
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 188.184.3.56

This content was downloaded on 08/03/2016 at 08:46

Please note that terms and conditions apply.

First experience of vectorizing electromagnetic physics models for detector simulation

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 664 092013

(http://iopscience.iop.org/1742-6596/664/9/092013)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/9
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


First experience of vectorizing electromagnetic

physics models for detector simulation

G Amadio1, J Apostolakis2, M Bandieramonte3, C Bianchini1 8, G
Bitzes2, R Brun2, P Canal4, F Carminati2, J de Fine Licht5, L
Duhem6, D Elvira4, A Gheata2, S Y Jun4, G Lima4, M Novak2, M
Presbyterian7 O Shadura2, R Seghal7 and S Wenzel2

1Parallel Computing Center at São Paulo State University (UNESP), São Paulo, Brazil
2CERN, PH Department, CH-1211 Geneva, Switzerland
3Instituto Nazionale di Astrofisica, Osservatorio Astrofisico di Catania , Catania, Italy
4Fermilab, MS234, P.O. Box 500, Batavia, IL, 60510, USA
5University of Copenhagen, Copenhagen, Denmark
6Intel Corporation, Santa Clara, CA, USA
7Bhabha Atomic Research Centre (BARC), Mumbai, India
8Mackenzie Presbyterian University, São Paulo, Brazil

E-mail: syjun@fnal.gov

Abstract. The recent emergence of hardware architectures characterized by many-core or
accelerated processors has opened new opportunities for concurrent programming models taking
advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector
simulations has been designed to exploit both the vector capability of mainstream CPUs and
multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The
characteristics of these architectures are very different in terms of the vectorization depth,
parallelization needed to achieve optimal performance or memory access latency and speed. An
additional challenge is to avoid the code duplication often inherent to supporting heterogeneous
platforms. In this paper we present the first experience of vectorizing electromagnetic physics
models developed for the GeantV project.

1. Introduction
Beginning in 2005, we ceased benefiting from automatic performance gains coming from increases
in processor clock speed. Increases in the number of transistors on a chip now translate into
an increase in the number of cores or vector units. In order to benefit from the full processing
power of the latest chips, we must review our software architecture and increase the amount of
work that can be done in parallel within a similar memory budget.

Within the High Energy Physics (HEP) software ecosystem, event simulation is one of the
most time consuming parts of the work flow. However, the basis of HEP detector simulation
is mostly independent from the details of individual experiments and thus easy to share among
experiments. Consequently, any run-time performance improvement in physics event simulation
can have significant impact on the amount and quality of HEP simulation overall.

Geant4 [1, 2, 3] is the most widely used simulation toolkit in contemporary HEP experiments,
but does not efficiently utilize the vector capability of modern CPUs as it has been developed

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092013 doi:10.1088/1742-6596/664/9/092013

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



for sequential executions. The GeantV project [4] was launched in 2013 to research how to
take advantage of modern processors and coprocessors in order to significantly increase run-
time performance. The project studies performance gains from propagating multiple tracks
from multiple events in parallel, improving code and data locality in the process. Using code
specialized to take advantage of the hardware specifics, it aims to leverage both the vector
pipelines in modern processors and the availability of coprocessors, including the Xeon Phi
and general purpose GPUs. GeantV has three major components that need to be adapted
for vectorization: scheduling, geometry and physics modeling. In this paper we focus on
the techniques explored to enhance the existing electromagnetic (EM) physics models utilizing
emerging parallel hardware architectures.

2. Vectorization of Physics Models
HEP detector simulation models the passage of particles (tracks) through matter. The typical
HEP event consists of a set of particles produced by a primary collision and subsequent
secondary interactions or decays. Conventional HEP detector simulation processes all tracks of
an event sequentially (i.e., one particle at a time) even though multiple events can be processed
simultaneously (event-level parallelism) using multi-processors or multi-threading. On the other
hand, GeantV explores particle-level parallelism by grouping similar tracks and processing them
in a vectorized manner to maximize locality of both data and instructions. To take full advantage
of SIMD (Single Instruction Multiple Data) or SIMT (Single Instruction Multiple Threads)
architectures, identical operations should be executed on multiple data. Therefore, vectorization
of physics models requires proper algorithm decompositions in order to minimize conditional
branch and to maximize instruction throughput. In this section, we briefly describe EM physics
models and the alias method [5, 6] as an alternative sampling technique suitable for SIMD and
SIMT architectures.

2.1. EM Physics Models
An essential component of particle interactions with matter is the final state analysis described
by a physics model associated with the selected physics process for a given step; the physics
process is sampled by the mean free path analysis beforehand. In most EM physics models,
the atomic differential cross section of the underlying physics process plays a central role in
updating kinematic states of the primary particle or producing secondary particles if necessary.
For example, if the selected physics is the Compton process for a given step, the final state of
the scattered photon (angle and energy) is sampled based on the two dimensional probability
function of the Klein-Nishina differential cross section [7] for the given energy of the incoming
photon. Then, a secondary particle, the recoil electron, is produced due to the inelastic scattering
of the photon on atom.

In Geant4, combined composition and rejection methods [8, 9, 10] are often used to sample
variables following probability distribution functions used in EM physics models. Inverse
functions of their cumulative distributions are not generally analytically calculable. However,
composition and rejection methods are not suitable for vectorization due to repeated conditional
trials until a random draw is selected. One popular Monte Carlo technique to sample any discrete
distribution that is effectively vectorizable is the alias method, described below.

Since most of the secondary particles produced by primary particle interactions with matter
are electrons or photons in typical HEP events, physics models of electromagnetic (EM)
interactions are the first candidates to be vectorized for GeantV. A list of EM physics processes
and models for high energy electrons and photons that are considered for vectorization is
summarized in Table 1 and current implementations of vector physics models are available
from the GeantV repository [11].

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092013 doi:10.1088/1742-6596/664/9/092013

2



Table 1. A list of electromagnetic physics processes and models of electron and photon processes
that are considered for initial vectorization tests.

Primary Process Model Secondaries Survivor

Compton Scattering Klein-Nishina e− γ
γ Pair-Production Bethe-Heitler e−e+ –

Photo-Electric Effect Sauter-Gavrila e− –
Ionization Moller-Bhabha e− e−

e− Bremsstrahlung Seltzer-Berger γ e−

Multiple Scattering Goudsmit-Saunderson – e−

2.2. Alias Sampling Method
The alias sampling method [5, 6] is similar to the acceptance-rejection (Von Neumann) method,
but it uses an alias outcome for the rejected case which is thrown away in the traditional
acceptance-rejection method. It recasts the original probability density function with N equally
probable events, each with likelihood c = 1/N , but keeps information of the original distribution
in the alias table. The alias table consists of the alias and the non-alias probability. Unlike
composition and rejection methods, the alias method is effectively vectorized as each sampling
procedure follows the same instructions without a branch or a conditional exit. It is also as
accurate as the traditional table look-up method which is neither vectorizable nor efficient due
to its use of a binary search. For GeantV vector physics models, we adopted the alias method
for most of random samplings used in EM physics models, especially for secondary particle
productions.

3. Implementation
GeantV has been designed from the start to enable the use of multiple modern hardware
platforms. It is important for the long-term relevance of the project to preserve the option
open to use existing platforms, as well as future hardware or software developments. In this
section, we briefly describe the structure of code implementation for vector physics models.

3.1. Architecture Backends
GeantV uses backends, which are software layers between the generic, platform-independent
simulation code and the hardware-specific details (e.g. SIMD vector registers or GPU threads)
and their software-related constructs like SIMD intrinsics, MIC pragmas or CUDA C++

extensions. Examples of currently available backends are the scalar, vector and cuda backends.
A fourth backend, for the Intel MIC platform, is under intense development as part of two IPCC
Intel projects [12, 13]. The vector backend uses the Vc library [14] to promote explicit SIMD
vectorization by the client code in the kernels. Alternatively, both the cuda and scalar backends
use standard types, since the GPU registers are scalar. Detailed descriptions of a backend may
be found elsewhere [15, 16].

The main purpose of the backends is to isolate all the complexity of low-level, high
performance details behind simplified abstractions which are then available for use by carefully
designed, generic kernels. Each physics-relevant algorithm is coded into a separate kernel so we
speak of algorithms and kernels interchangeably.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092013 doi:10.1088/1742-6596/664/9/092013

3



3.2. Generic kernels
Kernels are high-performance versions of performance-critical algorithms, developed using
generic programming and based on the data structures defined by the backends. In order to
take full advantage of the performance capabilities of the underlying hardware, some important
choices were made:

• Inlined functions are used extensively, to avoid the overhead due to function calls.

• Virtual function calls inside the kernels are avoided. Kernels themselves are coded in terms
of C++ templates, with a specific backend as the template parameter. Platform-specific,
high-performance kernels are built at compilation time, based on the generic kernels and
the backends, selected by a user request or local hardware configuration.

• Branching of execution flow is strictly minimized. Kernels can only use conditional
constructs sparingly, preferentially using constant-expression conditions known at
compilation time. Modern compilers will completely remove unused sections of the code
from resulting executable binaries.

Input data for the algorithms come as kernel arguments, triggering the compile-time instantiation
of the binary objects appropriate for the hardware used.

4. Data Organization
The basic flow of data in vector physics models is a group of particles (a basket of tracks
received from the GeantV scheduler or high level interfaces of physics processes) with similar
properties processed by the map pattern. Map, a parallel control pattern, applies a function
to every element of collected data in parallel or in a vectorized way. Each track contains a set
of elements (data members) describing the state of the particle during the course of tracking.
Position, momentum or energy of the track are frequently queried and updated throughout the
physics process and should be laid out contiguously in memory for efficient vector or parallel
operations. Therefore, the organization of track data is one of important considerations to
achieve efficient memory accesses for both SIMD and SIMT.

In general, the Structure of Arrays (SOA) is more efficient than the Array of Structures (AoS)
both for SIMD and SIMT [17]. Currently, interfaces to physics processes specialized only for
the vector backend take track data in the SoA format. With SoA tracks, each vector kernel
processes a set of vector instructions on coalesced chunks of SoA track elements for the number
of iterations equivalent to the number of tracks within the basket divided by the corresponding
vector size of SIMD instruction sets (2 for SSE, 4 for AVX, 8 for MIC for the double precision).

Another consideration for effective vectorization is related to the table lookup used in the
vectorized sampling procedure with alias tables. Sampling using the alias technique involves
scattered memory accesses to get the final state variable in parallel. For example, sampling
outgoing photon energies in the Compton process using the alias table randomly selects target
bins with values that usually are not contiguous in memory. For the vector backend, gather
operations are used to rearrange queried data (scattered in memory) into a contiguous memory
segment so that subsequent instructions can be executed through vector pipelines. The scatter
operation is also required to store the vector of results back into the original track data. Since
a gather operation itself is an additional sequential operation, it introduces an overhead in the
performance of the sampling kernel.

5. Validation and Performance
As vectorized physics models adopt the alias sampling method and generic implementations for
different architectures, it is critical to understand the computing performance of physics kernels
and to validate results. Since physics kernels are designed to be architecture-independent, they
can be executed in the exactly same way for different backends, allowing direct validation of

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092013 doi:10.1088/1742-6596/664/9/092013

4



simulation results within statistical uncertainties. Statistical fluctuations are due to the use of
different random number generators: the vector and cuda backend use random numbers from
Vc and CURAND (a CUDA library that provides efficient algorithms to generate pseudo–random
numbers for a GPU) [18], respectively. To test the implementation of the alias algorithm,
we extended the validation to execute the same operations using the original Geant4 library.
Simulated quantities such as the final energy and angle of the primary track as well as kinematic
distributions of secondary particles have been compared and validated with respect to results
obtained by Geant4. Figure 1 shows some kinematic distributions of the Compton scattering as
a validation example.

Figure 1. Validation of simulated events: 1) (top) distributions of input photons and secondary
electrons of the Klein-Nishina model (Geant4, Scalar, Vector, Cuda), 2) (bottom) ratios of
distributions obtained by different backends to the Geant4 distribution.

As a measure of performance, we define the relative speedup as the ratio between the time
taken by the vector code and by the scalar code to execute the same task. Elapsed times on both
the scalar and vector code were measured for simulating 100 trials with 4992 photons undergoing
the Klein-Nishina process using the alias method. Secondary particles were sampled and stored
on a temporary stack. Preliminary performance results are shown in Figure 2.

6. Conclusion
As the GeantV project assembles the various pieces of the infrastructure: scheduler, geometry
and physics, we see tantalizing hints that the goal of significantly improving the performance of
physics simulation applications is achievable. For example, as shown in this paper, vectorizing
physics code improves simulation speed by a factor 2 to 5 depending on the hardware
architecture. Further investigation is necessary to verify this result and implement the same type
of improvements to other EM physics models. We must see if they can be similarly improved
and if these improvements carry through when applied within a full GeantV simulation.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092013 doi:10.1088/1742-6596/664/9/092013

5



Figure 2. Relative speedup as the ratio between the CPU time taken by the vector code and
by the scalar code to execute the same task. The average CPU time was measured for 100 trials
for 4992 photons that undergo the Compton process using the Klein-Nishina model.

References
[1] Allison J et al 2006 Geant4 Developments and Applications IEEE Trans. on Nucl. Sci. 53 No. 1 270-278
[2] Agostinelli S et al 2003 Geant4 - A Simulation Toolkit Nucl. Instrum. Methods Phys. Res. A 506 250-303
[3] Ahn S et al 2014 Geant4-MT: bringing multi-threading into Geant4 production Joint International Conference

on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013), 04213
[4] Apostolakis J et al 2014 A concurrent vector-based steering framework for particle transport J. Phys.: Conf.

Series 523 012004
[5] Walker A J 1977 ACM Trans. Math. Software. 3, 3, 253-256
[6] Brown F J, Martin W R, and Calahan D A 1981 Trans. Am. Nucl. Soc. 38 354-355
[7] Klein O and Nishina Y Z 1929 Physik 52 853
[8] Butcher J C and Messel H 1960 Nucl. Phys. 20 15
[9] Messel H and Crawford D 1970 Electron-Photon shower distribution, Pergamon Press
[10] Ford R and Nelson W 1985 SLAC-265, UC-32
[11] http://git.cern.ch/pub/geant
[12] IntelR© Parallel Computing Center at CERN

https://software.intel.com/en-us/articles/ipcc-at-cern-european-organisation-for-nuclear-research

[13] IntelR© Parallel Computing Center at São Paulo State University (Universidade Estadual Paulista, UNESP)
https://software.intel.com/en-us/articles/intel-parallel-computing-center-sao-paulo-state-university

[14] Kretz M and Lindenstruth V 2011 Vc: A C++ library for explicit vectorization Software: Practice and
Experience. Online at http://dx.doi.org/10.1002/spe.1149

[15] Wenzel S 2014 Towards a high performance geometry library for particle-detector simulation 16th
International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT)

[16] de Fine Licht J 2014 First experience with portable high-performance geometry code on GPU GPU
Computing in High Energy Physics 2014

[17] Canal P et al 2013 High energy electromagnetic particle transportation on the GPU Computing in High
Energy Physics 2014

[18] NVIDIA CUDA Toolkit 5.0 CURAND Guide http://docs.nvidia.com/cuda/pdf/CURAND Library.pdf

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092013 doi:10.1088/1742-6596/664/9/092013

6




