
GENERAL FUNCTIONALITY FOR TURN-DEPENDENT
ELEMENT PROPERTIES IN SIXTRACK∗

K. Sjobak†, H. Burkhardt, R. De Maria, A. Mereghetti, A. Santamaría García
CERN, Geneva, Switzerland

Abstract
In order to facilitate studies of how dynamically chang-

ing element attributes affect the dynamics of the beam and

beam losses, the functionality for dynamic kicks (DYNK)

of SixTrack has been significantly extended. This function-

ality can be used for the simulation of dynamic scenarios,

such as when crab cavities are switched on, orbit bumps are

applied, optics are changed, or failures occur. The function-

ality has been extended with a more general and flexible

implementation, such that arbitrary time-dependent func-

tions can be defined and applied to different attributes of

families or individual elements, directly from the user input

files. This removes the need for source code manipulation,

and it is compatible with LHC@Home which offers sub-

stantial computing resources from volunteers. In this paper,

the functionality and implementation of DYNK is discussed,

along with examples of application to the HL-LHC crab

cavities.

INTRODUCTION
SixTrack is a 6D single particle tracking code [1,2], which

is routinely used at CERN to study the dynamic aperture and

collimation system in high-energy circular machines like the

LHC. There are also a large number of tools built around

SixTrack, both for analyzing the results and for handling

very large numbers of initial conditions. For this reason,

SixTrack is the natural tool to use for studying fast failure

scenarios at the HL-LHC, and for other transient phenomena

at other similar machines.

Functionality for applying dynamic kicks (DYNK) – i.e.

time-dependent machine element parameters – was therefore

added to the code [3,4] and significantly extended. It makes

it possible for the user to specify the functional form of these

parameters directly in the input file, or to load them from

a file. This eliminated the need for multiple private code

forks, freeing up and focusing developer resources. The

specification of the functions, to which elements they should

be applied, and when they should be applied, is done using a

simple mini-language. Some examples of this language are

given below, and a full description is given on the TWIKI

page [5].

DYNK currently supports setting the strength of all the

standard thin elements, and also setting the voltage, phase,

and frequency of crab cavities. It also supports a wide va-

riety of functions, which may use the turn number or the

output of other functions as input. It is also possible for

the functions to store and retrieve data from memory, as is

∗ Research supported by EU FP7 HiLumi LHC – Grant Agreement 284404
† kyrre.ness.sjoebaek@cern.ch

used for pseudo random number generating functions that

stores the random seed between turns, and when loading

the functions as tables from files. There is also an option to

output the setting of the affected elements at every turn to a

file. In order to work with LHC@Home [6], which is used

for large tracking campaigns, DYNK supports checkpointing

and restarting from a checkpoint. It interacts correctly with

the collimation routines, including resetting the elements

and generating exactly the same values for each pass of 64

particles. The ripple module is made redundant by DYNK,

which can exactly reproduce its results, and is therefore re-

moved.

IMPLEMENTATION
In order to make DYNK work, there are two main compo-

nents: a function parser and evaluator, and a setter and getter

for the element properties. Additionally, there are hooks for

calling DYNK in the tracking loops, and for initialization be-

fore the start of tracking. The data storage for the functions

are provided by one master table (one row per function) and

a “free memory” for each of the major data types (integers,

floats and strings).

This architecture is very easily extendable, making adding

support for new types of functions a matter of adding a few

lines to the parser and evaluator. Similarly, new elements

or element attributes can be supported by adding them to

the setter and getter functions – the difficulty of this is de-

termined by the complexity of the memory structures and

initialization scheme used for that element.

EXAMPLE USE CASES
Some examples for the use of DYNK are provided below.

All of these are ran using the HL-LHC v1.1 lattice [7] with

vertical crab cavities around the first interaction point (IP1,

ATLAS). The beam was sampled at IP1 as a Gaussian dis-

tribution using the nominal HL-LHC parameters, cropped

so to only include particles inside of the RF bucket.

The crab cavities closing the bump (at s=153.6, 154.6,

160.2 and 161.2 m, relative to IP1) are in this simulation

called CRAB_IP1_R1· · · 4, while the cavities creating the
bump (at s=26494.3, 26495.3, 26500.9 and 26501.9 m) are

called CRAB_IP1_L1· · · 4. Their frequencies are set to

400.8 MHz, i.e. the same as for the accelerating cavities.

The standard voltages of the closing- and opening cavities

opening cavities are calculated using Eq. 4 from [8]. For the

opening cavities, it is assumed that the transverse betatron

β-function and phase advance is the same for all the cavities,
while the voltage of each of the closing cavities are chosen

such that they cancel the symmetrically positioned opening

MOPJE069 Proceedings of IPAC2015, Richmond, VA, USA

ISBN 978-3-95450-168-7
468Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques



Figure 1: Ramping of crab cavity voltages.

cavity. For these examples, the crab cavities around IP5

(CMS) are switched off.

Starting a Tracking Run with Crabs Switched On
If the tracking is started with a uncrabbed beam inside a

bump, such as produced by a crab cavity, the bump must be

temporarily disabled during injection. To achieve this, the

following DYNK block can be used:

DYNK
FUN zero CONST 0.0
FUN CV_1R1 GET CRAB_IP1_R1 voltage
FUN CV_1R2 GET CRAB_IP1_R2 voltage
FUN CV_1R3 GET CRAB_IP1_R3 voltage
FUN CV_1R4 GET CRAB_IP1_R4 voltage
SET CRAB_IP1_R1 voltage zero 1 1 0
SET CRAB_IP1_R2 voltage zero 1 1 0
SET CRAB_IP1_R3 voltage zero 1 1 0
SET CRAB_IP1_R4 voltage zero 1 1 0
SET CRAB_IP1_R1 voltage CV_1R1 2 2 0
SET CRAB_IP1_R2 voltage CV_1R2 2 2 0
SET CRAB_IP1_R3 voltage CV_1R3 2 2 0
SET CRAB_IP1_R4 voltage CV_1R4 2 2 0
NEXT

This creates a constant function zero which always re-
turns 0.0, and four constant functions CV_1R1· · · 4 which
always return the original voltage of the crab cavity (as de-

fined in the lattice description file fort.2). The voltage of
these cavities are then set equal to zero at turn 1 (ending at 1),

and then changed to the original value for turn 2 (ending at

2). Since no further settings are applied, the current settings

remain after turn 2.

Linear Ramping of Crab Cavities
Another case is a simulation where the voltage of the crab

cavities are linearly ramped up to the maximum voltage in 50

turns, starting at turn 10. The voltage is then flat for 40 turns.

This profile is illustrated in Fig. 1, and the input block

looks like (shortened by removing duplicate instructions to

control multiple elements):

DYNK
FUN zero CONST 0.0
FUN CV_R1 GET CRAB_IP1_R1 voltage
(etc. for R2,R3,R4)

Figure 2: Simulated Z-Y distribution (640 particles) of the

beam during ramping of the crab cavity voltages.

FUN CV_L GET CRAB_IP1_L1 voltage
FUN ramp LIN 0.02 0
FUN ramp_R1 MUL CV_R1 ramp
(etc. for R2,R3,R4)
FUN ramp_L MUL CV_L ramp
SET CRAB_IP1_R1 voltage zero 1 10 0
(etc. for R2,R3,R4)
SET CRAB_IP1_L1 voltage zero 1 9 0
(etc. for L2,L3,L4)
SET CRAB_IP1_R1 voltage ramp_R1 11 61 -11
(etc. for R2,R3,R4)
SET CRAB_IP1_L1 voltage ramp_L 10 60 -10
(etc. for L2,L3,L4)
NEXT

Here the function ramp is given as y(x) = 0.02x + 0.0,
and this normalized ramp is then multiplied by the wanted

final voltages. When setting the voltages during the ramp,

the point where the functions are evaluated is then shifted

Proceedings of IPAC2015, Richmond, VA, USA MOPJE069

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

ISBN 978-3-95450-168-7
469 Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



Figure 3: Voltage and phase of crab cavities

CRAB_IP1_L1· · ·L4 as function of time, for the ex-

ponential decay/linear drift example.

by -11 and -10 turns, as specified in the last column in the

SET statement. The resulting beam distributions are shown

in Fig. 2, which show the bunch is increasingly tilted as

the voltage ramps up.

Exponential Decay of Crab Voltage, Combined
with a Linear Drift of Crab Phase
A slightly more complicated case is if the crab cavities

on the side upstream of the IP sees an exponential decay in

the kick voltage, combined with a linear drift in phase. This

failure case corresponds to the cavities being detuned, while

also no longer being driven, similarly to what is described

in [9]. In this example, the failure starts after 70 turns,

following a ramping like in the above example. The extra

lines in the DYNK block then looks like:

FUN expCore LIN -0.05 0.0
FUN decay EXP expCore
FUN decayScaled MUL decay CV_L
SET CRAB_IP1_L1 voltage decayScaled 70 100 -70
(etc. for L2,L3,L4)
FUN phasedrift LIN 0.3141592654 0.0
SET CRAB_IP1_L1 phase phasedrift 70 100 -70
(etc. for L2,L3,L4)

The exponential decay is here given as V (t ′) =

V0 exp(−t ′/20), where V0 is the standard voltage and t ′ is the
number of turns after the start of the failure, i.e. t ′ = turn−70.
The phase drift is given as φ (t ′) = πt ′/10. The resulting
voltage and phase program is shown in Fig. 3.

REPLACEMENT OF RIPP BLOCK
As the functionality of the ripple module in SixTrack is a

subset of what is possible withDYNK, it has been deprecated.

The RIPP input block is therefore no longer accepted. A

special function COSF_RIPP has therefore been provided in
DYNK, exactly mirroring the old RIPP input format. This

function is calculated as

f (t; A,T, φ0) = A cos
(
2π

(t − 1)
T

+ φ0

)
, (1)

where t is the current turn number, A is the specified ampli-

tude, T the period, and φ0 the initial phase.

This was tested against the prob1 and prob3 example
cases from sixtest [10], as well as against the results from a

recent BOINC campaign. It was confirmed that replacing

the RIPP block with a DYNK block exactly reproduced the
tracking results, even after 106 turns.

As an example, a part of the RIPP block from prob1
is shown below. It specifies a ripple of amplitude

A = ±3.2315 · 10−10 radians/meter and period T =

244.9 turns (equivalent to 50 Hz) for the quadrupole ele-
ments dmqx1f50l5+2 and dmqx2af50l5+2, with no start
phase or continuation turn number specified:

RIPPLE OF POWER SUPPLIES
dmqx1f50l5+2 3.2315D-10 224.9
dmqx2af50l5+2 -3.2315D-10 224.9

(etc. for more elements)

An equivalent DYNK block is:

DYNK (autogenerated from RIPP block by rippconverter.py)
NOFILE
FUN RIPP-dmqx1f50l5+2 COSF_RIPP 3.2315D-10 224.9 0.0
SET dmqx1f50l5+2 average_ms RIPP-dmqx1f50l5+2 1 -1 0
FUN RIPP-dmqx2af50l5+2 COSF_RIPP -3.2315D-10 224.9 0.0
SET dmqx2af50l5+2 average_ms RIPP-dmqx2af50l5+2 1 -1 0
(etc. for more elements)

Here the final turn number for the SET statement is given
as -1, indicating it should be active until the end of the simu-

lation. Also note the NOFILE statement, instructing DYNK
to not write a file containing the settings of all elements

affected by DYNK in all turns of the simulation, as such a

file would in this case be very large. An automatic tool is

available for doing the conversion of RIPP blocks to DYNK.

CONCLUSION
The newDYNK functionality allows for extremely flexible

definition of time-dependent element settings in SixTrack.

It allows the user to choose from and combine more than 25

different function types for computing the wanted setting, or

load it from a file. The architecture is extensible, and allows

for future additions of element types and functions. DYNK

therefore opens many possibilities for future studies of the

effect of time-dependent changes of element properties.

ACKNOWLEDGMENT
Thanks to Miriam Fitterer for providing one of the test

cases for conversion from the ripple module to DYNK.

REFERENCES
[1] F. Schmidt, “SixTrack Version 4.2.16 Single Particle Tracking

Code Treating Transverse Motion with Synchrotron Oscilla-

tions in a Symplectic Manner”, CERN/SL/9456, 2012.

[2] G. Ripken, F. Schmidt, “A symplectic six-dimensional thin-

lens formalism for tracking”, DESY 95–63 and CERN/SL/95–

12(AP), 1995.

MOPJE069 Proceedings of IPAC2015, Richmond, VA, USA

ISBN 978-3-95450-168-7
470Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques



[3] R.D. Maria et al., “Recent developments and future plans for

SixTrack”, IPAC’13, Shanghai, May 2013, MOPWO028.

[4] A. Mereghetti et al., “SixTrack-FLUKA active coupling for

the upgrade of the SPS scrapers”, IPAC’13, WEPEA064.

[5] SixTrack DYNK TWIKI: https://twiki.cern.ch/
twiki/bin/viewauth/LHCAtHome/SixTrackDoc#
Dynamic_Kicks_DYNK_input_block

[6] M. Giovannozzi et al., “LHC@HOME: A volunteer computing

system for massive numerical simulations of beam dynamics

and high energy physics events”, IPAC’12, New Orleans, May

2012, MOPPD061.

[7] R.D. Maria et al., “HLLHCV1.1 Optics Version for the HL-

LHC Upgrade”, TUPTY037, These Proceedings, IPAC’15,
Richmond, VA, USA (2015).

[8] Y. Sun, et al., Phys. Rev. ST Accel. Beams 12, 101002 (2009).

[9] A. Santamaria et al., “Limits on failure scenarios for crab

cavities in the HL-LHC”, THPF095, These Proceedings.

[10]E. McIntosh, private communication.

Proceedings of IPAC2015, Richmond, VA, USA MOPJE069

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

ISBN 978-3-95450-168-7
471 Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs


