λφ/λχ ∼ O(102) is
required to get 60 e-foldings of inflation.

There are several points worth emphasizing about the naturalness of such a hierarchy
of parameters. First, although radiative corrections can change the size of the ratio λφ/λχ,
the required tunings are at the level of 1 part in 100. Such hierarchies arise within the
context of Chromo-natural inflation, and more generally hierarchies at the percent level are
not particularly bothersome. (For a recent discussion of this point see for example [71].)
The real progress relative to standard two-derivative inflationary models is the absence of a
condition demanding terms in the action (such as the inflaton mass) be smaller than Planck-
suppressed quantities like the Hubble scale H. In this regard single-derivative terms are
qualitatively different from the scalar potential because (unlike the scalar potential) they can
be excluded by symmetries such as time-reversal invariance or unbroken Lorentz-invariance,
and this allows their overall scale to be naturally hierarchically different from others UV
scales in the problem (like Mp).

3 Fluctuations

The previous section shows that it is sometimes possible that % + p is negative, and so
nominally violates the NEC. Although this need not in general imply an instability (see, for
example, [50]), it behooves one to examine whether it does in any particular instance. In this
section we present two calculations that suggest that instabilities need not be present. This
is easily shown for ε > 0 while the analysis of the cases ε ≤ 0 is more involved.

In the first calculation we examine homogeneous perturbations around the static back-
grounds. We pay special attention to the cases for which ε vanishes identically, since these
are the most counter-intuitive. In the second calculation we consider inhomogeneous fluc-
tuations which are also of intrinsic interest for the purpose of connecting to observations.
We restrict this part of the fluctuation analysis to backgrounds for which ε 6= 0, however, to
avoid a degenerate limit for curvature perturbations.10

10Although homogeneous instabilities can in certain situations be good since they might describe the evo-

lution of the background away from one kind of cosmology (perhaps inflation) towards a different later-time

attractor (and thereby perhaps end inflation), instabilities for non- zero momenta are more problematic (par-

ticularly if the instability can be made worse simply by increasing k).
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3.1 Homogeneous fluctuations about ε = 0 backgrounds

This subsection explores homogeneous fluctuations about the backgrounds for which ε = 0
identically; first showing how the single-derivative interactions are only marginally stable
and then tracking how two-derivate scalar interactions stabilize or destabilize the leading
marginal result. The goal is to identify what the leading contribution is to ε and η in the
marginally stable case where ε vanishes identically at the one-derivative level.

3.1.1 Linearization of the single-derivative action

We start by considering the presence of homogeneous perturbations δφa over given solutions

φa = ϕa + δφa , (3.1)

and the aligned solution Uµ = uµ. We linearize the field equations (2.10) in δφa, leading to
the linearized scalar field equation

Fab(ϕ) δφ̇b +Mab(ϕ) δφb = 0 , (3.2)

with
Mab := V,ab + Fac,b ϕ̇c − 3H,bAa − 3HAa,b . (3.3)

Our interest is when Fab has an inverse, F̃ab, in which case (3.2) has the form

δφ̇a + M̃a
c δφ

c = 0 , (3.4)

with M̃a
c := F̃ab(ϕ)Mbc(ϕ) given (after use of the background field equation) by

M̃a
b =

[
F̃ac (V,c − 3HAc)

]
,b

∣∣∣∣
φ=ϕ

. (3.5)

This has general solutions

δφa(t) =

[
T exp

(
−
∫ t

0
dτ M̃(τ)

)]a
b

φb(0) , (3.6)

where T denotes the time-ordering of the exponential. Given that the background solution
in (3.1) is assumed to roll slowly, we can identify the solution as stable when the eigenvalues

of M̃a
b are strictly positive, marginally stable when they are non-negative and unstable

once a negative eigenvalue exists. For the marginally stable eigenvalues, their ultimate fate
depends on the two-derivative interactions (more about which below). Of course this type of
linearized analysis cannot identify the endpoint in the case of instability, but it can be used
to self-consistently identify the absence of slow-scale instabilities.11

Eq. (3.5) gives the order of magnitude of the relaxation (or instability) rate, Γr, dictated

by the magnitude of the eigenvalues of M̃a
b. These generically involve competing contribu-

tions from terms of order F̃abV,b ∼ (m4/µ3)(v′/α′) ∼ (m2HMp/µ
3)(v′/α′) and those of order

HF̃abAb ∼ H(α/α′). Assuming α(ϕ) and v(ϕ) are order unity we see that there are two
generic cases:

• If m2 � µ3/Mp then we expect Γr ∼ H ∼ m2/Mp � µ3/M2
p . Recall that these scales

are well-described by the single-derivative analysis (cf. eq. (2.4)).

11A one-derivative analysis cannot rule out faster instabilities, but because these necessarily occur with

characteristic rates Γ � H they can be sought using stability analyses from two-derivative interactions and

neglecting the cosmological expansion.
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• If m2 � µ3/Mp then some eigenvalues can be of order Γr ∼ m4/µ3 ∼ (m2Mp/µ
3)H �

H. This can still be within a single-derivative regime provided eq. (2.4) remains sat-
isfied. A rate of order Γr ∼ m4/µ3 can also easily lie within the domain of single
derivatives, as is again most easily seen in the case m� µ ∼ F ∼M .Mp.

In both cases, once we made sure that we can trust the analysis based on eigenvalues
of eq. (3.3) we don’t see any obstruction to construct potentials that generically have no
unstable directions. Let us now see that the presence of marginal eigenvalues is a relatively
generic feature of the case ε = 0. To understand the time evolution of these modes we need
to include higher derivative operators, which we do in section 3.1.3. This is also important
to test the validity of the aligned solution.

3.1.2 Marginal eigenvalues for static solutions and ε = 0

We focus now in the case of static background solutions ϕ̇a = 0, which requires

V,a(ϕ)− 3HAa(ϕ) = 0. (3.7)

Then, the trace of the matrix M̃a
b reads

M̃a
a = −3F̃ab (HAb),a

∣∣∣
φ=ϕ

= F̃ab
( AaV,b

2HM2
p

+
3HFba

2

)∣∣∣∣
φ=ϕ

= H

(
ε+

3N

2

)
, (3.8)

where N is the number of scalar fields participating in the first-derivative term. Notice that
this gives 3H in the case of two scalars with ε = 0, in agreement with the explicit solution
for the two-field model eq. (2.38) (see also (2.48)).

We now show that the existence of a zero (left-) eigenvector for M̃ is general whenever
ε vanishes for the case of static backgrounds and is not an accident of our two-field example
of section 2.4.2. We have seen that ε vanishes identically whenever Aa and V are chosen so
that F̃abAaV,b = 0. The latter condition automatically ensures

F̃ab(αV,a + β HAa)(V,b − 3HAb) = 0 , (3.9)

for all fields and for arbitrary constants α and β. Differentiating this equation with respect
to φa and evaluating at a static background — for which (3.7) holds — then ensures that

0 = (β + 3α)HF̃acAa(V,c − 3HAc),b
∣∣∣
φ=ϕ

= (β + 3α)HAa(ϕ)M̃a
b . (3.10)

Using (3.10) in (3.4) then shows that δφa, in an expansion about such a static point, satisfies
(assuming H 6= 0)

Aa(ϕ) δφ̇a = 0 , (3.11)

and so that fluctuations in the direction Aa(ϕ)δφa ∝ V,a(ϕ) δφa in field space are only
marginally stable when only one-derivative actions are considered.

3.1.3 Two-derivative terms

We now compute the stability of this marginal direction once subdominant two-derivative
terms are included into the action. The most general two-derivative terms that can be added
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to the action (up to integrations by parts and field redefinitions12) are

∆S =

∫
d4x
√−g ∆L

with −∆L =
1

2

[
Gab(φ) gµν + Iab(φ)UµUν

]
∂µφ

a∂νφ
b +

1

2

[
C(1)(φ)∇µUν∇µUν (3.12)

+ C(2)(φ)(∇ · U)2 + C(3)(φ)∇νUµ∇µUν + C(4)(φ)Uλ∇λUµUν∇νUµ
]

+ C(5)a (φ)Uν (∇νUµ) ∂µφ
a + C(6)a (φ)Uµ (∇ · U) ∂µφ

a ,

where Gab and Iab are symmetric in a ↔ b. To avoid unnecessary clutter in this section we
absorb the scale F 2 into Gab (and the Lorentz-breaking scale M2 into the other coefficients)
rather than writing them explicitly. When restricted to constant φa coefficients C(1) through
C(4) correspond to the basis of operators used in [72] for the Einstein-Aether theory. Some of
these terms are absent if Uµ is hypersurface orthogonal (see e.g. [60] for the case of constant
coefficients). If these terms survive until late times, one can use different observations to
constrain their values [63]. We will ignore this possibility in the following.

These terms change the equation of motion for Uµ adding to the left-hand side of
eq. (2.6) the amount

∆(2.6)µ = Iab ∂µφaφ̇b + C(4) U̇ν∇µUν + C(5)a ∇µUν∇νφa (3.13)

+C(6)a (∇ · U)∇µφa − ∇ν
{
C(1)∇νUµ + C(2)δνµ∇ · U + C(3)∇µUν

+C(4)UνU̇µ + C(5)a Uν∇µφa + C(6)a δνµU
λ∇λφa

}
,

where an overdot denotes an application of Uµ∇µ. The left-hand side of the scalar field
equation, (2.10), similarly acquires the new terms

∆(2.10) =
∂(∆L)

∂φa
+∇µ

{
Gab∇µφb + Iab Uµφ̇b + C(5)a U̇µ + C(6)a Uµ∇ · U

}
, (3.14)

where ∆L is as defined in (3.12) and ∂∆L/∂φa is meant to convey ordinary differentiation
of the coefficient functions, Gab(φ), Iab(φ) and C(I)(φ).

The new terms in the stress-energy are (see appendix A for details)

∆Tµν :=
2√−g

(
δ∆S

δgµν

)
(3.15)

= ∆Lgµν + Gab ∂µφa ∂νφb + C(1)
(
∇µUλ∇νUλ −∇λUµ∇λUν

)
− C(4)U̇µU̇ν

+
1

2
∇λ
[(
Jλν − Jνλ

)
Uµ +

(
Jλµ − Jµλ

)
Uν +

(
Jµν + Jνµ

)
Uλ
]
,

where
Jµα = Kµν

αβ∇νUβ + C(5)a Uµ∂αφ
a + C(6)a φ̇a δµα , (3.16)

with
Kµν

αβ := C(1) gαβ gµν + C(2) δµα δνβ + C(3) δµβ δνα + C(4) gαβUµUν . (3.17)

One also needs to remember that the value of ξ is corrected by the two-derivative terms.

12Among the terms that may be eliminated are those proportional to Uµ∇νUµ = 0, which follows from the

normalization conditions on Uµ.
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Perturbative evaluation

With the goal of evaluating perturbatively close to the solutions {uµ, ϕa, Ĥ2 = V̂/3M2
p } of

the previous section, we next evaluate eqs. (3.12) through (3.15) at these earlier, zeroth-order,
solutions. These are then the sources from which we compute the small changes

Uµ = uµ + δUµ , φa = ϕa + δφa and H = Ĥ + δH . (3.18)

We start by evaluating (3.13) at the background level,

∆(2.6)µ

∣∣∣∣
bg

= −
[
Iab ϕ̇aϕ̇b + 3

(
C(1) + C(3)

)
Ĥ2 + 3Ĥ

(
C(6)a − C(5)

)
ϕ̇a
]
uµ

−∇µ
[(
C(1) + 3C(2) + C(3)

)
Ĥ + C(6)a ϕ̇a

]
− uµ u · ∇

[(
C(1) + C(3)

)
Ĥ − C(5)a ϕ̇a

]
. (3.19)

This is compatible with δUµ ∝ uµ, and the normalization of Uµ will follow from the change
∆ξ in the value of ξ. This finally shows that the aligned configuration is a solution.

The change to the scalar field equation is determined by adding (3.14) to (2.10) and
linearizing about the background solution, leading to the addition of an inhomogeneous term
to (3.2)

Fab(ϕ) δφ̇b +Mab(ϕ) δφb = Ja(ϕ) , (3.20)

with source term

Ja := ∇µ
[
Gab∇µϕb +

(
Iab ϕ̇b + 3Ĥ C(6)a

)
uµ
]

+
∂(∆L)

∂ϕa

=−Qab
(
ϕ̈b + 3Ĥ ϕ̇b + Γbcd ϕ̇

cϕ̇d
)

+ 3Ĥ(C(6)a,b − C
(6)
b,a )ϕ̇b

− 3Ĥ2

2

[
(C(1) + 3C(2) + C(3)),a − 6 C(6)a

]
, (3.21)

where Γbcd are the Christoffel symbol built from the target-space metric, Qab := Gab − Iab.
When Fab has an inverse, (3.20) becomes the inhomogeneous version of the linearized

equation studied earlier

Ô δφa := δφ̇a + M̃a
c δφ

c = J̃ a , (3.22)

where J̃ a := F̃abJb. The general solution is a sum of a solution to the homogeneous part
discussed in the previous section, plus any particular integral that includes the nonzero J̃ a.

Our interest is when Aa and V are chosen so that the eigenvalues of M̃a
b are strictly

non-negative, so that the solutions to the leading-derivative equations are not unstable. The
case of positive eigenvalues was discussed in the previous sections, while the evolution of
marginal eigenstates requires the analysis of terms with higher order derivatives. For this
analysis we will focus in the case of constant background fields. In this case any late-time
rolling of the fields must be driven by the source term Ja, so we first ask whether this

(and ∆Tµν) can be nonzero for static backgrounds satisfying ϕ̇a =
˙̂
H = 0 and Uµ = uµ.

Evaluating (3.21) with ϕ̇a = ϕ̈a = 0 gives

Ja = −3Ĥ2

2

[
(C(1) + 3C(2) + C(3)),a − 6 C(6)a

]
(when ϕ̇a = ϕ̈a = 0) , (3.23)
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which need not vanish. The directions ηa, where ηaM̃a
b 6= 0, decay to the late-time static

solution: δφa∞ ∼ (M̃)−1J̃ . For slow roll it is the zero eigenvectors, ⊥a M̃a
b = 0, that are

of more interest, and these directions do exist — with ⊥a∝ Aa(ϕ) ∝ V,a(ϕ) — for static
solutions provided (2.39) also holds (cf. (3.10)). For these directions the linearized field
equations state

⊥a δφ̇a =⊥a J̃ a = F̃ab ⊥a Jb , (3.24)

and so for these the late-time solutions asymptote to constant velocity rather than con-
stant position.

Slow-roll parameters

We are now in a position to evaluate the perturbed slow-roll conditions for the case where
the leading contribution cancels. At linear order in the perturbations in (3.18) these receive
contributions from two sources: (i) the linearized perturbations of the first-derivative slow-
roll conditions, and (ii) the contributions of ∆Tµν to the slow-roll conditions, evaluated at
the zeroth order static background solution.

We start by evaluating ∆Tµν , in which we must also take care to include the change to
ξ induced by the addition of ∆S to the action. Inspection of (3.19) shows that the presence
of ∆S for a static background shifts ξ → ξ + ∆ξ with

2∆ξ = uµ∆(2.6)µ = 3
(
C(1) + C(3)

)
Ĥ2 .

Using this and (3.15) the correction to the stress energy is then given by

∆Tµν − 2∆ξ UµUν =
3Ĥ2

2
(C(1) + 3C(2) + C(3))gµν . (3.25)

This is the standard result relating the terms C(I) in (3.15) to a modification of the value of
Newton’s constant in Friedmann equation by O(M2/M2

p ) [73]. This contribution does not
affect the value of ε.

The leading corrections therefore come from the change in the leading order expressions
due to the modification of the motion of the fields,

ε ' −δφ̇
a

2Ĥ

(V,a
V

)
φ=ϕ

, (3.26)

with δφ̇a evaluated using (3.24) (the stable fields asymptote to a constant).

The order of magnitude of this result may be estimated by restoring the explicit dimen-
sions of the coefficients, with Gab ∼ F 2, Aa ∼ µ3 and C(I) ∼ M2. This implies Ja ∼ Ĥ2M2

and so δφ̇a ∼ J̃ a = F̃abJb ∼ Ĥ2M2/µ3. The leading dependence of ε on these scales
therefore is

ε ∼ ĤM2

µ3
v′

v
∼ m2M2

Mpµ3
v′

v
. (3.27)

Applying the same estimates to η = ε̇/Ĥε (and assuming, as above, all dimensionless func-
tions of the fields and their derivatives are order unity) then predicts η ∼ φ̇/Ĥ ∼ ε v/v′.
When µ ∼ M this implies (for a potential with v′ ∼ v) η ∼ ε ∼ Ĥ/M ∼ m2/MpM , which
can be naturally small given a moderate hierarchy like m�M .Mp.
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We remark in passing that the assumption that the fields are order unity at the static
solution implies a relation between the otherwise independent scales m and µ. This relation
arises because static solutions require the background values to adjust so that Aa and V,a
satisfy 3ĤAa = V,a, so if this is satisfied by order-unity field values then the statement that
Aa ∼ µ3 and V ∼ m4 implies the scales m and µ must be related by

m4 ∼ Ĥµ3 and so m2 ∼ µ3

Mp
and Ĥ ∼ µ3

M2
p

. (3.28)

This is compatible with the bounds (2.4). Using this in the estimate (3.27) then implies
η ∼ ε ∼ (M/Mp)

2 is determined purely by the value of M , independent of µ. This allows
M to be inferred directly from measurements of13 r while (3.28) relates the inferred value
of µ to the Hubble scale during inflation. In particular, the observed amplitude of scalar
fluctuations implies (

m4

ε

)1/4

∼
(
µ3

M

)1/2

' 7× 1016 GeV . (3.29)

For instance, if phenomenology were to tell us ε ∼ 10−2 (as would be implied by
detection of primordial gravitational waves with r close to present limits, for example),
then this inflationary mechanism would indicate M/Mp ∼

√
ε ∼ 0.1. Demanding the

proper amplitude of scalar fluctuations then requires Ĥ/Mp ∼ 10−5
√

8π2ε ∼ 10−5 and so
µ ∼ (ĤM2

p )1/3 ∼ 0.02Mp. For scales M much smaller than these values r rapidly be-
comes undetectable.

Two-field example

To see how this works more explicitly we return to the simple two-field example of sec-
tion 2.4.2. Now we also include generic two-derivative terms that depend on both fields,
φa = {ψ, χ}. The lowest-order field equations for this system are given in (2.37), so static
solutions require 3HA(χ) = V ′.

Linearizing about a static background (ψ = ψ̂ + δψ and χ = χ̂+ δχ for which Â′ 6= 0),
and including the two-derivative interactions gives the evolution equation for the would-be
zero mode, δψ:

δψ̇ = J̃ ψ =
Ĵχ
Â′

=
3Ĥ2

2Â′
[
(Ĉ(1) + 3Ĉ(2) + Ĉ(3)),χ − 6 Ĉ(6)χ

]
. (3.30)

The leading two-derivative contribution to the slow-roll parameter ε therefore becomes

ε ' − δψ̇
2Ĥ

(
V̂,ψ
V̂

)
' 3Ĥ

4A′
[
(Ĉ(1) + 3Ĉ(2) + Ĉ(3)),χ − 6 Ĉ(6)χ

]( V̂,ψ
V̂

)

=
9Ĥ2Â
4V̂A′

[
(Ĉ(1) + 3Ĉ(2) + Ĉ(3)),χ − 6 Ĉ(6)χ

]
, (3.31)

where the last equality uses the static relation between χ̂ and ψ̂.
This determines the sign and magnitude of ε in terms of the sign and magnitude of C(6),

the χ-derivatives of the coefficients C(1) through C(3) appearing in ∆L, and the gradient of
the scalar potential. Notice it is the marginally unstable solution that is desired if we wish
eventually to exit inflation.

13The speed of gravitational waves is modified by the terms C(I) by quantities of O(M2/M2
p ), see e.g. [63].

For the set-up we are currently considering, these effects are negligible.
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3.2 Cosmological fluctuations

In this section we discuss the action for quadratic scalar-metric fluctuations obtained by
coupling the action at eq. (2.22) to gravity in comoving gauge. For simplicity we restrict
ourselves to the case where there are only two fields.

The mixing of scalar modes with the metric through gravitational interactions provides
another way for scalar fluctuations to sample the two-derivative terms in the action, although
this time it is those of the Einstein-Hilbert action rather than any explicit two-derivative
scalar interactions present in the Lagrangian before coupling to gravity. These gravity-
induced interactions are natural to examine, since they are self-contained and only depend on
the original single-derivative scalar action (since metric perturbations are sourced primarily
by the matter content that is driving the background evolution) together with the standard
gravitational couplings already required to discuss inflation.

We find that the curvature perturbations are generically adiabatic with a finite sound
speed. Although their adiabatic, single-clock character is most easily understood using the
classically equivalent formulation of section 2.3, we verify that one reproduces the same results
by directly perturbing the full theory of section 2.1. As usual the fluctuations degenerate in
the limit where ε = 0 due to the enhanced symmetry of de Sitter space.

Parameterization of the fluctuations

Following appendix B, we write the Einstein-Hilbert action in ADM form [74]

SG =
M2
p

2

∫
d4xN

√
h

[
R(3) +

1

N2
(EijEij − E2)

]
. (3.32)

where the metric is given by

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt). (3.33)

For two scalar fields we are free to expand the scalar fields into background, ϕa(t), plus
fluctuations using

φa(x, t) = ϕa(t+ π(x, t)) +N a(t+ π(x, t)) σ(x, t), (3.34)

where π(x, t) parameterizes a translation in time along the inflationary trajectory and σ
represents the isocurvature mode normal to the inflationary trajectory. Here the target-
space vectors, T a and N a decompose fluctuations into directions tangent and normal to the
inflationary trajectory according to

T a :=
ϕ̇a√
ϕ̇cϕ̇c

, and N a := δacεcbT b . (3.35)

We expand the lapse and shift as

N = 1 + α1 + . . . , and N i = hij∂jθ1 + . . . , (3.36)

where we keep only terms linear in the fluctuations, α = α1 and θ = θ1, since at quadratic
order in the action second-order quantities like θ2 and α2 just multiply lower-order con-
straints [75].

Finally, we drop the vector degrees of freedom altogether since we can show these to
be zero14 when ε 6= 0 and Uµ is fully aligned with the co-moving cosmic 4-velocity, uµ. The
study of tensor modes on the other hand is unchanged by any of our new ingredients.

14Vector degrees of freedom are present when the operators involving second derivatives of Uµ (3.12) become

relevant, as happens in Einstein-aether theory [62].
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Unitary (or comoving) gauge

In unitary gauge, the inflaton is not perturbed along its trajectory and π = 0. We adopt
coordinates to write the scalar component of the metric on the spatial hypersurfaces in
the form

hij ≡ a2(t)e2Rδij . (3.37)

In this gauge the fluctuations in the scalar field about the background, ϕa(t), are strictly
orthogonal to the inflationary trajectory

φa(x, t) = ϕa(t) +N a(t)σ(t, x) . (3.38)

The physical scalar degrees of freedom are the curvature fluctuation, R, and isocurvature
mode, σ.

With these definitions the unitary gauge quadratic action for fluctuations about the
background solution is given by (for details see appendix B)

S(2) =

∫
d3x dt a3

[
−
εM2

p

a2
δij∂iR∂jR+

AN
Ha2

δij∂i∂jRσ + FNT
ϕ̇

H
σ Ṙ (3.39)

−
(
MNN −MT T + FNT

AN ϕ̇
2HM2

p

)
σ2

2
−AN δ1Ũ i∂iσ +H2M2

Plε
(
a2δijδ1Ũ

iδ1Ũ
j
)]

where δ1Ũ
i = N i + δ1U

i and F := FNT = 1
2ε
abFab is the target-space field strength, while

ϕ̇ := T aϕ̇a =
√
ϕ̇aϕ̇a and AN = N aAa, MNN = N aN bMab and MT T = T aT bMab with

Mab as defined in (3.3) and Aa and Mab evaluated at the background, ϕa.
The first term of eq. (3.39) appears to hint at the presence of an instability when ε < 0,

since the spatial gradient terms have the wrong sign. Furthermore, in Fourier space this
instability (if present) appears to grow with momentum, k. However, in order to draw firm
conclusions we need to explore the circumstances under which such an instability exists in a
more careful manner.

Stability

To clarify the stability issue we integrate out the quantities δ1Ũ
i and σ, which appear in the

above action purely as auxiliary fields. Notice that the isocurvature mode, σ, is undifferen-
tiated here which can be understood from the degeneracy of the target-space metric in the
classically equivalent action (2.26). When performing this integration we assume ε 6= 0, but
do not assume it to be positive. We focus on the quadratic part of the action where the
required functional integral is Gaussian, and is computed by evaluating it at the appropriate
saddle point. This leads (in Fourier space) to the following quadratic action involving only
the propagating fields, Rk,

S(2) =

∫
d3k

(2π)3
dt a3

{
ϕ̇2F2

NT
2H2Ω(k)

Ṙ2
k −M2

p

[
L4ε

Ω(k)
− 1

a

d

dt

(
aAN

2M2
pΩ(k)

ϕ̇FNT
H2

)]
k2

a2
R2
k

}
(3.40)

Here

Ω(k) := L4 +
A2
N

2εM2
p

k2

a2H2
, with L4 :=

(
MNN −MT T + FNT

AN
2HM2

p

ϕ̇

)
. (3.41)
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Because it involves only the propagating fields, eq. (3.40) allows crisper statements about
stability, including the following:

• The curvature perturbation is gapless, since all but the kinetic term vanishes when
k → 0. In particular, this means that on large scales R is exactly conserved. Despite
incorporating multiple fields, cosmological perturbations are adiabatic, showing that it
behaves as a single-clock system.

• The kinetic term vanishes when FNT = 0 or ϕ̇ = 0, so curvature perturbations cease
to propagate at finite speed in this limit.15 When nonzero, the sign of the kinetic term
is controlled by the sign of Ω(k), and so when Ω(k) < 0 the theory contains ghosts.

• For small k the leading gradient terms go like k2 and we require them to be nega-
tive in S(2) and finite if we are to avoid instability towards the formation of spatial
inhomogeneities.

Stability requires the absence of both ghosts and gradient instabilities across all wavelengths
of interest. Consider first ghosts: whether a ghost propagates or not is determined by the sign
of the kinetic term in (3.40). We first observe that when L4 < 0, Ω(k) < 0 as k/(aH) → 0
implying an instability of the background at long wavelengths and so we focus in what follows
on systems for which MNN >MTT and these terms dominate the Planck-suppressed final
term in the last line of (3.41). In this case L4 > 0 and so the kinetic term is always positive
when ε > 0 (and so no ghosts in this case).

The case where ε < 0 is less straight-forward. Modes with momenta smaller than

k2

a2H2
<

(
2 |ε|M2

p

A2
N

)
L4 (3.42)

are healthy whereas modes that violate the above inequality are ghost-like. In cases where
L ∼ m (and if (3.28) is satisfied) this corresponds to wavelengths where our analysis ne-
glecting two-derivative terms should apply. However, if L is dominated by a large scale16

this instability may evolve quickly enough not to be reliably described while neglecting two-
derivative terms in the action. Similarly, if A2

N < 2 |ε|L4M2
p /F

2 all modes are healthy that
have momenta below the scale at which two derivative terms become relevant. Although one
must check on a case-by-case basis, evidently the case ε < 0 need not imply ghost instabilities.

Concerning gradient instabilities, at long wavelengths (i.e. when Ω(k) → L4) we see
from (3.40) that an instability sets in whenever

ε̃ := ε− 1

a

d

dt

(
aAN ϕ̇FNT
2M2

pH
2L4

)
< 0. (3.43)

Note that it is possible for the above to be positive even when ε < 0.17 Away from the long
wavelength limit one must consider the full expression within the square brackets of (3.40)
and ensure that this contribution to the action is negative for all modes up the scale where two
derivative terms in the action (those neglected in (2.22)) become relevant. Again instability

15Formally, this corresponds to the limit where the sound speed of the curvature perturbations diverges.
16An estimate from (3.40) indicates an instability rate of order Γ > εH

(
MpL

2/µ3
)2

.
17In the case where L ∼ m and AN 6= 0, it is possible for the second term on the right-hand side of eq. (3.43)

to dominate, implying the possible absence of long wavelength gradient instabilities even when ε < 0.
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must be checked on a case-by-case basis. A particularly simple special case of later interest
is when AN = 0, in which case avoidance of ghost and gradient instabilities requires ε > 0.

We finish this discussion with two remarks about (3.40). If we assume that these
gravitationally induced two-derivative terms dominate all other two-derivative terms (a big
if), then when L ∼ m and (3.28) holds the speed of propagation of R is c2s ∼ O(ε) if the
first term in the square brackets in (3.40) dominates, while c2s ∼ O(1) if the second term
dominates. When the perturbations are subluminal some obstructions to the existence of
UV completion within Lorentz invariant set-ups may not arise [50].

For the case where the other two-derivative terms have coefficients, C(I), that do not
depend on the scalar fields the conditions for stability have been studied elsewhere [59, 60,
62, 63], as have aether-scalar couplings in the case of a single scalar field [57–59]. These
studies show that stable solutions can exist, provided inequalities amongst the coefficients
C(I) are satisfied. We leave the detailed study of how these cases generalize for arbitrary
scalar couplings to a future study.

When L4 dominates

Things simplify somewhat if L4 is larger that any other scale in the problem (except for
Mp). Such a situation arises, for instance, if MNN � F 4. (Although this case is not
completely generic since it requires an additional hierarchy in the potential sector, it is still
an interesting possibility within the class of magnon inflation models.) In this case one can
expand the above in a derivative expansion; keeping only the leading order then results in

S(2) =

∫
d3k

(2π)3
dt a3

[
M2
p ε̃

(
Ṙ2

c2s
− k2

a2
R2
k

)
+
A2
N

2L4H2

(
k4

a4

)
R2
k

]
, (3.44)

with ε̃ defined in (3.43) and where

1

c2s
:=

(
ϕ̇2

2ε̃M2
pH

2

) F2

L4
. (3.45)

In the regime where we derived the previous expressions, the last term in (3.44) is always
subdominant, and we find a standard mode with a speed of propagation c2s ∼

√
ε̃ m2/L2

which may be subluminal depending on the parameters of the model. This model seems to
be free from any pathologies.

Chromo-natural inflation

The case of Chromo-natural inflation provides a concrete check on the above discussion. As
we discussed in section 2.4.1, magnon inflation is related to Chromo-natural inflation at the
background level. Concerning perturbations, since we work in the case with Uµ = uµ, one
can forget about the order parameter and simply upgrade the potentials in (2.32) to the
potentials in the theory. The background equations in this case are well approximated by

χ̇

f̃
=
g̃ψ

λ
, ψ3 =

µ̃4 sin
(
Fχ

f̃

)
3g̃HλF 3

. (3.46)

This implies

Ta dφa = dχ, Na dφa = dψ, (3.47)

– 25 –



J
C
A
P
1
1
(
2
0
1
6
)
0
0
9

while we can evaluate (cf. (2.33))

F = −3g̃λF 4

f̃
ψ2, Mχχ = 0 and Mψψ = 6g̃2F 2ψ2 . (3.48)

Also, note that AN = 0, so that our unitary gauge quadratic action, eq. (3.40), is particu-
larly simple,

S(2) =

∫
d3k

(2π)3
dt a3M2

p ε

[
3Ṙ2

k −
k2

a2
R2
k

]
, (3.49)

showing how Chromo-natural inflation resembles a model with a reduced sound speed c2s =
1/3, as was noted previously in [47, 70].

4 Conclusion

In this paper we study a class of multi-scalar effective field theories (EFTs) that can achieve
inflationary slow roll despite having a scalar potential that does not satisfy Gab∂aV ∂bV �
V 2/M2

p (where Gab is the target-space metric). They evade the usual slow-roll conditions on
V because their kinetic energies are dominated by single-derivative terms rather than the
usual two-derivative terms. The presence of such terms requires some sort of UV Lorentz-
symmetry breaking during inflation (besides the usual cosmological breaking, although at
low enough energies their implied preferred frames naturally align). Chromo-natural inflation
provides an example of a UV theory that can generate the multi-field single-derivative terms
we consider and we argue that the EFT we find indeed captures the slow-roll conditions
for the background evolution for Chromo-natural inflation. Truncated to a single field, our
EFT superficially resembles Cuscuton-like models at low energies (where the Uµ appear as
auxiliary fields and can be integrated out). The multi-field case introduces a new feature
however: the scalar kinetic terms define a target-space 2-form, Fab, whose antisymmetry
gives new ways for slow roll to be achieved.

We find examples within this class of EFTs that can, but need not, cross the phantom
divide by giving w = p/ρ < −1. This raises the possibility of unstable fluctuations. A
preliminary examination indicates that stability of the w < −1 regime in general depends on
the details of the model, and need not imply instability. However, in some instances (such as
when AN = 0) w < −1 does lead to unstable modes once coupled to gravity. The case with
w > −1 can be easily made stable for the modes described by our EFT.

We remark in closing that although it may seem tempting to consider applying this EFT
to model dark energy rather than inflation (see [59] for a single field example), one would
then be forced to confront strong observational constraints on Lorentz breaking during the
present cosmological epoch [63].
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A Calculation of the stress tensor

We compute here the stress tensor of the two-derivative terms. Starting with ∆L =
√−g ∆L

we have

δ∆L =
√−g

[
1

2
∆Lgµν δgµν + δ∆L

]
, (A.1)

where we write ∆L = ∆Lkin + ∆LEA + ∆L56, with

∆Lkin := −1

2
(Gab gµν + Iab UµUν) ∂µφ

a ∂νφ
b ,

∆L56 := −C(5)a U̇µ∂µφ
a − C(6)a (∇ · U)φ̇a , (A.2)

and ∆LEA := −1

2
Kµν

αβ∇µUα∇νUβ ,

with dot denoting Uµ∇µ as in the main text and

Kµν
αβ := C(1) gαβ gµν + C(2) δµα δνβ + C(3) δµβ δνα + C(4) gαβUµUν . (A.3)

The required metric variation is

δ∆L = −1

2
Gab ∂µφa ∂νφb δgµν −

1

2
δKµν

αβ∇µUα∇νUβ − Jµα δ (∇µUα) , (A.4)

where
Jµα = Kµν

αβ∇νUβ + C(5)a Uµ∂αφ
a + C(6)a φ̇a δµα , (A.5)

and

Jµα δ(∇µUα) = Jµα U
λ δΓαµλ =

1

2
Jµρ Uλ (∇µδgλρ +∇λδgµρ −∇ρδgµλ) . (A.6)

After an integration by parts,

δ∆L =
1

2

[
Gab ∂µφa ∂νφb + C(1)

(
∇µUλ∇νUλ −∇λUµ∇λUν

)
− C(4)U̇µU̇ν

]
δgµν

+
1

2
∇λ
(
JλνUµ + JµνUλ − JµλUν

)
δgµν . (A.7)

We are led in this way to the following stress-energy contribution,

∆Tµν :=
2√−g

(
δ∆S

δgµν

)
(A.8)

= ∆Lgµν + Gab ∂µφa ∂νφb + C(1)
(
∇µUλ∇νUλ −∇λUµ∇λUν

)
− C(4)U̇µU̇ν

+
1

2
∇λ
[(
Jλν − Jνλ

)
Uµ +

(
Jλµ − Jµλ

)
Uν +

(
Jµν + Jνµ

)
Uλ
]
.
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B Perturbations in magnon inflation

In this section we sketch the derivation of the quadratic action in various gauges for cos-
mological perturbations in magnon inflation. For simplicity, we restrict ourselves to models
with two scalar fields, however, generalizations to higher dimensions is straightforward. We
begin by carefully parameterizing the time-dependent background field trajectories, and the
spacetime-dependent perturbations about them. We then compute the quadratic fluctuation
action in comoving gauge.

B.1 Parameterization of the background trajectories

We first recast some facts about the background. In a general multi-field context, one gains
geometrical intuition of the nature of the adiabatic and entropy modes in different gauges by
going to the Frenet-Serret formalism [76–80]. That is, for a given background solution ϕa(t),
we can construct the tangent vector along the trajectory18

T a :=
ϕ̇a

ϕ̇
, ϕ̇ := (ϕ̇aϕ̇a)

1/2 , (B.1)

where indices are raised and lowered with the flat target space metric δab . Along with the
corresponding normal vector to the trajectory

N a := δacεcbT b, (B.2)

with εab the antisymmetric pseudo-tensor. Together, T a and N a are a complete field space
basis in two dimensions. The time derivatives of these satisfy the Frenet-Serret relations:

Ṫ a = −ϑ̇N a, Ṅ a = ϑ̇T a, (B.3)

which follow from their normalization and orthogonality, and ϑ̇ corresponds to an angular ve-
locity in field space. From the background equation of motion, eq. (2.11), the anti-symmetry
of F̃ implies that the quantity in the square brackets is orthogonal to ϕ̇a and therefore to
T a, hence

N a =
na√
nana

, na = 3HAb − ∂bV (B.4)

Furthermore, since F̃ab = −εab/F (F := FNT = 1
2ε
abFab is the target-space field strength)

we find that

ϕ̇aϕ̇a = F−2 nana. (B.5)

From eq. (B.1) we see that

Ṫ a =
ϕ̈a

ϕ̇
− ϕ̇a

ϕ̇3
ϕ̈cϕ̇

c, (B.6)

so that given that Ṫ aNa = −ϑ̇, one evaluates

ϑ̇ = F−1
[

3HAT ,T + 3AT
Ḣ

ϕ̇
− VT T

]
, (B.7)

18In what follows, we restrict ourselves to a flat two dimensional target space. One can generalize this

straightforwardly [76–79].
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where the overdot is shorthand for Uµ∇µ, and VT T := T aT bV,ab. This is to be compared
with the usual expression for a two derivative kinetic term coupled to a potential, where
ϑ̇ = VN /ϕ̇ [79]. This highlights the novel aspects of the dynamics of magnon inflation — the
two form field strength plays a privileged role in determining the acceleration of the trajectory.

B.2 Perturbations about the background

We can now address perturbations. Without loss of generality, one can write an arbitrary
field profile as [79]

φa(x, t) = ϕa(t+ π(x, t)) +N a(t+ π(x, t))σ(x, t). (B.8)

That is, any field perturbation can be parametrized as a local rescaling of the background
solution ϕa(t) (the adiabatic mode) plus that part which is left over, necessarily orthogonal
to the background trajectory at the rescaled time (the isocurvature mode) [79, 81]. One
proceeds by parametrizing the metric perturbations using the ADM decomposition

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt), (B.9)

where different gauge choices correspond to different foliations, and consequently different
choices for the induced metric hij .

The action we are to perturb can be separated into the Einstein-Hilbert term plus the
matter action. The matter sector action is given by

SM =

∫
d4x
√
hN

[
−V(φ)−Aa(φ)Uµ∂µφ

a − ξ
(
gµνU

µUν + 1
)]
. (B.10)

In the ADM decomposition [74], the Einstein-Hilbert action reads

SG=
M2
p

2

∫
d4x
√
h

[
NR(3)+

1

N
(EijEij−E2)

]
, Eij =NKij =

1

2

[
ḣij−∇iNj−∇jNi

]
, (B.11)

where R(3) is the Ricci scalar constructed out of hij , and Kij is the extrinsic curvature of the
foliation defined by our gauge choice. We perturb the lapse and shift as

N = 1 + α, α = α1 + α2 + . . . , (B.12)

N i = hij∂jθ +NT i, θ = θ1 + θ2 + . . . . (B.13)

As is well-known, we only need the solutions for α and θ to linear order to find the action
up to cubic order [75]. We ignore vector and tensor fluctuations of the metric, and restrict
our attention to the scalar sector.

Perturbations in unitary (or comoving) gauge

Unitary gauge is defined by setting π ≡ 0 in eq. (B.8), such that this scalar fluctuation is
absorbed by the metric

hij ≡ a2(t)e2Rδij , (B.14)

and the only field fluctuations are orthogonal to the inflationary trajectory

φa(x, t) =ϕa(t) +N a(t)σ(x, t). (B.15)
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In this gauge, to quadratic order the gravitational part of the action can be written19

S
(2)
G =

M2
p

2

∫
d4x

[
− 2a

[
2∂2Rα− (∂R)2

]
+ 4a((−αH + Ṙ)∂2θ) (B.16)

− 6a3
(
H2α2 − 3H2αR− 2HṘα+ 3a−3H∂t(a

3R2) + Ṙ2 − 9

2
H2R2

)]
.

We perturb the Lagrange multiplier field, ξ, as well as the contra-variant vector Uµ as

ξ =ξ̄ + δ1ξ + δ2ξ, Uµ = U
µ

+ δ1U
µ + δ2U

µ, (B.17)

again, we only need the linear order field fluctuations, since at quadratic order the second
order perturbations simply multiply the background equations of motion and constraints.

To quadratic order, the matter sector action at eq. (2.22) becomes

S(2)m =

∫
d3x dt a3

[
−
(

1+3R+α+3Rα+
9

2
R2

)
V−(1+α+3R)V,Nσ−V,NN

σ2

2

−
(

1+3R+α+3Rα+
9R2

2

)
ϕ̇AT

− (1+3R+α)

(
ϕ̇AT ,Nσ+Aa

d

dt
(N aσ)+ϕ̇AT δ1U0

)
−Aaδ1U0 d

dt
(N aσ)−ϕ̇AT ,Nσδ1U0−Aa,Nσ

d

dt
(N aσ)− 1

2
ϕ̇AT ,NNσ2

−AN δ1U i∂iσ+ξ̄
(
(2α+6Rα+3α2)+2(1+3R+3α)δ1U

0+δ1U
0δ1U

0
)

+ 2δ1ξ(α+δ1U
0)−ξ̄hij(N i+δ1U

i)(N j+δ1U
j)

]
. (B.18)

Varying the action with respect to δ1ξ, again yields the constraint δ1U
0 = −α. Further, the

field redefinition δ1Ũ
i = N i + δ1U

i removes the quadratic term in N i, so that it remains a
Lagrange multiplier field when combined with the gravitational action. Substituting this into
the action, dropping constant and linear terms and making use of the background equations
of motion, we find

S(2)
m =

∫
d3x dt a3

[
−
(

3Rα+
9

2
R2

)
V − (α+ 3R)V,Nσ − V,NN

σ2

2
− 9R2

2
ϕ̇AT

− 3R
(
ϕ̇AT ,Nσ +Aa

d

dt
(N aσ)

)
−Aa,NσU0 d

dt
(N aσ) (B.19)

− 1

2
ϕ̇AT ,NNσ2 −AN (δ1Ũ

j −N j)∂jσ − a2ξ̄δijδ1Ũ iδ1Ũ j
]

19We use the notation ∂2 = δij∂i∂j , and e.g. (∂R)2 = δij∂iR∂jR.
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combining with the gravitational action, and using the Friedmann equation, we have

S(2) =

∫
d3x dt a3

[
− a−2M2

p

[
2∂2Rα−(∂R)2

]
+2a−2M2

p (−αH+Ṙ)∂2θ (B.20)

− 3M2
p

(
H2α2−2HṘα+3a−3H∂t(a

3R2)+Ṙ2
)
−(α+3R)V,Nσ

− V,NN
σ2

2
− 9R2

2
ϕ̇AT −3R

(
ϕ̇AT ,Nσ+Aa

d

dt
(N aσ)

)
−Aa,Nσ

d

dt
(N aσ)

− 1

2
ϕ̇AT ,NNσ2−AN (δ1Ũ

j−∂jθ)∂jσ−a2ξ̄δijδ1Ũ iδ1Ũ j
]

Variation of the action with respect to θ yields an equation for the perturbation to the lapse,

α =
Ṙ
H
− AN

2HM2
p

σ. (B.21)

Variation with respect to α yields an equation for θ, however, we do not need it at this order
in perturbation theory. This is because it appears only linearly in the action, and thus simply
multiplies its own equation of motion.

Substituting in, after much algebra and making use of the background equations of
motion we arrive at

S(2) =

∫
d3x dt a3

[
− a−2M2

p ε (∂R)2 + a−2
AN
H

∂2Rσ + FNT ϕ̇σ
Ṙ
H

(B.22)

−
(
MNN −MT T +

AN
2HM2

p

ϕ̇FNT
)
σ2

2
−AN δ1Ũ j∂jσ

− ϕ̇AT
2

(
a2δijδ1Ũ

iδ1Ũ
j
)]

where Mab was defined above as

Mab := Fad
[
F̃dc(V,c − 3HAc)

]
,b
. (B.23)

Note that, if ϕ̇AT 6= 0, which is equivalent to ε 6= 0, then we can integrate out δ1Ui to find

S(2) =

∫
d3x dt a3

[
−
M2
p ε

a2
(∂R)2 +

AN
a2H

∂2Rσ + FNT ϕ̇σ
Ṙ
H

(B.24)

−
(
MNN −MT T +

AN
2HM2

p

ϕ̇FNT
)
σ2

2
+
ANAN
2a2ϕ̇AT

(∂jσ∂jσ)

]

We observe that the nominal isocurvature mode σ is an auxiliary field so we are entitled to
integrate it out. The quadratic Lagrangian has the form

L(2) = −L
4

2
σ2 +

AN
a2H

σ∂2R−M2
p

ε

a2
(∂R)2 +

A2
N

2a2ϕ̇AT
(∂σ)2 + FNT

ϕ̇

H
σṘ (B.25)
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with

L4 =

(
MNN −MT T +

AN
2HM2

p

ϕ̇FNT
)
. (B.26)

Formally integrating out σ, one obtains the Lagrangian

L(2) = −M2
p

ε

a2
(∂R)2 +

1

2

(
ϕ̇

H
FNT Ṙ+

AN
a2H

∂2R
)

Ω̂−1
(
ϕ̇

H
FNT Ṙ+

AN
a2H

∂2R
)

(B.27)

where

Ω̂ := − A2
N

2H2M2
p ε

∂2

a2
+ L4, (B.28)

having used eq. (2.18). Fourier transforming and integrating the cross term, Ṙ∂2R, by parts
and discarding the boundary terms gives the result in eq. (3.40).
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