
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 188.184.3.56

This content was downloaded on 08/03/2016 at 08:29

Please note that terms and conditions apply.

Evaluating the transport layer of the ALFA framework for the Intel® Xeon Phi™ Coprocessor

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 664 092021

(http://iopscience.iop.org/1742-6596/664/9/092021)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/9
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Evaluating the transport layer of the ALFA

framework for the Intel R© Xeon Phi
TM

Coprocessor

Aram Santogidis1, 2, Andreas Hirstius3, Spyros Lalis4

1CERN IT/Openlab, 1211 Geneva, Switzerland
2Maynooth University, Maynooth, Co. Kildare, Ireland
3Intel GmbH, 85622 Feldkirchen/Munich, Germany
4University of Thessaly, 38221 Volos, Greece

E-mail: aram.santogidis@cern.ch, andreas.hirstius@intel.com, lalis@inf.uth.gr

Abstract. The ALFA framework supports the software development of major High Energy
Physics experiments. As part of our research effort to optimize the transport layer of ALFA,
we focus on profiling its data transfer performance for inter-node communication on the Intel
Xeon Phi Coprocessor. In this article we present the collected performance measurements with
the related analysis of the results. The optimization opportunities that are discovered, help us
to formulate the future plans of enabling high performance data transfer for ALFA on the Intel
Xeon Phi architecture.

1. Introduction
ALFA is the concurrency framework supporting the development of the data processing and
event reconstruction software for ALICE and FAIR high energy physics experiments [1, 2]. One
of the main facilities it provides is the data transport layer, the FairMQ message queue library
which is used to connect and coordinate data processing components. By taking advantage of
the abstractions provided by FairMQ one can establish a data processing topology spanning
over a computing cluster potentially featuring heterogeneous computing hardware.

Distributed applications, such as the O2 software of ALICE [1], consist of hundreds of loosely
coupled processes. One can take advantage of this design by porting compute-intensive (OS)
processes on manycore processors, such as the Intel Xeon Phi Coprocessor, without modifying
much the overall system.

The motivation of porting such processes to the Intel Xeon Phi Coprocessor is to increase
the execution efficiency of software components that can take advantage of the computational
capabilities of this particular architecture (high core count, wide vector engines, high memory
bandwidth, etc.). The High Energy Physics (HEP) applications are usually throughput
driven [3]. Therefore the data transport mechanisms supporting this kind of applications must
cope with high data transfer rates in order to keep the computing nodes busy. As part of our
effort to optimize the transport layer of ALFA for the Intel Xeon Phi platform, we evaluate its
current performance profile and search for optimization opportunities.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092021 doi:10.1088/1742-6596/664/9/092021

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

2. Background
The O2 software is a collection of multi-process distributed applications that implement the
online and offline processing for the ALICE experiment at CERN [1]. The software is
responsible for a number of computing tasks such as data acquisition from the detectors, event
reconstruction, data compression and physics analysis. It will run on the next generation
computing farm of the experiment, featuring high-end heterogeneous commercial-off-the-shelf
(COTS) hardware. The O2 software implementation is based on the ALFA and FairRoot
frameworks (Figure 1). It is designed as a data processing pipeline, as opposed to big, tightly
coupled, parallel processes. The data transport technology, interconnecting the processes of the
pipeline, is the FairMQ message queue library which is part of the ALFA framework.

Libraries

ALFA

FairRoot

ALICE O 2

Other

Figure 1. Overview of the external
dependencies of the O2 software.

System

ZeroMQ NanoMSG

FairMQ

Message Sock
et

Transport
Messa

ge Socket

Transport

Message

Socket Transport

Device

Application

Processor
Sampler

Figure 2. The FairMQ software
architecture overview.

2.1. FairMQ on ZeroMQ and NanoMSG
FairMQ, the transport mechanism of ALFA, is a message passing technology that enables
asynchronous communication between processes running on a distributed system. The main
abstraction it provides is the device which represents a process that either generates data (i.e. a
source), does message-based processing (e.g. merging, compressing messages, etc.) or content-
based processing (data consumption). The user of FairMQ defines a set of devices and connects
them to form a processing topology that implements the application logic.

FairMQ is implemented as a thin layer of software over ZeroMQ [4] and NanoMSG [5]
message-queue transport libraries (Figure 2). These libraries implement the actual data transfer
mechanisms therefore the communication performance of FairMQ is defined by the performance
of these libraries since the FairMQ interface introduces marginal overhead to the overall data
transfer performance [1]. ZeroMQ and NanoMSG are message queue technologies that provide
functionality for inter-thread, inter-process and inter-node communication. The message queues
are designed without the requirement of a dedicated message broker and for this reason
they can support highly scalable concurrent distributed applications. With a socket-like API
along with built-in abstractions for common communication patterns such as publish-subscribe,
pipeline, request-reply, they can support fast development without compromising stability and
performance.

2.2. The Intel Xeon Phi Coprocessor and the SCIF mechanism
In 2012 Intel released the Intel Xeon Phi Coprocessor, codenamed “Knights Corner”, which
is a manycore processor with enhanced parallel computing capabilities. It can be attached to

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092021 doi:10.1088/1742-6596/664/9/092021

2

Intel Xeon Phi
Coprocessor HostPCIe bus

SCIF MSG
Linux OS

ZeroMQ \
NanoMSG

TCP stack

Linux OS

libSCIF
ZeroMQ \
NanoMSG

TCP stackSCIF DriverSCIF Driver

libSCIF

SCIF RMA
TCP

Figure 3. Program runs on the Coprocessor and on the Host system. They communicate over
the PCIe bus with the TCP and SCIF transport protocols.

a PCIe1 slot of a computing node and boost the performance of parallel applications running
on that node. It features up to 61 cores with 4 hardware threads per core. Each core has a
512-bit wide vector engine that can speed up applications with data parallelism. Although it is
a PCIe peripheral device, it runs its own embedded Linux-based operating system accompanied
with a utility software package, the Intel Manycore Platform Software Stack (MPSS). For this
reason, it can also be used as a separate computing node. In our research effort we investigate
the potential of porting complete OS processes to the Coprocessor and increase their execution
efficiency. For this reason we profile the performance of the communication of the Coprocessor
with the Host system over the PCIe interconnect.

The Symmetric Communications InterFace (SCIF), included in the MPSS package, abstracts
the details of the communication over the PCI express bus [6]. It is used as a socket-like inter-
node communication mechanism where nodes can be Intel Xeon Phi Coprocessors and Intel
Xeon host processors. Programs using SCIF can communicate by passing messages, typically
used for small data payloads, and use Remote (Direct) Memory Access (RMA) operations for
bulk data transfers. RMA has also the advantage of supporting one-sided communication, which
is useful for algorithms that need to avoid explicit synchronization to increase the execution
performance. Figure 3 shows the interactions between programs running on the Coprocessor
and on the Host. Programs that run on top of the message queue libraries use the TCP protocol,
whereas programs that use the SCIF API use SCIF messaging and SCIF Remote Memory Access
(RMA) operations. It is worth noting that SCIF RMA can utilize the DMA engine whereas the
TCP implementation for the Intel Xeon Phi Coprocessor does not support DMA transfers.

3. Performance evaluation method
We designed an indicative execution scenario in order to compare the performance of ZeroMQ
and NanoMSG against the native SCIF data transport mechanism of the Intel Xeon Phi
Coprocessor. We describe the hardware and software setup details as well as the techniques
we used to collect and present the performance measurements. We performed the performance
evaluation tests on a testbed provided by Intel (see Table 1).

1 PCIe Gen2 16x lanes

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092021 doi:10.1088/1742-6596/664/9/092021

3

Component Technical details

CPU 2x E5-2680 “Sandy Bridge EP” | 3.1 GHz | 8 cores
RAM 8x DDR3 4GB DIMMs | 1333 MHz Speed

Operating System RHEL server 6.6 | Kernel 2.6.32-504.el6.x86 64
Coprocessors 2x Xeon Phi Coprocessor SE10/7120 series | 1.1 GHz | 8 GB GDDR

MPSS version version 3.5 | Kernel 2.6.38.8+mpss3.5
Bios version SE5C600.86B.02.04.0003.102320141138

ZeroMQ Version 4.0.5
NanoMSG Last commit: d530bfe3ad64e9cf0e5d5f5c97549f5744190b5e

SCIF-perf-bench Version 1.0

Table 1. The software and hardware technical details of our testbed.

3.1. Porting ZeroMQ and NanoMSG to the Intel Xeon Phi platform
The cross-compilation of the libraries for the Intel Xeon Phi architecture was a matter of
providing the required building environment parameters [7]. After that we were able to run
ZeroMQ and NanoMSG programs on the Coprocessor that communicate with programs running
on the Host system. Essentially this is inter-node communication so, both for ZeroMQ and
NanoMSG, the only option we had was to use the TCP over the PCIe bus. We increased
the maximum TCP buffer sizes to 128 MB on both, the Coprocessor and the Host, systems2

without experiencing noticeable improvement. The TCP implementation for the Intel Xeon Phi
Coprocessor does not use DMA transfers so the data transfer performance is limited by the
single core speed of the device.

3.2. Performance testing programs
Both ZeroMQ and NanoMSG are shipped with message throughput test programs implemented
by the developers maintaining these projects. For the evaluation of the messaging libraries we
used their respective performance tests. For the evaluation of SCIF, we developed a set of
micro-benchmarks, the SCIF-perf-bench [8]. The design and the usage of these benchmarks is
the same with the ones shipped with ZeroMQ and NanoMSG.

These benchmarks consist of two processes, one sender and one receiver. The sender ini-
tially sends a signaling-message to the receiver, indicating the start of the data transfer, and
then transfers the payload in chunks, by sending a number of fixed-size messages. The receiver
records the time that elapses between the arrival of the signaling-message and the receipt of the
last message (payload chunk), and calculates the average transfer rate based on the following
formula:

average transfer rate = msg size×num of msgs
transfer time

So for example, to measure the transfer rate from the Coprocessor to the Host, we execute
the sender program on the former and the receiver on the latter, and record the output of the
receiver.

3.3. Selection of statistical measures
We would like to be able to determine representative values from a set of performance
measurements we conduct. In order to choose a suitable measure of central tendency, we have to
check the distribution of the samples that we get when we run the performance test programs.

2 We also configured the high-water mark of ZeroMQ to infinite. This option defines the maximum number of
outstanding messages in its outbound and inbound queues.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092021 doi:10.1088/1742-6596/664/9/092021

4

SCIF-perf-bench NanoMSG ZeroMQ

Figure 4. Distributions of the data transfer rate for each technology. The data transfer
direction is from the Coprocessor to the Host, transferring 1 GB payload in 2 MB chunks. The
distributions with other chunk sizes had similar shape.

RMA Host->Device
RMA Device->Host
MSG Host->Device
MSG Device->Host

Figure 5. SCIF performance for small data sizes: Using the remote memory access (RMA)
and messaging (MSG) mechanism, to transfer 128 MB while varying the chunk size from 64 to
4096 Bytes.

We present the distributions of 201 samples3 collected for each one of the solutions (Figure 4).
We notice that the distributions have significant number of outliers therefore we choose median
as measure of central tendency. As for the measure of variation we use the Median Absolute
Deviation (MAD).

3.4. Choice between SCIF messaging and RMA for small messages
For SCIF, we can use either the messaging interface or RMA operations. For bulk data transfers
(e.g. over 4 KB), we use RMA since that is the use case that it was designed for. For
small payloads, we executed a performance comparison test in order to determine the preferred
solution. The Figure 5 shows the performance of RMA4 against message passing5.

We notice that the RMA transfer from the Coprocessor to the Host is an order of magnitude
slower than the RMA transfer from the Host to the Coprocessor and generally slower than the
message transfers. It is preferable to have consistent performance, regardless if the transfer is

3 We used an odd number of samples because it is convenient to calculate the median.
4 We use the scif vwriteto() function of the SCIF API.
5 Invoked without the BLOCK flag, which yields slightly better performance.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092021 doi:10.1088/1742-6596/664/9/092021

5

Small data chunks Large data chunks

`NanoMSG [Host->Device]
NanoMSG [Device->Host]
SCIF [Host->Device]
SCIF [Device->Host]
ZeroMQ [Host->Device]
ZeroMQ [Device->Host] 2 MB64 KB

0.5 GB/s

6 GB/s

Figure 6. Plots illustrating the performance of SCIF, ZeroMQ and NanoMSG, for small and
large payloads. The left plot corresponds to the results collected for the transfer of 128 MB in
chunks from 64 B to 4 KB. The right plot corresponds to large data payloads, where 1 GB is
transferred in chunks from 4 KB to 128 MB. For the large payloads scenario, SCIF uses the
DMA engine.

initiated from the Coprocessor or the Host. Therefore we use SCIF messages for small data
payloads in the performance tests that follow.

3.5. Caveats and solutions
3.5.1. NanoMSG last message problem: During our tests we encountered a problem with
NanoMSG’s throughput test implementation. For large message sizes, sometimes the last
message would be dropped presumably because of premature exit from the sender program.
We inspected the implementation and introduced the workaround of adding a fixed delay before
the sender closes the socket. A better solution would be to synchronize the two processes before
closing the sockets.

3.5.2. SCIF RMA Coprocessor to Host performance drop: Initially when we tried to assess the
performance of SCIF we noticed some unexpected drops in performance for RMA transfers from
the Coprocessor to the Host. This effect was also encountered by Drs. Jan Just Keijser who
shared with us that by upgrading the firmware of the host server he solved the problem. We
confirmed his solution by upgrading the firmware of our machine and executing the benchmarks
anew.

4. Data transfer performance comparison of ZeroMQ, NanoMSG and SCIF
For the comparison of the data transfer performance of the libraries, we collected measurements
for small and large payloads according to the methodology presented in Section 3. Figure 6

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092021 doi:10.1088/1742-6596/664/9/092021

6

summarizes the performance comparison results. The left plot refers to small data sizes, where
a data payload of 128 MB is transferred in chunks from 64 to 4096 Bytes. The processes running
on the Coprocessor and the Host are terminated and restarted for each test. For each chunk
size the test is repeated 201 times and the median values are chosen as the representative values
for each case (see Sec. 3.3). For the large data sizes the test is the same as for small data
sizes, except that we transfer 1 GB of payload, in chunks starting from 4 KB up to 128 MB. We
remind that for the small data sizes with SCIF we use the messaging mechanism whereas RMA
with DMA transfers for large data sizes.

4.1. Small data payloads
For the small data sizes the performance profile is similar for all options. We notice that in the
Coprocessor to Host transfer case, and especially the SCIF version, the rate is lower than the Host
to Coprocessor case. This result can be explained by the fact that the single core performance
of the Intel Xeon Phi Coprocessor is lower than that of the Host processor. Therefore the sender
program running on the Coprocessor is slower than when it runs on the Host. Note that there
are no DMA transfers involved in the small data payloads scenario.

One other noticeable result is the fact that the performance of SCIF is less or equal than
that of ZeroMQ and NanoMSG. This may be because TCP does message coalescing therefore
achieves aggregate transfers. On the other hand the messaging implementation in SCIF-perf-
bench directly uses the SCIF API and sends each message separately without aggregating.

4.2. Large data payloads
For the large data payloads, SCIF eventually outperforms ZeroMQ and NanoMSG by more
than an order of magnitude. For chunk sizes larger than 64 KB for the Host to Coprocessor case
and 2 MB for the Coprocessor to Host case, the transfer bandwidth is already saturated. The
fact that the bandwidth saturates for different chunk sizes can be attributed to the single core
performance difference between the Coprocessor and the Host.

The primary reason for performance difference between SCIF and the two libraries is
because SCIF uses the DMA engine to achieve high bandwidth utilization of the PCIe bus
whereas the message queue libraries are limited to the TCP protocol option. The TCP
implementation of Intel Xeon Phi Coprocessor is a single-threaded process limited by the
poor single-core performance of the Coprocessor. One other important aspect is that TCP
is designed for communication over unreliable networks by employing techniques such as
delivery acknowledgments, flow control and congestion avoidance. The PCIe bus is a reliable
communication medium, therefore the features of TCP introduce unnecessary overhead which
further diminishes the data transfer performance.

One can notice that ZeroMQ and NanoMSG show almost constant performance over the
increasing data chunk size. Although we increased the TCP maximum buffer size to 128 MB,
both on the Coprocessor and the Host systems, the performance did not improve. This fact
leads us to the conclusion that the bottleneck occurs at the TCP stack implementation level,
and not at the application and system configuration level.

We noticed that, especially from Host to Coprocessor transfers, ZeroMQ performs better than
NanoMSG. The reasons for this result are unknown but probably this phenomenon is related to
the maturity level of the ZeroMQ project compared to the much younger NanoMSG. Evidence,
that currently NanoMSG is slower than ZeroMQ, are examined by the project community6.

6 https://github.com/nanomsg/nanomsg/issues/300

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092021 doi:10.1088/1742-6596/664/9/092021

7

5. Summary and future plans
In this article we investigated the data transfer performance of the ZeroMQ and NanoMSG
libraries of the ALFA framework on top of the Intel Xeon Phi Coprocessor, in comparison with
the performance of the SCIF data transfer mechanisms. By collecting a set of performance
measurements we showed that for large message sizes (over 4 KB), the SCIF data transport
mechanism of Intel Xeon Phi Coprocessor outperforms by over an order of magnitude the
ZeroMQ and NanoMSG messaging libraries. We also take into account that the event sizes
of O2 of ALICE is around 24 MB, and for this size of payloads SCIF RMA operates at its
maximum bandwidth. This finding motivates us to extend the above messaging libraries with
support for the SCIF transport protocol. Such an extension will transparently boost the data
transfer performance of processes running on the Coprocessor.

As a next step we plan to design and implement a transport protocol on top of SCIF that will
be integrated in the messaging libraries. We will also investigate the possibility of implementing
our protocol over other RMA enabled transport protocols such as the Infiniband Verbs protocol.
We will also do preliminary investigation in order to prepare our solution for the next generation
of Intel Xeon Phi, “Knights Landing”, featuring the Intel Omni-Path fabric.

Acknowledgments
Special thanks to Dr. Piotr Umiski from Intel Poland, who provided additional insight in order
to explain the performance results for SCIF. Also many thanks to Drs. Jan Just Keijser from
the Nikhef institute in Amsterdam, who suggested to upgrade the firmware in order to overcome
some performance instabilities we encountered.

This research project has been supported by a Marie Curie Early European Industrial
Doctorates Fellowship of the European Communitys Seventh Framework Programme under
contract number (PITN-GA-2012-316596-ICE-DIP).

References
[1] ALICE Collaboration, Upgrade of the Online - Offline computing system. CERN-LHCC-2015-004; ALICE-

TDR-019.
[2] M. Al-Turany, ALFA: a common concurrency framework for ALICE and FAIR experiments, April 2014,

https://goo.gl/BYlNsn

[3] John Apostolakis, Ren Brun, Federico Carminati, Andrei Gheata and Sandro Wenzel, The path toward HEP
High Performance Computing, J. Phys.: Conf. Ser. 513 052006, 2014

[4] P. Hintjens, http://zguide.zeromq.org/page:all
[5] M. Sustrik, http://nanomsg.org/index.html
[6] Intel corporation, Symmetric Communications Interface (SCIF) For Intel Xeon Phi Product Family Users

Guide, http://goo.gl/y3L13U, April 2015
[7] Intel corporation, Autotools and Intel Xeon Phi Coprocessor, https://goo.gl/Es7TJJ, December 2013
[8] A. Santogidis, The SCIF-perf-bench micro-benchmark source code, Zenodo.org,

http://dx.doi.org/10.5281/zenodo.17665, May 2015

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092021 doi:10.1088/1742-6596/664/9/092021

8

