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1. Introduction 

Event reconstruction problem in the UAl central detector is divided in the 

following three stages 

- pattern recognition 

- trajectory fitting 

- vertex finding 

In this note we consider the trajectory fitting problem. 

The UAl magnetic field in the region of the central detector is uniform to a 

high extent so that pure helix fit is adequate at least for the part of the 

trajectory which is inside one chamber volume. Neglecting possible correlation 

between measurement of the current division coordinate (along field or Z-axis) 

and drift time coordinate (in XY-plane) the helix fit can be performed in two 

parts : 

circle fit in XY-plane 

straight line fit in SZ-plane 

where S is the projected path length along the trajectory in XY-plane. 

Since straight line fit is trivial we discuss here only the circle fitting 

problem. The central detector measures typically many thousands of points per 

event. It is therefore desirable to find fast fitting methods. 

2. Circle fitting 

2.1. Problem definition 

1 
We define the x -function to be minimized as 

(1) 

where Ei is a measurement residual normal to the trajectory 

(2) 
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R is the circle radius and (A,B) are coordinates of the circle centre. 

An exact solution of the minimization problem for the three parameters R,A,B 

involves a complicated iteration procedure and CPU time consuming computation 

of square roots for thousands of points per event. In the following we 

describe a method in which the problem is solved in explicit form in an 

approximation which leads to negligible systematic error in all practical 

cases. 

2.2. Approximation 

The approximation we make is based on the fact that we can always find a 

point whose distance from the circle is much smaller than the radius of 

curvature. The first measured point (X y ) '11 d L t d f' th 1 , 1 w1 o. e us e ine e 

following quantities 

d =distance of the point (X 1,Y1) from the circle (=e 1) 

q> =angle of tangent at the closest point of approach to point (X1 ,Y 1) 

p = (R-d)- 1 

Then it is easy to show that equation (2) can be written in the form 
2 

= [-ri + 2(R-d)xisin~ - 2(R-d)yicoscp]/(2R-d-ei) 
2 2 2 

xi=Xi-X1, Yi=Yi-Y1, ri=xi+Yi• 

Since d < < R, 

"' 2(R-d) so that 

2 

£, < < R we can approximate that 2R 
l 

ei ~ - 1/2 p ri + d + xisin~ - yicosq> 

with a good accuracy. For example in the case le. J.,JdJ .. 300 µand 

d 

( 2 I ) 

£. 
l. 

(3) 

l. 2 

R "' 1 m the error we make on e:i is about 2e/2R "' 0.1 µ which 

is highly negligible. 

Notice that the residual (3) is now 1 inear in the two parameters p and d 

and simple trigonometric expression in cp. The minimization problem of eq • 

(1) can be solved in this approximation in explicit form for parameters p, d 

and ~ as we show in the following. 
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2.3. Explicit solution 

To minimize ( 1) with residuals (3) we have to solve the following three 

simultaneous equations : 

}'.w·e:·ae:·/ap = o l. l. l. 

}'.w·e:·ae:·/ad .. o l. l. l. 

}'.w·e:·ae:·/a111 • o l.l. l. T 

The calculation is fairly lengthy but straight-forward and the solution reads 

as follows : 

p = 2(sin<pc •• - COS<pC2s)/C,, 

where 

q 1 = c' ,c 1 2 - c 1 ,c 2 ' 

2 2 
q2 = Css(C11-C22)-C1s+C2s 

and the coefficients are the statistical 

measurements x. 
l. 

2 2 2 
= Xi-X1, Yi= Yi-Y1, ri=xi+yi : 

2 2 
C11 = <xi> - <xi> 

Cu = <xiyi> - <xe<ye 

2 2 
c 1S = <xire - <xe <ri> 

C22 
2 2 

= <ye - <ye 

Cu 
2 2 

= <yire - <ye<re 

c'' 
.. 2 2 

= <ri> - <re 

(4) 

covariances of the 
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The 180° direction ambiguity for the angle <p is solved so as to have p 

= (R-d)-
1 

positive. Notice that d (shortest distance between the point 

and the circle) is then positive for inside 
the circle and negative outside the circle. 

4. Covariance matrix for parameters p m d - ' T' 

In order to simplify the notation let us identify the parameters p, <p 

and d with P1, p2 , p1 • The covariance matrix is then 

( 5) 

that is the inverse of the symmetric matrix whose elements we give below in an 

explicit form : 

w 1 1 
.. 

= rw· r· l l 

w l 2 
2 2 

= -cos<p1w·x·r· sin<p1wiyiri l l l 

2 2 2 2 

Wl 1=cos <i>lWiXi+sin2<p1wixiyi+sin <i>lWiYi 

2 
Wzz = - \'w·r· L l l 

We emphasize here that the covariance matrix thus formulated is related to the 

reference point (X 1 ,Y 1 ). 

2.5. Propagation of parameters and covariance matrix 

In practical applications one is not usually interested in the parameters 

related to the first measured point but rather at the vertex of the particle 

origin. Below we give practical formulation for propagation of related 

quantities. 

Suppose that given are the parameters p, <p and d and their covariance 

matrix C all related to a fixed point (X 1 , y 1 ). The problem is to 

propagate all these quantities to another fixed point (X,Y) (e.g. the primary 

vertex). The new parameters are : 
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P1 = l//(X-A) 2 
+ (Y-B) 2 

~· = atan [-(X-A)/(y-B)] (6) 

d' = l/p + d - l/p 

where (A,B) is the circle centre 

and S is the sign of curvature. 

Calculation of d' with the above formula leads, however, to truncation 

problems on the computer in the case of very small curvature tracks. A better 

formula reads : 

where H = R(R + l/p')- 1 
R = l/p + d 

and (Xs,Ys) is a point on the circle closest to the point (X1,Y1) 

x s 

Propagation of the covariance matrix 1s made by the matrix transformation 

C' = JCJT (7) 

where J is the Jacobian derivative matrix of the transformation equations (6). 

Below we list the elements of J in a form suitable for computations : 

J,, = ap'/ad = o 
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J2l = acp'/ap = sin(cp'-cp) p'/p 
2 

J22 = acp' /acp = cos(cp'-cp) p'/p 

J2, = acp'/ad = 0 

J' l = ad'/ap = [cos(cp'-cp) - l]/p 
2 

J '2 = ad'/acp = -sin(cp'-cp)/p 

J,, = ad'/ad = 1 

2.6. Strai~ht track limit 

It is amusing to notice that in the straight track limit _ O the least 

squares solution (4) reduces to : 

(8) 

This means that in principle one can use the same code with some additional 

tests for straight line fitting as for circle fitting. 

3. Fitting code 

A routine named CIRCLF is coded using the method described above. It can be 

found from the UAl PAM-file IMA and is fully documented in line. It is 

attached with a routine (PNTCIR) which performs propagation of parameters and 

covariance matrix as described in section 2.5. 

The code has been tested with Monte Carlo point generation and subsequent 

fitting. In the table below we give typical timing numbers on IBM 3081 

(without point rejection). 

Number of points time/track (ms) time/point ( µs) 

10 0.4 40 

so 1.4 28 

100 2.4 24 

200 4.4 22 

The error estimation code was also tested by comparing the fitted quantities 

and their estimated errors with time values used in MC generation. In Fig. la 
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we plot the quantity 

[(l/R)t rue 

where (l/R)fit = 1/(1/Pfit + dfit) 

and 6(1/R)fit is given by error propagation using covariance matrix of 

pfit, dfit• 
Similarly in Fig. lb and le we plot the quantities 

respectively (recall that d is the distance of the first point from the circle 

and l/p is the distance of the first point from the circle centre). All 

three plots follow normal distributions indicating that both fitting and error 

estimation perform well. 

4. Summary 

Fast helix-circle fitting method is described. Least squares circle fitting 

is solved in explicit form the solution involving computation of covariance 

matrix of th · · 2 2 2 
e quanti.ti.es x. y· r· = x· + Yi.· where 

l.' l' 1. - l 

xi=Xi-X1, Yi=Yi-Y1 and (Xi,Yi) are the 
Error estimation and propagation is discussed. Monte 

parameter fitting and error estimation are presented 

measured points. 

Carlo test results on 
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