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Abstract. The CMS Remote Analysis Builder (CRAB) is a distributed workflow management
tool which facilitates analysis tasks by isolating users from the technical details of the Grid
infrastructure. Throughout LHC Run 1, CRAB has been successfully employed by an average
of 350 distinct users each week executing about 200,000 jobs per day.

CRAB has been significantly upgraded in order to face the new challenges posed by LHC Run
2. Components of the new system include 1) a lightweight client, 2) a central primary server
which communicates with the clients through a REST interface, 3) secondary servers which
manage user analysis tasks and submit jobs to the CMS resource provisioning system, and 4)
a central service to asynchronously move user data from temporary storage in the execution
site to the desired storage location. The new system improves the robustness, scalability and
sustainability of the service.

Here we provide an overview of the new system, operation, and user support, report on
its current status, and identify lessons learned from the commissioning phase and production
roll-out.

1. Introduction
The Compact Muon Solenoid (CMS) is one of two multipurpose experiments that collect and
analyze data from proton-proton and heavy ion collisions at the Large Hadron Collider (LHC).
The offline data processing activities carried out in CMS can be classified into two categories:
organized processing of data, performed by a central operations team, and data analysis,
performed by individual users. These two stages are complementary; “primary datasets” are
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produced centrally, then given to all the members of the collaboration to perform further analyses
and report results.

A critical tool for user data analysis within the CMS collaboration is the CMS Remote
Analysis Builder (CRAB), a software suite that allows physicists to transparently access the
global computing resources of the Worldwide LHC Computing Grid (WLCG [1]). CRAB accepts
a user’s analysis code and a list of configuration parameters, and manages all of the operations
that ultimately create jobs that are distributed to worker nodes around the world for execution.

CRAB2 was the official production release during LHC Run 1. Significant limitations in
CRAB2 were identified based on the experience gained during that period. Output data was
transferred directly from the Grid worker nodes in an unscheduled way. Many administrative
functions had to be controlled directly by the user, including the resubmission of jobs interrupted
by problems in the system. Most of the operations the tool needed to perform to create jobs,
like contacting other CMS services and the Grid schedulers, were done on the user’s submission
node. This made analyses cumbersome to perform and difficult to debug, since problems on
the user’s client system were not directly accessible to administrators. It was determined that
needed improvements in both internal operations and the user experience would require a major
revision which has been implemented with CRAB3.

The paper provides an overview of the improvements introduced by CRAB3, and it is
organized as follows: Section 2 introduces the distributed computing model implemented at
CMS; Section 3 presents the architecture of CRAB3; Section 4 describes the commissioning phase
and production roll-out of CRAB3; finally, Section 5 outlines the operational improvements
introduced and new directions of development.

2. The CMS distributed computing model
CMS computing activities take place around the world at computing centers organized as a
hierarchy of Tiers. A single Tier-0 center at CERN performs prompt reconstruction and provides
archival storage on tape. Seven Tier-1 centers perform organized processing and data intensive
tasks. Approximately 50 Tier-2 centers perform physics user data analysis and simulated central
event production on a 50%/50% basis. Finally, more than 80 Tier-3 are focused primarily on
user analysis.

CMS computing activities utilize a range of tools which function in concert to provide the
full spectrum of services needed for analysis. The Data Management (DM) group includes the
Data Bookkeeping System (DBS [2]), an event data catalog for both simulated and recorded
data, the Physics Experiment Data Export (PhEDEx [3]) system, which manages global data
transfers over the grid, and SiteDB [4], which tracks all the sites and resources available to the
CMS collaboration and manages user authentication. The Workload Management (WM) group
includes WMAgent [5], used for central production of datasets, and CRAB, the primary tool
for user analysis. Both of these workflow management tools use glideinWMS [6] to access Grid
resources in an easy way, and both use the CMS glideinWMS global pool deployed at CERN
[7].

CRAB permits physicists to analyze CMS data without requiring extensive familiarity with
the Grid infrastructure or the CMS computing model. User code is compiled locally and then
sent to the Grid worker nodes where the CMS software framework (CMSSW [10])is provided
through the CVMFS distributed file system[11]. CMSSW is the overall collection of tools that
facilitates the development of reconstruction and analysis software, and provides services for
simulation, calibration, alignment and reconstruction.

When the user designates an input dataset, CRAB performs a data discovery operation to
locate the associated file metadata in the DBS. This information is then combined with the
splitting parameters provided by the user to determine how the task will be split into jobs
and to identify the data each job will require. To minimize file transfer overhead, a dataset is
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normally pre-staged at a Tier-2 site with PhEDEx so that jobs requiring it can be sent there for
execution. However, a job can also access data as needed anywhere on the Grid using XrootD[9];
this approach is called the Any data Anytime Anywhere paradigm (AAA [8]). Users can also
perform Monte Carlo simulations with CRAB, which requires no input dataset.

3. CRAB3 architecture
CRAB3 is a major reworking of the functionality provided by CRAB2, which introduces many
improvements. DBS metadata lookup, job splitting, and scheduler interactions have been moved
from the client to the server, facilitating administrator access for troubleshooting and reducing
the possibility of user-specific failures. The REST architectural style allows the use of HTTP
headers and caching mechanisms that improve load balancing and reduce the workload on other
CMS computing tools including DBS, PhEDEx and SiteDB. Simultaneous requests from multiple
users are now queued in the server, reducing the risk of overloading external services. Finally,
an internal database for job submission and bookkeeping used in CRAB2 was replaced with
the DAGMan (Directed Acyclic Graph Manager) meta-scheduler for HTCondor which manages
dependencies between jobs at a higher level than the HTCondor Scheduler [?]. Where possible,
code from the organized processing system is reused.

Figure 1 shows the complete architecture of CRAB3. The CRAB3-specific components are
shown in green.

Figure 1. The overall architecture of the CRAB3 system.

The lightweight CRAB3 client is distributed through cvmfs and only requires python and
pycurl to run; it provides access to all the CRAB3 client functions through a command line
interface. Principle commands include status, submit, kill, resubmit, report, getoutput and
getlog. The submit command loads the user configuration, does an initial validation, and sends
it to the server frontend along with the user code. A task is then created in the server database;
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a task is a set of jobs that are created in response to a user submission; in general all the jobs
in a task require the same resources and access the same input dataset. The client permits the
user to manage all jobs in a task simultaneously. For example, if the user requests that the task
be killed or resubmitted, all the jobs associated with that task will be killed or submitted again
to the Grid scheduler simultaneously. The client can also monitor the progress of execution and
retrieve output and log files.

The server frontend acts as a gateway for user requests and handles user authentication. Users
must be registered in SiteDB in order to access the server. The user configuration is validated
again and is stored in an Oracle database called the task database. All the communications
between the client and the server frontend use a REST-ful approach [?] which provides a clear
separation between the data and the interface used to modify this data, allowing the technology
used to store the data to change without having to change the CRAB3 client. Indeed, CRAB3
supports both the Oracle and MySQL backends.

The task worker component is responsible for fetching work from the task database using the
REST interface. It implements the submission, kill, and resubmit commands. Many instances
of the task worker can run in parallel on different machines, and each one initiates multiple
slave processes that process tasks in parallel. Each process is responsible for executing one unit
of work on a task. For example, for the submit command the task worker will perform the
DBS discovery and job splitting operations mentioned above, and it will send to the HTCondor
Scheduler a description of all the jobs in the task, their input, and what they have to execute.

The task database not only stores information about the task and its status, but it is also
used to synchronize with the task worker component, making sure multiple instances do not
accidentally process the same task.

A script called the job wrapper is sent to each worker node and executed. It 1) sets up the
CMS software environment, 2) executes the user code, 3) records monitoring information, 4)
reports any errors and 5) transfers the output.

Output file transfer (stageout) is performed in two steps. The output files are first copied to
a temporary storage area local to the execution site, and then a component called Asynchronous
StageOut (ASO [12]) is notified that the output files need to be copied to the location where
the user was provided storage space. ASO then manages the file transfer using a File Transfer
Service (FTS [?]) server and channels, as in PhEDEx. ASO then updates the file metadata in
DBS to reflect the description and location of the new files once they are at the final destination.
This is one of the improvements in CRAB3. In CRAB2 the copy of the output files was done
directly from the worker node without scheduling by a central server. This resulted at times in
congestion, timeouts, and failed transfers, particularly if many jobs tried to write to the same
location. Unmanaged transfers could also affect other unrelated data transfer activities. This
approach also allows the worker node to return to available status as soon as the job completes,
rather than wasting available CPU cycles waiting for the outputs to be staged out.

The DAG description for each job includes a postjob script executed on the scheduler machine.
The postjob communicates with ASO, waits for the transfer(s) to finish, decides if the job needs
to be resubmitted (either because of a job or a transfer failure), and executes cleanup operations.
Resubmission is done restarting the DAG node with another submission to the grid pool and a
new postjob.

All job submission activities in CMS are monitored by a central service called Dashboard
[13].

4. Commissioning and adoption
After an intense period of testing and commissioning by experts and power users, the CRAB3
system was exposed for tests to physicists on the 1st June 2014. The context was the Computing,
Software, and Analysis Challenge (CSA14 [14]), a series of large-scale tests of the complete CMS
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data processing, software, and analysis chain that was organized from June to September 2014
to assess the readiness of the CMS distributed computing system for the start-up of the LHC
Run 2. The whole CRAB3 system, including ASO and the global pool, was part of the test. In
particular, functional and scale tests were organized for CRAB3.

The objective of the scale test was to check how the system behaves under heavy load. The
targets were set according to the usage observed during Run 1, and consisted of 20k parallel
running jobs and 200k completed jobs per day. In order to ensure that the target load was
reached, in addition to the user activity, complementary automatic job submission was set up
via HammerCloud [15], a stress testing system of distributed job execution.

Figure 2. Running jobs during the
CSA14 challenge.

Figure 3. Total daily completed jobs
during the CSA14 challenge.

Figures 2 and 3 show that the established targets were achieved. In particular, towards the
end of the challenge almost 30k parallel running user jobs were executed in the system and a
peak of 190k total daily completed jobs were reached. This demonstrated that the load achieved
during LHC Run 1 could be sustained. However, to avoid interfering with user jobs running
under CRAB2, the system was not pushed to its limits. Scalability tests of the components
show encouraging results; for example the ASO component was able to perform 600k transfers
over the three days of the test, twice the expected load [12].

Figure 4. Number of tasks submitted
during the CSA14 challenge.

Figure 5. Total miniAOD user produced
datasets during the CSA14 challenge.

In addition to the scale tests, functional testing of the activities expected at the beginning of
data taking was conducted. The system was exposed to the user community through a miniAOD
production campaign, a new reduced CMS data format expected to be used by the majority
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of data analyses. The objective was to collect feedback from physicists, and start a process of
feature-driven development where feedback from users is collected, implemented in CRAB3, and
deployed in production in a monthly basis. The code is frozen two weeks before the monthly
deadline, and deployed in a testbed where the integration group can perform adequate testing.

During the CSA14 challenge more than 200 users tried the CRAB3 system, submitting up to
35 tasks (a set of related jobs) per day (Figure 4), and more than 180 datasets were published
in the CMS bookkeeping system (DBS) in the context of CSA14 user miniAOD production (see
Figure 5). Many operational/infrastructural issues were encountered and promptly solved, and
the monthly release development cycle, which is still ongoing, proved to be a successful strategy
to provide a solid, tested and continuously updated product to the community.

Figure 6. Cumulative CRAB3 users
since June 2014.

Figure 7. CRAB2 vs CRAB3 jobs since
July 2014.

Figure 6 shows that the cumulative number of users since the system was declared production
ready is increasing. Each point corresponds to the number of users who submitted at least one
task up to a certain date. At the time of writing 665 distinct users have submitted at least one
task to the CRAB3 system. Figure 7 shows that the number of CRAB3 jobs is increasing while
the number of CRAB2 jobs is decreasing.

The final release of CRAB2 was issued in November 2014, and support is now limited to the
few areas which are not yet supported under CRAB3. CRAB2 applications continue to run, but
users are encouraged to make the transition as soon as feasible and the majority have already
done so.

5. Operations and evolution
CRAB3 introduces many improvements also in the area of the daily operations activities.
Over time, the CRAB2 code had become complex and difficult to maintain. For example,
the scheduling function under CRAB2 required plug-in software to be developed on an ad-hoc
basis to provide access to local resources that were not accessible under the normal Grid access
procedures. Under CRAB3, the HTCondor scheduler takes over many of these functions, keeping
the CRAB code simpler and more maintainable.

Additionally, the usage of a shared glideinWMS pool (the Global Pool [7]) for both user
data analysis and central production of datasets and the usage of a common infrastructure for
transfers based on FTS [?] significantly reduces the effort needed to mantain the submission and
transfer infrastructures. This not only improves the long term sustainability of CRAB3, but
also of the whole CMS computing software stack in general.

The development effort has now shifted to adding new functionalities which were not available
under CRAB2. For example, an option has been added to estimate time required by the user
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code per event analyzed; this can be helpful in setting splitting parameters. In addition, a library
of functions provides access to the client from within a python script, allowing job submission
and other CRAB operations to be automated within a complex user workflow.

Future plans for CRAB3 include more flexible management of user output data, especially
related to the possibility to move them around with PhEDEx and Tier2 disk space allocated to
groups; low-latency file handling solutions when user output is small; long term persistency and
traceability of the CRAB3 configuration, possibly in the context of analysis documentation and
preservation; and of course constant integration with the evolving CMS software infrastructure.

6. Conclusions
CRAB3 brings to CMS analysis users a client-server architecture which allows them
to transparently deal with the intrinsic unreliability of the large distributed computing
infrastructure. It addresses the main weaknesses of the past tool in the output management
area and largely improves on friendliness and usability.

In this new implementation we focused on clear division into components, limiting as much
as possible the in-house development in favor of adopting standard solutions like HTCondor
and FTS. We also managed to use the same implementation of the underlying Grid submission
infrastructure (a global HTCondor pool implemented via glideinWMS), thus largely simplifying
the operational load.

Offering a long, smooth transition and a predictable release schedule is proving very effective
for a successful migration of our large user community. The vast majority of users report that
they are much happier with this new version of CRAB and do not return to the previous version.
Overall CRAB3 deployment has been a success. Because of extensive testing in 2014 with real
use cases, the support is a lighter activity than it was for CRAB2 at a similar stage of maturity.
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